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Abstract 

Background:  Coronavirus disease 2019 (COVID-19) has become a pandemic since its first appearance in late 2019. 
Deaths caused by COVID-19 are still increasing day by day and early diagnosis has become crucial. Since current diag-
nostic methods have many disadvantages, new investigations are needed to improve the performance of diagnosis.

Methods:  A novel method is proposed to automatically diagnose COVID-19 by using Electrocardiogram (ECG) 
data with deep learning for the first time. Moreover, a new and effective method called hexaxial feature mapping is 
proposed to represent 12-lead ECG to 2D colorful images. Gray-Level Co-Occurrence Matrix (GLCM) method is used 
to extract features and generate hexaxial mapping images. These generated images are then fed into a new Convolu-
tional Neural Network (CNN) architecture to diagnose COVID-19.

Results:  Two different classification scenarios are conducted on a publicly available paper-based ECG image dataset 
to reveal the diagnostic capability and performance of the proposed approach. In the first scenario, ECG data labeled 
as COVID-19 and No-Findings (normal) are classified to evaluate COVID-19 classification ability. According to results, 
the proposed approach provides encouraging COVID-19 detection performance with an accuracy of 96.20% and 
F1-Score of 96.30%. In the second scenario, ECG data labeled as Negative (normal, abnormal, and myocardial infarc-
tion) and Positive (COVID-19) are classified to evaluate COVID-19 diagnostic ability. The experimental results dem-
onstrated that the proposed approach provides satisfactory COVID-19 prediction performance with an accuracy of 
93.00% and F1-Score of 93.20%. Furthermore, different experimental studies are conducted to evaluate the robust-
ness of the proposed approach.

Conclusion:  Automatic detection of cardiovascular changes caused by COVID-19 can be possible with a deep learn-
ing framework through ECG data. This not only proves the presence of cardiovascular changes caused by COVID-19 
but also reveals that ECG can potentially be used in the diagnosis of COVID-19. We believe the proposed study may 
provide a crucial decision-making system for healthcare professionals.

Source code:  All source codes are made publicly available at: https://​github.​com/​mkfzd​mr/​COVID-​19-​ECG-​Class​ifica​
tion

Keywords:  COVID-19, ECG, Paper-based ECG, GLCM, Hexaxial mapping, Deep learning, Convolutional neural 
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Background
Coronavirus Disease 2019 (COVID-19), caused by 
the novel coronavirus severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), first emerged in 
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the Wuhan region of China in early December 2019. 
COVID-19 is a contagious virus that causes respira-
tory tract infection and can be transmitted from per-
son to person and it has continued to spread since its 
first appearance and caused a pandemic that still con-
tinues around the world [1, 2]. It has been affecting 
life negatively in terms of health, economy, and social 
aspects [3]. As of March 3, 2020, the global mortality 
rate is 3.4%. As of May 5, 2021, there are more than 
153 million confirmed cases. Over 132 million people 
have recovered, while more than 3.2 million patients 
died due to the virus [4]. Fast and accurate diagnosis 
of the disease is of great importance in this process. 
For this reason, various protocols for the diagnosis of 
the disease have been announced by the World Health 
Organization (WHO). Today, the most widely used 
standard test method for diagnosing COVID-19 is real-
time reverse transcriptase-polymerase chain reaction 
(rRT-PCR). Although PCR tests are the gold standard 
due to the high accuracy rate (sensitivity), they require 
long waiting times before results (at least 4 to 6 hours), 
experienced personnel, and a logistically central loca-
tion [5]. Other tests and diagnostic methods that can 
produce faster results are still under investigation. One 
of the methods used for the diagnosis of COVID-19 is 
radiography images. Due to the disadvantages of the 
PCR technique, chest radiography images such as com-
puted tomography (CT) and X-ray are frequently used 
for the early diagnosis of COVID-19 [6]. These images 
contain useful information for the diagnostic step. Sev-
eral studies have found changes in radiographic images 
that were taken before COVID-19 symptoms began [7].

In the fight against COVID-19, Internet of Things 
(IoT) applications provide great benefits from diagnosis 
to treatment of the disease [8, 9]. Recent studies suggest 
to integrate artificial intelligence (AI) into IoT, Industry 
4.0, and Industry 5.0 applications to aid healthcare pro-
fessionals and patients [10–13]. Diagnosis and treatment 
with AI are frequently used in the field of medicine and it 
is a helpful tool for clinicians. Deep learning, one of the 
sub-branches of AI, creates an end-to-end model without 
the need for manual feature extraction step compared to 
traditional machine learning methods and it is popularly 
used in many areas today. As a result of the rapid spread 
of the COVID-19 pandemic in the world, there are situ-
ations where the number of healthcare professionals is 
insufficient. Due to all these conditions and other disad-
vantages, interest in AI-based automatic diagnosis sys-
tems is increasing day by day. Deep learning methods 
have the potential to provide timely assistance to patients 
with the fast and automatic diagnosis of the disease. 
These methods do not require expertise and therefore 
they can help healthcare professionals [14].

Many studies have used radiographic images for the 
diagnosis of COVID-19. Ozturk et  al. [14] used X-ray 
images as input for the deep learning model to diagnose 
COVID-19 automatically. In the DarkCovidNet model 
with 17 convolutional layers, they achieved 98.08% accu-
racy in binary classification (COVID, No-Findings) and 
87.02% accuracy in multiclass classification (COVID, No-
Findings, Pneumonia) by using the real-time classifier. 
Toğaçar et al. [15] proposed a model using X-ray images 
preprocessed with Fuzzy Color for COVID-19 detection 
via deep learning. They classified the features extracted 
with MobileNet2 and SqueezeNet using support vec-
tor machines (SVM). They achieved 99.72% overall 
accuracy as a result of multiple classifications (COVID, 
No-Finding, Pneumonia). Karaknis et  al. [16] proposed 
architecture to create synthetic images to increase the 
limited number of X-ray images. In their study, with two 
deep learning models, they used binary classification for 
COVID-19 and normal cases, and multi-class classifica-
tion for COVID-19, normal cases, and pneumonia. In the 
study, the lightweight deep learning model is presented 
as an alternative to ResNet8. They obtained 98.7% accu-
racy, 100% sensitivity, and 98.3% specificity for binary 
classification, and 98.3% accuracy, 99.3% sensitivity, and 
98.1% specificity for multi-class classification. For further 
studies using X-ray and CT images for automatic detec-
tion, the reader is referred to the accompanying paper 
[17]. However, besides the high success rate in diagnosing 
COVID-19, radiographic imaging techniques have some 
disadvantages such as not being portable, high cost, large 
radiation exposure, requiring technical skill for image 
analysis, and examination [18]. New techniques are 
needed as the COVID-19 pandemic continues.

While the primary impact area of COVID-19 infection 
is the respiratory system, it also affects multiple human 
body systems, especially the cardiovascular system [19]. 
The cardiovascular changes in COVID-19 patients [20–
24] have prompted an investigation of the diagnostic 
value of the electrocardiogram (ECG). In the literature, 
many types of cardiovascular changes in COVID-19 
which can be classified as cardiac arrhythmias, QRST 
abnormalities, myocarditis and pericarditis, and conduc-
tion disorders were reported [25]. The most important 
finding in ECGs of COVID-19 patients is the ST changes 
[21, 22, 26–31]. Shortening of the PR interval [29, 32] 
and changes such as QT prolongation [33–37] were also 
observed in the ECG of COVID-19 patients. It should be 
noted that some studies claim that COVID-19 cannot be 
considered the complete cause of these cardiovascular 
complications, but it should be emphasized that it can 
reveal the underlying conditions or worsen them [25].

Considering the published studies, ECG can be used 
to evaluate mortality, intubation, and intensive care unit 



Page 3 of 20Ozdemir et al. BMC Med Inform Decis Mak          (2021) 21:170 	

entry rates beyond patients with severe disease. In order 
to propose ECG as a diagnostic assessment of COVID-
19, ECGs of the moderate and asymptotic patients need 
to be analyzed. Recently, a research group has published 
a publicly available dataset containing paper-based ECG 
of normal (no cardiac findings), cardiac and COVID-19 
patients, which provides an opportunity to succeed in the 
proposed aim. Considering the advantages of ECG appli-
cation such as low cost, harmlessness, accessibility, and 
real-time monitoring, automatic detection from ECG 
may be of great value in COVID-19 diagnosis besides 
radiography images and PCR. In the previous researches, 
no studies have been found in which deep learning or 
even AI is applied using ECG data to the diagnosis of 
COVID-19, to the best of our knowledge.

Additionally, many deep learning approaches were 
proposed for automatic cardiac arrhythmia detection. 
Besides using 1D ECG signals [38, 39] to train the deep 
network, in many studies were used a 2D representa-
tion of 1D ECG signals like ECG time-amplitude images 
[40–43], time-frequency representations by using Short-
Time Fourier Transform (STFT) [44, 45] and Continuous 
Wavelet Transform (CWT) [46], higher-order spectral 
representations [47], and dual beat coupling matrices 
[48] in order to train CNN architecture. Considering 
the wide usage of paper-based ECG reports [49], there 
is a lack in the automatic detection of cardiac problems 
which require special attention.

In the light of these findings, this study addresses two 
different problems:

•	 Automatic classification of the disorders that may 
occur in ECG due to COVID-19 and even automatic 
diagnosis of COVID-19 through ECG data.

•	 In cases where ECG data can be collected in the form 
of paper-based reports instead of digital ECG signals, 
proposing a novel and effective method that can aid 
automatic diagnosis from printed paper-based ECG 
reports.

For these purposes, a novel, low-cost, and efficient auto-
matic COVID-19 diagnosis method is proposed for the 
first time using deep learning and hexaxial feature map-
ping with ECG data in this study. Firstly, paper-based 
ECG images obtained from the publicly available data-
base are pre-processed and segmented. Then a novel hex-
axial feature mapping process is implemented to generate 
hexaxial ECG images. These hexaxial ECG images are 
trained with a new deep network architecture to diag-
nose COVID-19.

In the following, this paper is structured as; in the 
Related works section, related papers investigating car-
diac findings that may be caused by COVID-19 are 

summarized; in the Methods section, firstly, the used 
dataset is explained, then the segmentation and pre-pro-
cessing of the paper-based ECG images, feature extrac-
tion step, ECG mapping process, and finally the proposed 
deep network architecture are examined in detail; in the 
Results and discussion section, the classification results 
are presented, and findings and limitations are discussed; 
and finally in the Conclusion section, the main findings 
of the study are summarized and some useful suggestions 
are given.

Related works
In this section, the changes seen in ECG associated 
with COVID-19 are detailed with the studies in this 
field. Wang et  al. [33] detected abnormal ECG in 201 
of 319 COVID-19 patients and they reveal that ST-T 
change is the most important clinical evidence in the 
abnormal ECG. In addition, sinus tachycardia, atrial 
arrhythmia, right bundle branch block (RBBB), sinus 
bradycardia, atrial fibrillation (AF), atrial tachycardia, 
abnormal Q-wave, and weak R-wave progression were 
also observed in the ECG of patients with COVID-19. 
In the comparative statistical analysis between patients 
with and without the severe disease, a significant dif-
ference was found in all complications. A significance 
of p < 0.001 was achieved in the ST-T change. Pavri 
et  al. [32] tried to detect heartbeat and PR changes 
from the ECG of 75 COVID-19 patients. In 50.7% of 
patients with COVID-19, it was observed that the PR 
interval shortened with the acceleration of the heart 
rate. In addition, no change was observed in 49.3% of 
COVID-19 patients. In the statistical analysis per-
formed with ECGs taken before COVID-19 and during 
COVID-19, a significant difference was found between 
the two groups in their heart rate and PR interval. In 
the conducted study, the mortality rate was found 
to be higher in patients with shortened PR interval. 
Angeli et  al. [50] examined the ECGs of 50 patients 
with COVID-19. They found ST-T abnormality in 30% 
of the patients and left ventricular hypertrophy in 30%. 
Also, various abnormalities such as AF, tachy-brady 
syndrome, and acute pericarditis have been detected 
in the ECG of patients with COVID-19 during hos-
pitalization. Although rare, RBBB and Myocardial 
Infarction (MI) have been observed in patients with 
COVID-19. Li et  al. [51] conducted a study by exam-
ining the ECG of 113 COVID-19 patients 50 of whom 
died and 63 of whom survived. Ventricular arrhyth-
mia was found to be statistically significant evidence in 
patients who died compared to patients who survived. 
In addition, sinus tachycardia was observed widely 
in the ECG of patients with COVID-19. Santoro et  al. 
[34] detected QT prolongation in 14% of the patients 
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in their study, by examining the ECG of 110 patients 
with COVID-19. Jain et al. [35] reported that the drugs 
used for the treatment of COVID-19 caused QT pro-
longation in the ECG. To test this situation, the ECG of 
2006 COVID-19 patients was examined. According to 
the obtained results, QT prolongation was detected in 
19.7% of patients with COVID-19. In addition, it was 
determined that patients with this abnormality in their 
ECGs had higher rates of intubation and intensive care 
unit entry than others. Mccullough et  al. [52] evalu-
ated whether the ECG provides prognostic information 
in COVID-19 disease. In their study, they examined 
the ECG of 756 patients with COVID-19 and detected 
abnormalities such as atrial premature contractions, 
intraventricular block, repolarization abnormali-
ties, and RBBB. Among these findings, ST-elevation 
was rarely observed. And it was stated that patients 
with these ECG findings had higher mortality rates. 
Lam et  al. [29] conducted a study with 18 COVID-
19 patients. They detected abnormalities including 
PR depression, biphasic T-waves, PR prolongation, 
Q-waves, ST-segment elevation, atrial flutter, RBBB, 

and atrial trigeminy in 63% of the patients. Accord-
ing to their results, it was determined that COVID-19 
patients with abnormal ECG tended to have increased 
severity and stay in the hospital for 61% longer than 
other patients. Bertini et al. [30] examined the ECG of 
431 patients with COVID-19. They found abnormali-
ties in the ECG of 93% of the patients. AF was observed 
in the ECG of 22% of patients. Acute right ventricular 
pressure overload (RVPO) was detected in 30%, and 
ST-T prolongation was observed in 4 patients. Nemati 
et al. [53] suggested that ECG could be an early indica-
tor for COVID-19 infection this is because the changes 
in the ECG were also observed in COVID-19 patients 
without any cardiovascular history. As detailed above, 
many studies have demonstrated that some cardiac 
disorders may be caused by COVID-19 and they can 
be easily observed in ECG. Also, many cardiovascu-
lar changes continue to be associated with COVID-19 
infection day by day. Therefore, ECG can be an impor-
tant diagnostic tool not only for the early diagnosis of 
COVID-19 but also for the cardiovascular complica-
tions which may arise during or after COVID-19 dis-
ease for mild patients.

Fig. 1  Representation of the proposed framework, includes five-step: (i) ECG image dataset acquisition (The heart drawing is provided 
from a publicly available webpage (Zagrobelna, M.: How to Draw a Heart. Available from: https://​design.​tutsp​lus.​com/​tutor​ials/​
how-​to-​draw-a-​heart-​cms-​30737. Accessed: 2021-05-05).), (ii) segmentation, pre-image-processing, and image enhancement, (iii) application 
of GLCM and extractions of some of their properties (includes statistical analysis), (iv) ECG hexaxial feature mapping process, and (v) designing, 
training, validating, and testing the proposed deep network (**GLCM: Gray Level Co-occurrence Matrix, paper-based ECG report number: 211 with 
the label: COVID-19 [54])

https://design.tutsplus.com/tutorials/how-to-draw-a-heart-cms-30737
https://design.tutsplus.com/tutorials/how-to-draw-a-heart-cms-30737
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Methods
This study consists of 5 main stages. The visualizations 
of these stages are shown in Fig. 1.

COVID‑19 ECG images dataset
In this study, a publicly available dataset containing 
ECG images of cardiac and COVID-19 patients has 
been used. The dataset was shared online by Khan et al. 
[54] from the University of Management and Technol-
ogy on Mendeley Data. The dataset includes 1937 dis-
tinct patients’ paper-based ECG report images. ECG 
reports were examined by experts and the images con-
sist of 250 COVID-19 patients, 77 MI patients, 548 
patients with abnormal heartbeats (recovered from 
COVID-19 or MI), 203 patients that have MI history, 
and 859 people without any cardiac findings. The pre-
sented dataset is the first dataset shared for the ECG of 
COVID-19 disease, in fact, it is the first COVID-19 bio-
signal database as far as we know.

The paper-based ECG records in the dataset con-
sist of ECG signal drawings from a 12-lead system (I, 
II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6) and 
the sampling rate was 500 Hz. As understood from the 
paper-based ECG reports, ECG signals were collected 
via EDAN SE-3 series 3-channel electrocardiograph, 
and some of the signals were applied with a 0.67–25 Hz 
bandpass filter, and some of them with a 0.5–100 Hz 
bandpass filter and a 50 Hz notch filter.

Unfortunately, the images of the dataset have some 
limitations. The images do not have sufficient resolu-
tion, and report image sizes are not standard. In par-
ticular, the ECG reports of COVID-19 patients consist 
of different types of reports. Other reports are more 
standardized and have better resolution.

In this study, two different classification problems are 
discussed; (i) to distinguish COVID-19 from No-Find-
ings (that have normal ECG); all 250 COVID-19 and 
250 out of 859 normal paper-based ECG report images 
were used and (ii) to diagnose COVID-19 (COVID-19 
(Positive) versus other types of ECGs (Negative)); all 
250 COVID-19, 83 of 859 normal, 83 of 548 abnor-
mal heartbeat and 84 of 280 MI paper-based ECG 
report images were used. The reason for choosing the 
equal amount of data in the classification process is to 
eliminate the imbalanced dataset effect. In addition, 
all paper-based ECG report images used in this study 
were selected from the group in which the 0.67–25 Hz 
bandpass filter was applied. An example for a 12-lead 
paper-based ECG report of a COVID-19 patient from 
the dataset (Report number: 211) is shown in Fig. 1.

Pre‑processing and segmentation
In this section, the conversion of noised 12-lead paper-
based ECG images to noiseless channel-based binary 
images is explained. There are many studies that digitize 
paper-based ECG images [55, 56]. Nevertheless, these 
studies have high computational costs. Moreover, the 
complex image processing and digitization processes may 
cause degeneration of ECG signals and cause information 
loss. Therefore, in this study, a simple and effective paper-
based ECG segmentation approach that does not require 
any complex image processing method is proposed. 
Moreover, the proposed method does not involve a digi-
tization process and preserves the ECG signals as images. 
Hence, no degradation occurs in ECG signals. In the pro-
posed method, the quality of ECG images depends only 
on the sampling rate of paper-based ECG signals.

For this purpose, firstly, the part containing each ECG 
channel is segmented from paper-based ECG images. The 
segmentation process was carried out with a rectangu-
lar frame. Since the paper-based ECG images in the data-
set have different resolutions, the positions of this frame 
on the paper-based ECG image were measured manually. 
The segmentation process is performed to include one or 
more RR intervals in each channel. An example of a seg-
mented paper-based ECG image is shown in Fig. 2a. Seg-
mented ECG-channel images have a background sourced 
from the ECG-paper lines. This background is removed 
within two steps. In the first step, the background lines 
were removed by filtering the input densities with a den-
sity mapping function [57], because the background has 
denser or softer RGB values than the curves expressing 
the ECG signal. This is essentially a contrast enhance-
ment process. An example of a segmented paper-based 
ECG image with no background lines is shown in Fig. 2b. 
Unfortunately, the obtained images still include traces of 
the background where the background lines are as dense as 
ECG curves. Besides, since only the signal pattern in ECG 
reflects the information about the heartbeat period, the 
RGB color distribution of ECG curves is negligible [41, 42]. 
For this reason, the RGB images obtained in the last stage 
were converted to binary images by taking the “G” chan-
nel as a reference (since “G” channel information is not 
dominant in paper-based ECG images due to the nature of 
ECG paper). An example of the paper-based ECG image 
obtained after the binarization process is shown in Fig. 2c. 
While the ECG curve consists of adjacent interconnected 
pixels, background noise is separated from this curve as 
seen in Fig. 2c. In the second step, the interconnected ECG 
curve pixels are filtered from background noises by using 
the bwareafilt function of MATLAB®. Thus, the eventual 
binary segmented paper-based ECG image was obtained 
without any loss. An example of the final image is shown 
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in Fig. 2d. The pre-processed and segmented paper-based 
ECG image database is available at GitHub.

GLCM and feature extraction
Feature extraction and selection play an important role 
in machine learning-based classification problems. A set 
of images can be categorized according to their most dis-
tinctive features which can be found by implementing an 
appropriate feature extraction method. In our approach, 
at the end of the pre-processing steps, all paper-based 
ECG images were converted to binary images where the 
ECG signal is represented by 0s. We chose the Gray Level 
Co-Occurrence Matrix (GLCM) method [58] for feature 
extraction because it has been shown that GLCM is very 
useful in extracting the important properties of an ECG 
signal such as periodicity and distortions [59, 60].

GLCM generates a square matrix whose dimension 
equals the number of gray levels in the image. Each cell 
of GLCM corresponds to the number of the co-occurring 
related gray levels in the image. The GLCM matrix G can 
be calculated from the Eq. (1) as given in [60]:

where I is the image of the pre-processed binary ECG 
images with dimension NxM; i and j are the pixel val-
ues, x and y are the spatial positions in the image I. �x 

(1)

G�x,�y(i, j) =

N
�

x=1

M
�

y=1







1, I(x, y) = i &

I(x +�x, y+�y) = j
0, otherwise

and �y are the spatial offset, and I(x, y) is the pixel value. 
In our problem, the pixel values i,  j take 0, 1 and G is a 
size of 2× 2 matrix. Taking the offset �x and �y values 
as 1 and 0, respectively, the transitions between the pixel 
with 0 and 1 intensities in horizontal direction provide 
the amount of deterioration in the signal specially in its 
periodicity. The second-order statistical analysis of the 
GLCM matrix provides different parameters that are 
widely evaluated as image features in image classification 
studies [61].

In this work, we extracted the most commonly used four 
GLCM features which are energy, contrast, correlation, and 
homogeneity from each lead of the segmented binary ECG 
images. Mentioned features can be calculated using the G 
matrix obtaining in Eq. (1) as follows:

(2)

Energy =

1
∑

i=0

1
∑

j=0

p2ij

Contrast =

1
∑

i=0

1
∑

j=0

(i − j)2pij

Homogeneity =

1
∑

i=0

1
∑

j=0

1

1+ (i − j)2
pij

Correlation =

1
∑

i=0

1
∑

j=0

(i − µi)(j − µj)

σiσj
pij

Fig. 2  Examples of background removal processes: a segmented paper-based ECG image, b paper-based ECG image without background lines, c 
binarized paper-based ECG image, and d eventual paper-based ECG image

https://github.com/mkfzdmr/COVID-19-ECG-Classification
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where pij is the probability of adjacent pixels that have ij 
intensity pattern and it is stored in the GLCM matrix G, 
i.e. for a binary image first element of G shows the prob-
ability of co-occurrence 00 pattern in the image I. µi , µj , 
σi , and σj are means and standard deviations of the inten-
sities, and were given as follows:

We assessed the four GLCM features from a statistical 
perspective in order to select the most informative and 
distinctive feature to represent the binary ECG images. 
We performed the one-way ANOVA test on GLCM fea-
tures obtained from the binary ECG images. ANOVA 
test results of GLCM features that belong to No-Findings 
and COVID-19 classes are given in Fig. 3. We found that 
all GLCM features were statistically significant relative to 
each other ( p < 0.0001 ). When the gray level pixel dis-
tribution of an image is periodic or homogeneous, the 
energy value is expected to converge to the upper limit 
[62]. We concluded that it is prominent to use GLCM 
energy among the other GLCM features to emphasize 
the periodicity relation between RR intervals in ECG 

(3)

µi =

1
∑

i=0

1
∑

j=0

ipij σi =

√

√

√

√

1
∑

i=0

1
∑

j=0

(i − µi)
2pij

µj =

1
∑

i=0

1
∑

j=0

jpij σj =

√

√

√

√

1
∑

i=0

1
∑

j=0

(j − µj)
2pij

images. In addition, the energy values are directly related 
to uniformity. As explained in the Related works section, 
since the periodicity and orderliness of COVID-19 ECG 
images are expected to be different from the ECG images 
without COVID-19, it has become important to meas-
ure image uniformity. Moreover, GLCM energy values 
help determine disorders in texture [63] which may be 
related to COVID-19. Although all GLCM features that 
are obtained are statistically significant, for the reasons 
explained above, the GLCM energy is chosen as a feature 
to be used in the mapping process.

Hexaxial feature mapping
Inspired by our previous study [64], we proposed a novel 
method to represent the paper-based ECG record as a 
colorful two-dimensional image for various deep learn-
ing applications. The feature mapping approach can be 
defined as assigning a specific value to a specific point in 
a two-dimensional space. The point here is the projection 
of the measurement location in three-dimensional space 
into two-dimensional space (which we call the image 
plane in our study). The value is the feature that repre-
sents the measured signal in the related measurement 
point, i.e. the GLCM energy of binary ECG images of 
each lead. We used the hexaxial diagram of heart’s elec-
trical axis [65] as the image plane to define the measure-
ment points.

Our method relies on the 12-lead ECG record system 
which is accepted as the gold standard for ECG diagno-
sis, and works with the logic of combining Einthoven, 
Goldberger, and Wilson derivation systems [66]. In 
Fig.  4a, 6 limb leads (blue arrows) (I, II, III, aVR, aVL, 
aVF), their reversed polarities (−  I, −  II, −  III, −  aVR, 
− aVL, − aVF), and 6 precordial leads (red arrows) (V1, 
V2, V3, V4, V5, V6) are shown. In ECG analysis, the 
projection of six limb leads with their negative poles on 
the coronal plane is called a hexaxial reference system 
shown by the blue points in Fig. 4b. In this presentation, 
lead I is selected as the zero reference point and lead I 
and aVF intersect at a right angle at the electric center of 
the heart. The precordial leads have lied on the transverse 
plane and only the positive pole of each lead is indicated 
by the end labels shown by the red points in Fig.  4b. It 
is assumed that the Lead V6 is parallel to Lead I and the 
other precordial leads must be placed with a phase angle 
from V6 in the transverse plane. The leads V2 and V6 
intersect at approximately a right angle at the electrical 
center of the heart [67]. The phase angles of all leads are 
given in Fig. 4b.

According to this configuration, the heart is assumed 
to be placed at the origin of a 3D cartesian coordinate 
(x, y, z) system with axis Lead I (or V6) as y, aVF as −z 
and V2 as x. Lead I and aVF span the coronal plane 

Fig. 3  One-way ANOVA results within a box plot for each related 
GLCM features. All normalized GLCM features obtained from binary 
ECG images were verified to be statistically significant relative to each 
other ( p < 0.0001 for all binary groups). Each group has a total of 
4500 samples: 18-lead x 250 paper-based ECG reports (C: COVID-19, N: 
No-Findings)
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whereas V6 and V2 span the transverse plane. To find 
measurement points of all leads in 3D space, we assume 
that the endpoints of each limb leads lie on a circle cen-
tered at the origin with a radius r in the image plane, and 
the endpoint of precordial leads lie on a semi-circle cen-
tered at the origin with a radius r in the transverse plane. 
The measurement points of the limb leads are already in 
the image plane and they can be calculated easily using 
these transforms:

where θ denotes the given phase angles of the leads. The 
measurement points of the precordial leads lie on the 

(4)
x = 0

y = r cos θ

z = r sin θ

x − y plane and can be projected onto the image plane by 
using these transforms:

As a result, 18 measurement points are defined in 2D 
cartesian coordinate (y− z) system. The virtual measure-
ment points and their placement in the image plane are 
shown in Fig. 4b.

The next step in the hexaxial feature mapping method 
is assigning a value to the measurement point that rep-
resents the measured signal. The hexaxial feature map-
ping procedure can be defined as follows:

(5)
x = 0

y = r cos θ

z = 0

Fig. 4  ECG electrode location representations: a 3D representation of hexaxial and horizontal reference systems of 12-lead ECG acquisition, b 2D 
mapping of 3D hexaxial (limb leads) and horizontal (precordial leads) reference systems on the coronal plane; and an example of hexaxial feature 
mapping by using GLCM energies for c No-Finding class (Report Number: 182) and d COVID-19 class (Report Number: 16)
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where y, z shows the location of the projected measure-
ment points of the leads, and E indicates the normalized 
GLCM energy (Energy values rescaled between 0 and 1 
to avoid inconsistency and bias.). HFM is an expression 
of the value of E at location y,  z. The HFM of the posi-
tive poles of limb leads and the precordial leads are found 
by calculating the GLCM energy of binary ECG images 
denoted by I. To find the HFM of the negative poles, the 
images of corresponding positive poles are vertically mir-
rored denoted by I  then the GLCM energy is computed.

As a result, the GLCM energy features of each lead 
are mapped onto the coronal plane using virtual meas-
urement points in the 2D plane. A natural two-dimen-
sional neighbor interpolation process [68] is carried out 
between the existing measurement points to generate a 
smooth 2D colorful image. In Fig. 4c (no cardiac findings) 
and Fig. 4d (COVID-19) RGB color representation of the 
hexaxial feature mapping images are shown. When these 
two images are compared, it can be seen that the hexaxial 
feature mapping method has succeeded in represent-
ing the ECG of a healthy person in a distinguishing way 
from the ECG of COVID-19 patients. Furthermore, the 
proposed approach not only provides a 2D image repre-
sentation for deep learning studies but also collects all 
12-lead ECG information into a single image. Thus, the 
information contained in the multi-channel ECG can be 
analyzed and processed over a single image. Since the 
proposed approach includes the derivation information 
of 12-lead ECG, hexaxial mapping images also contain 
the electrical axis activity of the heart.

Proposed deep learning architecture
Recently, Convolutional Neural Network (CNN) archi-
tectures have become incredibly popular in image clas-
sification, object detection, and segmentation. A typical 
CNN architecture consists of a convolutional layer, a 
pooling layer, and a fully connected layer, respectively. 
The CNN architecture aims to obtain deep features. 
The convolutional layer scans the inputs via a filter and 
obtains feature maps. The pooling layer provides the 
selection of more meaningful features to reduce the com-
putational cost. And finally, the fully connected layer 
flattens the inputs and calculates the probabilities of the 
labels. There are many CNN architectures proposed for 
image classification consisting of the combination of 
these layers. Designing a model inspired by previously 

(6)

HFM(ylead, zlead) =



















E(Ilead), lead = I, II, III,

aVR, aVL, aVF,

V1, V2, V3, V4, V5, V6

E(I lead), lead = −I,−II,−III,

−aVR,−aVL,−aVF

proven CNN models is more efficient than rebuilding a 
new architecture [14].

In recent studies, various approaches were conducted 
on the selection of deep network architecture [14, 16, 
69, 70]. Ardakani et  al. [71] trained 10-different CNN 
architectures and emphasized the network which had 
the best classification performance among trained mod-
els. In [69], ResNet-50 is selected as a base model due 
to it yielded the best classification performance. In this 
study, two main criteria were considered to build the 
deep model; computational complexity and classification 
performance. For this purpose, hexaxial feature map-
ping images were trained with the network architectures 
which are suggested by recent state-of-the-art studies. 
When the classification results are compared ResNet-50 
[72], AlexNet [73], ResNet-8 [16], and SqueezeNet [74] 
yielded an accuracy of 73.65%, 93.60%, 85.12%, and 
92.52%, respectively. The results revealed that AlexNet 
which has less network depth achieved significant accu-
racy compared to well-known architectures. Addition-
ally, the AlexNet model was presented, it was used to 
classify about 1.2 million images in 1000 different classes. 
Besides, AlexNet used the Dropout method to overcome 
overfitting and Rectified Linear Units (ReLU) as the acti-
vation function to shorten the training time. Also, the 
model was compatible with multiple GPUs. Due to these 
advantages, AlexNet achieved the best performance in 
ImageNet Large Scale Visual Recognition Challenge in 
2012 (ILSVRC2012) [73]. Further, AlexNet has achieved 
effective performance in many ECG classification stud-
ies [47, 75]. Therefore, a new deep network architecture 
modified from the AlexNet model is designed in this 
work. Graphical representation of the proposed CNN 
architecture is shown in Fig. 5.

In the designing phase, we build a 9-layer model that 
contains one more convolutional layer with 256 filters 
and ( 3× 3 ) kernel size compared to the original AlexNet. 
Therefore, the input shapes require a larger size of 
256× 256 compared to AlexNet. Moreover, input images 
with larger size need to resize, and the padding process is 
performed on input images that have lower size. In order 
to avoid increasing the training cost, the number of layers 
is not increased further. Initially, the high-resolution 300 
DPI colorful hexaxial feature mapping images are resized 
to 256× 256× 3 to feed the proposed CNN architecture. 
This resizing process also provides less training cost and 
a balanced kernel size. In the first two layers, the input 
images are passed through a convolutional layer and a 
pooling layer. While both layers perform a convolution 
(Conv) with a ( 11× 11 ) kernel and using a ReLU func-
tion as the activation function in the convolutional layer, 
the first one has a stride of 4 and the second one has a 
stride of 2. Both pooling layers (maximum) used in this 



Page 10 of 20Ozdemir et al. BMC Med Inform Decis Mak          (2021) 21:170 

step have a kernel size of ( 2× 2 ) and a stride of 2. The 
next stage consists of four repetitive convolutional layers 
called as a convolutional block. Each convolutional layer 
has ( 3× 3 ) kernels and a stride of 1, and the numbers of 
filters are 96, 256, 256, and 128, respectively. Following 
the convolutional block is a maximum pooling layer with 
( 2× 2 ) kernel size and a stride of 2. In the next step, after 
the model is flattened, there is a dense block consisting of 
three fully connected layers. The dropout method (drop 
rate of 0.4) is used to prevent overfitting after each fully 
connected layer in the dense block. And finally, the Soft-
Max function is used as the binary classifier in the out-
put layer. The proposed CNN architecture has over 23.5 
million trainable parameters. Also, in Fig.  5 the output 
dimensions of the network layers are illustrated.

During the training phase of the proposed architecture, 
Adam Optimizer [76] was used, because of its effective 
choice of hyperparameters [77]. Moreover, the batch size 
is fine-tuned with parameter tuning. Different batch sizes 
(32, 64, 128, and 256) have been tested in the training 
phase to achieve the least error rate, and the batch size 
optimized to 128. Furthermore, different learning rates 
(0.01, 0.001, 0.0001, and 0.00001) were tested to ensure 
a lower error rate and to prevent saturation of the model. 
Although decreasing the learning rate hyperparam-
eter slightly increased the training cost, it fine-tuned on 
0.0001 to avoid local minimums. Epochs are tuned at 200 
to observe the robustness of the models and to compare 
the test results with equal conditions.

Results and discussion
In this study, the generated images based on hexaxial 
feature mapping, explained in the Methods section, are 
used to train our proposed architecture. All training, vali-
dating, and testing phases are performed on a computer 
with Nvidia GeForce RTX 2080 TI GPU and 64 GB RAM 
using Tensor Flow 2.2 and Cuda 10.1.

Modified stratified k-fold cross-validation is adopted 
to evaluate the robustness of the proposed models 
in this study. Cross-validation methods are used to 
evaluate the robustness of models during the training 
phase. The stratified k-fold cross-validation process 
re-arranges the dataset to ensure each fold properly 
represents the entire dataset. We added an extra valida-
tion step to the stratified k-fold cross-validation to con-
struct modified stratified k-fold cross-validation which 
is visualized in Fig.  6. The training phase is processed 
as follows; firstly, the dataset is shuffled and then split 
k-part by using the stratified k-fold. While the k-1 part 
is used to train the model, the remaining one k-part is 
used in the testing phase and cover all classes without 
overlap. After the test and training data sets are sepa-
rated, the remaining training set is split again with a 
training and validation split process (split rate of 0.25). 
We chose k as 5 in our study. Considering there are a 
total of 500 hexaxial mapping images in each phase, 
100 images are used in each test phase and any of them 
are not included in training phase (whereas, the total 
number of data is 9000 when training 2D ECG spec-
tral images (18-lead × 250 paper-based ECG reports × 
2 groups)). The data used in the test phase cover two 
classes (COVID-19 vs others) with approximately 
equal amounts of data. The validation data (consisting 
of 100 images) is used both in the training and vali-
dating phases. Thus, a two-step verification process is 
performed to evaluate the robustness of the models 
during the training and testing phases. Furthermore, 
recall (REC), precision (PRE), accuracy (ACC), specific-
ity (SPE), F1-Score (F1-S) [15], area under the receiver 
operating characteristic curve (ROC-AUC) [64, 78], 
and mean squared error (MSE) [17] are calculated dur-
ing the validating and testing phases to investigate the 
robustness of the models.

Fig. 5  Graphical representation of proposed architecture (Conv: Convolution, FC: Fully Connected, ReLU:Rectified Linear Unit)
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Experimental results and implications
We performed four experiments on two different binary 
classification problems. All experiments were carried 
out with 5 repetitive folds by using modified strati-
fied k-fold cross-validation scheme. In the first stage (i), 
we trained three different models to detect and classify 
COVID-19. At this stage, we aimed to evaluate the per-
formance of the proposed architecture and to show the 
effect of the proposed hexaxial feature mapping process 
on the success of the classification. For comparison, we 
trained the AlexNet architecture using ECG hexaxial 
mapping images (Experiment 1), the proposed architec-
ture using ECG hexaxial mapping images (Experiment 
2), and finally the proposed architecture using 2D ECG 
spectral images (Experiment 3). In the second stage (ii), 
we trained our proposed model to predict and diagnose 
COVID-19 (Experiment 4). At this stage, we aimed to 
evaluate the diagnostic value of ECG by distinguishing 
ECG disorders caused by COVID-19 from other ECGs 
without COVID-19 findings and diagnose COVID-19 
through ECG data. The classification results of all test 
phases are given in Table 1.

Experiment 1: By training the AlexNet architecture 
using hexaxial mapping images, an average of 93.60% 

ACC value was achieved. The best training performance 
was achieved with 95.00% ACC in the 5th fold and 2nd 
fold. Test ACC values have a standard deviation of ∓
2.63%. The deviations of ACC changes in each fold are 
within acceptable limits. Also, the average PRE, REC, 
SPE, F1-S, and ROC-AUC values were yielded 91.67%, 
96.00%, 91.20%, 93.7%, and 97.48%, respectively. The 
average test loss was calculated as 0.453 and the average 
MSE was calculated as 0.064. The obtained REC values 
were equal or higher than SPE values in all folds. This 
situation implied that the false-positive rate (FPR) was 
higher than the false-negative rate (FNR). FPR indicates 
the rate of being marked to have COVID-19, while the 
individuals did not have COVID-19. It took an average of 
101.98 s to train AlexNet using hexaxial mapping images.

Experiment 2: By training the proposed architecture 
using hexaxial mapping images, an average of 96.20% 
ACC value was achieved. This average ACC value pro-
vided a 2.60% better performance compared to AlexNet. 
The proposed model exhibited an ACC performance of 
over 96.00% on all folds, and the best performance was 
at the 4th fold with an ACC value of 98.00%. ACC val-
ues obtained in the test phase had only ∓1.48% stand-
ard deviation. This situation was an indicator of the 

Fig. 6  Graphical representation of modified stratified k-fold cross-validation. The number of folds (k) was chosen as 5 in this study. In each fold, the 
training size, validation size, and test size are 400, 100, and 100, respectively
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robustness of the model. Moreover, the average PRE, 
REC, SPE, F1-S, and ROC-AUC values were achieved 
96.20%, 94.33%, 98.40%, 94.00%, 96.30%, and 99.15%, 
respectively, and where all values performed better than 
AlexNet in all cases. The test loss proved the robustness 
of the model with a small value of 0.292 and a very low 
MSE of 0.038. By using the proposed architecture, the 
training time of hexaxial mapping images took only an 
average of 103.21 sec. An almost ideal classification suc-
cess has been achieved in Fold-4 with a ROC-AUC value 
of 99.88%. Similar to the training of AlexNet, FPR values 
were higher than FNR values. The achieved success in all 
folds of the proposed method has provided a significant 
improvement compared to the AlexNet. Furthermore, 
although the proposed architecture included more layers 
compared to AlexNet, an average training time difference 
was only 1.23 sec. Therefore, we used the proposed archi-
tecture to train other models.

Experiment 3: In this step, we trained our proposed 
model with 2D ECG spectral images and evaluated the 
results to observe the success of the proposed hexaxial 
mapping approach. In this step segmented and pre-
processed 2D ECG spectral images were given directly 
to the deep network as an input. All 18-lead (6 of them 
augmented) ECG images of each patient were used in the 
training phase in order to include the information of all 
ECG channels. There was no evidence that the abnormal-
ities in ECG caused by COVID-19 can be separated on 
a channel basis. All findings in the studies summarized 
in the Related works section have been observed on the 
entire ECG, and as far as we know, no channel-based 
study has been conducted. Consequently, at each train-
ing, validation, and testing phase 7200, 1800, and 1800 
2D ECG spectral images were used. As seen in Table 1, 
by training the proposed architecture with the 2D ECG 
spectral images, an average of 81.08% ACC was yielded. 
The highest ACC value was calculated as 84.83% at the 
1st fold and ACC values had a standard deviation of ∓
2.82%. The highest standard deviation occurred at this 
step. Moreover, the lowest average PRE, REC, SPE, F1-S, 
and ROC-AUC values were calculated as 79.42%, 84.10%, 
77.81%, 81.68%, and 89.82%, respectively in this step. The 
average test loss was 0.644 and the MSE was 0.220 and 
was relatively higher than other trained models. Espe-
cially, SPE had the lowest value with 77.81%. Due to 
the increasing training size, the computational cost had 
increased and the average training time was calculated 
as 528.43 sec. A significant difference of 15.12% ACC 
was observed compared to training of hexaxial map-
ping images. As a result, the hexaxial mapping approach 
achieved higher performance with less computational 
cost and training time compared to the training of 2D 
ECG spectral images.

Experiment 4: To predict COVID-19 from ECG, two 
groups were generated Positive versus Negative. While 
the Positive group consisted of only the ECG data of 
COVID-19 patients, we included an approximately equal 
amount of normal ECG (of individuals without any car-
diac findings), history of MI patients’ ECG, and abnor-
mal ECG (of patients recovered from COVID-19 or MI) 
to the Negative group. Firstly, we analyzed the GLCM 
energy features of both groups statistically by applying 
a one-way ANOVA test and it verified that the GLCM 
energy values of COVID-19 ECGs were statistically sig-
nificantly different from the GLCM energy values of the 
normal, MI, and abnormal ECGs groups ( p < 0.0001 ). 
The ANOVA results are shown in the Fig.  7. In order 
to evaluate the success of our proposed hexaxial map-
ping approach in this classification problem, mapping 
images that belongs to Positive and Negative groups 
were trained with the proposed architecture. As seen in 
Table  1, an average of 93.00% ACC value was achieved 
with the proposed method and the best ACC value was 
obtained as 95.00% at the 2nd fold. Test ACC values had 
a standard deviation of ∓1.58%. Moreover, with the pro-
posed approach, the average PRE, REC, SPE, F1-S, and 
ROC-AUC values were achieved 90.58%, 96.00%, 90.00%, 
93.20%, and 94.98%, respectively. Although the average 
test loss was relatively high (0.628), the MSE value was 
quite low (0.070). As with other trained models, the FPR 
value was higher than the FNR value. It took an average 
of 103.92 s to train the proposed model with the pro-
posed approach.

Fig. 7  One-way ANOVA results for Negative and Positive comparison 
within a box plot using COVID-19 GLCM energies and GLCM energies 
of other ECG groups. Normalized COVID-19 GLCM energies obtained 
from binary ECG images were verified to statistically significant to 
each ECG group ( p < 0.0001 for all cases). Each group has a total of 
1494 samples: 18-lead x 83 paper-based ECG reports 
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As mentioned above, the classification of COVID-
19 ECG data with the proposed method has yielded 
outstanding test performance. Further, in Fig.  8 train-
ing and validation ACC graphs and training and valida-
tion loss graphs are shown for all folds to evaluate both 
training and validation phases. In all cases for all folds; 
training ACC and validation ACC values converge to 

the upper limit. Nevertheless, AlexNet has more vola-
tility and has had difficulty converging compared to the 
proposed architecture. Moreover, the proposed archi-
tecture converged before the 200th epoch. Training loss 
values converged to the lower limit. Similarly, the pro-
posed architecture converged to the lower limit before 
the 200th epoch. Due to the dropout method, some 

Fig. 8  Graphs of training ACC (a–c), training Loss (d–f), validation ACC (g–i), and validation Loss (j–l) per Epoch during the training and validation 
phases. The left column indicates trained with Alexnet for COVID-19 versus No-Findings classification, the mid column indicates trained with 
modified Alexnet for COVID-19 versus No-Findings classification, and the right column indicates trained with modified Alexnet for Negative vs Positive 
classification
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temporary loss increases were observed, but they disap-
peared towards the last epoch. Similarly, the validation 
loss values converged to the lower limits. However, only 
in the proposed architecture, although the 2nd fold loss 
tended to increase, it moved within lower values com-
pared to AlexNet. Also, overfitting or underfitting was 
not observed in any of the trained models. In the COVID-
19 versus No-Findings classification, during the training 
of AlexNet architecture, average training ACC, training 
loss, validation ACC, and validation loss were calculated 
as 98.20%, 0.057, 93.4%, and 0.563, respectively and the 
proposed model was achieved 100.00%, 0, 96.20%, and 
0.269, respectively. Besides, in the Positive versus Nega-
tive classification, the proposed model was achieved 
99.60%, 0.013, 92.60%, and 0.603, respectively. In order 
to clearly evaluate the performance of the trained mod-
els, the ROC curves for the validation and testing phase 
of the trained models are given in Fig. 9. As can be seen 
in the figure, the AUC values for mean ROCs were cal-
culated as the lowest 95% and had a deviation of most ∓
0.02%. Especially, the ROC curve during the testing phase 
of the proposed model was almost ideal. Moreover, for 
this purpose, the best confusion matrices (CM) obtained 
in the test phase are given in Fig.  10. While there were 
5 misclassified labels using AlexNet in Experiment 1, 98 
of 100 mapping images were correctly classified by the 
proposed architecture and only one COVID-19 case was 
misclassified in Experiment 2. Besides, as seen in CM 

obtained using only 2D ECG spectral images in Experi-
ment 3, the rate of misclassification was high. Further, 
even though misclassification performance increased in 
the CM obtained in Experiment 4, it misclassified only 
one COVID-19 case.

Comparison with recent studies
Recently, presented studies to automatically diagnose 
COVID-19 with deep learning have emphasized well-
known architecture ResNet [72]. Accordingly, in addition 
to the experiments performed, generated hexaxial map-
ping images were trained with ResNet-50 architecture 
to compare with our proposed architecture. However, 
overfitting was observed during the training phase of the 
models. Therefore, sufficient performance could not be 
achieved during the testing phase of these models (aver-
age 70% ACC). The main reason for this was to train the 
deeper network with an insufficient number of labeled 
data. Since sufficient performance was not achieved 
with our input data in architectures that had more lay-
ers, the number of layers of the proposed model was not 
increased further.

In this study, we want to draw particular attention to 
the results of Experiment 4 which reveals that ECG may 
be a diagnostic tool for COVID-19. In fact, in all con-
ducted statistical analyses of GLCM features, a significant 
difference was observed between ECGs of COVID-19 
and the others; MI, abnormal, and no cardiac findings in 

Fig. 9  The ROC curves of COVID-19 vs No-Findings classification using AlexNet during a validation phase and b testing phase, using proposed 
architecture during c validation phase and d testing phase, and the ROC curves of Positive versus Negative classification using proposed architecture 
during e validation phase and f testing phase
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spite of having low-resolution images and the restricted 
number of data. Undoubtedly, we would like to point out 
that we need more ECG data especially ECGs of mild or 
asymptomatic COVID-19 patient’s to prove our claim. 
We hope the health science community will share more 
data on COVID-19.

Additionally, many deep learning-based studies have 
used radiographic images for the detection of COVID-
19 and many of them have achieved outstanding clas-
sification performance. The following studies can be 
shown as an example: Al-Waisy et al. [72] achieved accu-
racy of 99.99%, Dhiman et al. [79] achieved accuracy of 
98.54%, Ozturk et  al. [14] achieved accuracy of 98.08%, 
and Ahuja et  al. [74] achieved accuracy of 99.4%. The 
main reason for the success of the mentioned studies is 
that the most common symptom of COVID-19 disease is 

lung involvement [80] and the symptoms can be clearly 
observed on radiographic lung images [81]. Despite this, 
some studies using CT and X-ray to diagnose COVID-
19 have achieved less accuracy rate than our proposed 
method. The following studies can be shown as an exam-
ple: Ismael and Şengür [70] achieved accuracy of 94.7%, 
Pathak et al. [82] achieved accuracy of 93.02%, Song et al. 
[69] achieved accuracy of 86%, Amyar et al. [17] achieved 
accuracy of 94.67%, and Wang et al. [83] achieved accu-
racy of 82.9%. Moreover, considering the disadvantages 
of radiological images mentioned in the Background 
section, the proposed ECG-based COVID-19 diagnosis 
method may be more useful than the radiological image-
based detection methods. In particular, it can be noted 
that the ECG is more accessible and harmless than CT or 
X-ray.

Fig. 10  The best confusion matrices obtained during the testing phases: a fold-5 in Experiment 1 (COVID-19 vs. No-Findings), b fold-4 in Experiment 
2 (COVID-19 vs. No-Findings), c fold-1 in Experiment 3 (COVID-19 vs. No-Findings), and d fold-5 in Experiment 4 (Positive vs. Negative)
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Furthermore, many studies are presented to clas-
sify cardiac arrhythmias using multi-lead ECG [44, 84]. 
Arrhythmias may not be observed in all ECG chan-
nels and may be dominant only in some ECG channels. 
Especially in multi-lead ECG and AI-based classification 
studies, all channel information should be protected. 
Otherwise, an abnormal ECG may be misclassified if the 
prediction is performed through the ECG channel where 
no abnormality is observed. Since the proposed hexaxial 
mapping method includes all 12-lead channel informa-
tion, no channel in which arrhythmias can be observed 
has been ignored. Moreover, the proposed hexaxial map-
ping method supports the representation of not only 
paper-based ECG images but also 2D spectral images 
of digital ECG signals. Therefore, it can be used in the 
representation and classification of cardiac arrhythmias 
from digital ECG signals and can be an alternative to cur-
rent automated arrhythmia detection approaches.

Major contribution of the study
The COVID-19 pandemic has caused many medical chal-
lenges. A fast and easily accessible method is required for 
the early and accurate diagnosis of the disease. Detec-
tion of COVID-19 with ECG data using a deep learning 
approach shows promise as a new diagnostic method. 
In this respect, this paper makes several contributions 
to the literature. These innovative contributions may be 
emphasized as follows:

•	 A novel, highly sensitive, and harmless method has 
been proposed as an alternative to the existing diag-
nostic methods to aid in the diagnosis of COVID-19.

•	 A new and effective approach has been proposed in 
order to classify paper-based ECG data, where all 
ECG-leads can be represented as a single colorful 2D 
image.

•	 Differences in the ECG data of patients with COVID-
19 and individuals without any cardiac findings and 
patients with various arrhythmias were demon-
strated.

•	 The experimental classification results can be evi-
dence for the presence of cardiovascular changes 
caused by COVID-19.

•	 The advantages of the proposed hexaxial feature 
mapping process on classification performance were 
demonstrated.

•	 A new and simple deep network architecture has 
been proposed for 2D image classification and the 
deep network hyperparameters were optimized to 
yield the best classification performance.

Limitations and future scope
Nonetheless, some limitations should be noted. In par-
ticular, the hexaxial feature mapping process is very 
sensitive to the resolution of paper-based ECG images. 
Resolution variations in ECG images may cause differ-
entiation in the features obtained through GLCM and 
may affect the color intensity of hexaxial maps. Further, 
while performing the segmentation of ECG-lead images, 
the size of the selected rectangular frame must be kept 
constant. It should be noted that the segmentation pro-
cess can be standardized by using a smart-phone appli-
cation that guides the user for taking the right ECG 
image from the paper-based ECG report. Additionally, 
although the proposed method is designed as a patient-
independent approach and its robustness has been tested 
with various experimental scenarios, it needs to be evalu-
ated with different datasets. The main limitation here is 
the lack of access to the COVID-19 patients’ ECG data 
and the lack of a sufficient amount of data. Moreover, the 
dataset in which the proposed method is tested does not 
contain any information about the severity of the condi-
tion of COVID-19 patients. This prevents an evaluation 
of the occurrence of COVID-19-induced cardiovascular 
changes.

Another limitation is that there may be variability in 
the number of leads and derivation when collecting ECG 
data. Although the proposed method requires 12 basic 
leads, ECG data collected from various derivations can be 
adapted to the hexaxial mapping process. It should also 
be noted that this work aims to discuss the ability to auto-
matically distinguish COVID-19 ECG data from other 
types of ECG data. Although recent studies [30, 32–34, 
53] have reported various cardiovascular changes in most 
of the patients, they also reported infected patients with-
out any cardiovascular changes. Therefore, the sensitivity 
of the proposed method is related to the observability of 
cardiovascular changes. Furthermore, there are concerns 
that COVID-19 may not be the main source of cardiovas-
cular changes in ECG data [25]. Thus, two main issues 
could be addressed in future research; further research 
should be attempted to specify COVID-19-induced car-
diovascular changes, and the current method should be 
tested on a more robust dataset.

Conclusion
In this study, a novel and effective approach is proposed 
to automatically detect COVID-19 using paper-based 
ECG report images. This study aims to distinguish the 
ECGs of COVID-19 patients from various types of 
ECGs. Accordingly, a novel method based on repre-
senting 12-lead paper-based ECG images as 2D colorful 
images has been proposed and the generated colored 
images are then fed into a new CNN architecture to 
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detect COVID-19. While recent state-of-the-art stud-
ies have revealed that COVID-19 can lead to cardio-
vascular complications directly or indirectly, ECG data 
is used for the first time to automatically diagnose 
COVID-19, to the best of our knowledge.

Various experiments are conducted to evaluate the 
robustness of the proposed approach and compare its 
performance. The results demonstrated that the pro-
posed method achieved promising performance in the 
diagnosis of COVID-19 using ECG data. Furthermore, 
the proposed deep network significantly improved 
classification accuracy compared to well-known archi-
tectures and the proposed hexaxial mapping proce-
dure not only decreased computational cost, but it 
also significantly increased classification performance. 
Furthermore, the capability of the proposed approach 
to differentiate COVID-19 ECGs can be the proof of 
the presence of COVID-19-induced cardiovascular 
changes.

In the light of all findings, we can say that; the pro-
posed approach can potentially be used as a faster, 
more harmless, more accessible, cost-effective, and 
more sensitive automatically diagnostic method to 
detect COVID-19 than the current methods. In future 
works, the presented ECG-based COVID-19 diagnosis 
method can be simply adapted to real-time cloud-based 
systems and can be easily performed on mobile device-
based decision-making applications. Thus, it may help 
healthcare professionals by providing a fast and effec-
tive solution to diagnose COVID-19, it may reduce 
both the contamination and the hospital burden by pre-
venting unnecessary hospital visits.
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