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Abstract 

Background:  Severity scores assess the acuity of critical illness by penalizing for the deviation of physiologic meas‑
urements from normal and aggregating these penalties (also called “weights” or “subscores”) into a final score (or prob‑
ability) for quantifying the severity of critical illness (or the likelihood of in-hospital mortality). Although these simple 
additive models are human readable and interpretable, their predictive performance needs to be further improved.

Methods:  We present OASIS +, a variant of the Oxford Acute Severity of Illness Score (OASIS) in which an ensemble 
of 200 decision trees is used to predict in-hospital mortality based on the 10 same clinical variables in OASIS.

Results:  Using a test set of 9566 admissions extracted from the MIMIC-III database, we show that OASIS + outper‑
forms nine previously developed severity scoring methods (including OASIS) in predicting in-hospital mortality. 
Furthermore, our results show that the supervised learning algorithms considered in our experiments demonstrated 
higher predictive performance when trained using the observed clinical variables as opposed to OASIS subscores.

Conclusions:  Our results suggest that there is room for improving the prognostic accuracy of the OASIS severity 
scores by replacing the simple linear additive scoring function with more sophisticated non-linear machine learning 
models such as RF and XGB.

Keywords:  In-hospital mortality prediction, Point-based severity scores, Critical care outcomes, Supervised machine 
learning
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Background
In the past three decades, several severity scores have 
been developed with the primary objective of predict-
ing in-hospital mortality from clinical and/or biological 
measurements, often collected within the first 24  h of 
admission to the intensive care unit (ICU) admission 

[1, 2]. Point-based severity scores compute the sever-
ity of an illness by modeling the deviations of a set of 
clinical and/or biological variables from their normal 
physiologic values [2]. More specifically, point-based 
severity scores rely on linear or non-linear transfor-
mations of the measurements into subscores from 
which a final score is computed as a linear sum. Based 
on this approach, several severity scoring methods 
have been proposed including acute physiology and 
chronic health evaluation (APACHE) [3–6], Simplified 
Acute Physiology Score (SAPS) [7–10], Logistic Organ 
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Dysfunction Score (LODS) [11], systemic inflammatory 
response syndrome (SIRS) [12], Sequential Organ Fail-
ure Assessment (SOFA) [13], and Oxford Acute Sever-
ity of Illness Score (OASIS) [14]. These severity scoring 
methods have been widely used in many research and 
clinical applications including predicting mortality, 
length of stay (LoS), stratifying patients for clinical tri-
als, and evaluation of ICU quality of care [15].

Early prediction of mortality in ICU patients can 
improve health outcomes and is essential for timely 
interventions by ICU clinicians [16]. Regardless of 
the availability of many severity scoring methods, the 
prognostic performance of these models in predict-
ing in-hospital mortality remains far from satisfactory 
[17, 18]. Since these severity scoring methods can be 
viewed as logistic regression models, one promising 
direction for boosting their predictive performance is 
to replace the simple additive model with more sophis-
ticated supervised machine learning algorithms such as 
random forest (RF) [19] or eXtreme gradient boosting 
(XGB) [20]. Unfortunately, the expected improvement 
in performance might introduce a tradeoff in model 
interpretability resulting from the increased model 
complexity which might also hamper clinicians’ ability 
to associate explanations with the predictions made by 
the model.

Against this background, our preliminary objective is 
to accentuate the promise and demonstrate the feasibil-
ity of developing a new generation of severity scoring 
methods based on state-of-the-art non-linear supervised 
learning algorithms. Specifically, we present OASIS +, a 
novel method for predicting in-hospital mortality using 
an ensemble of non-linear decision trees trained using 
the same 10 clinical variables used to calculate the OASIS 
score. By restricting our model to these 10 variables, we 
provide a predictive model with a minimal set of vari-
ables that are frequently measured during the ICU stay 
and have low rates of missing values. Using a test set of 
ICU stays lasting at least for 24 h that represent 9566 dis-
tinct adult patients, we show that OASIS + outperforms 
nine previously developed severity scoring methods 
(including OASIS) in predicting in-hospital mortality. 
Our major contributions are as follows: (1) We introduce 
an improved variant of the OASIS severity score with 
substantial improvements in predictive and prognos-
tic performance; (2) We assess the performance of nine 
severity scores on predicting in-hospital mortality and 
demonstrate superior performance of OASIS + over all of 
them; (3) We show that OASIS thresholds for transform-
ing clinical measurements into subscores are not optimal 
for the MIMIC-III data; (4) We release the implementa-
tion of the OASIS + model as an online tool for predict-
ing in-hospital mortality as well as the associated Python 

scripts for benchmarking OASIS + using independent 
test data from other health systems.

Related work
Since its introduction in 2013 as a de-identified publicly 
available dataset for supporting the secondary analysis of 
critical care data, the MIMIC-III database [21] has been 
extensively used for developing machine learning based 
models for a variety of prediction tasks [22], including 
predicting in-hospital mortality. Such models can be cat-
egorized based on different criteria related to the type of 
the machine learning algorithm (shallow vs. deep learn-
ing algorithms), the type of the input variables (scalar 
vs. temporal), and the target patient population (all ICU 
patients vs. a sub-cohort of the ICU patients such as sep-
tic patients).

Shallow machine learning algorithms such as random 
forests (RF) [19], eXtreme gradient boosting (XGB) [20], 
and support vector machine (SVM) [23] have been used 
in developing in-hospital mortality prediction models 
(e.g., [24, 25]) or as baseline models for comparisons with 
the proposed deep learning models (e.g., [26, 27]). Several 
deep learning models for multivariate time series based 
on conventional neural networks (CNN) [28], long-short 
terms memory (LSTM) [26, 27], and gated recurrent unit 
(GRU) networks [26] have been proposed and shown to 
have superior performance over shallow models as well 
as simple severity scores.

Generally, the MIMIC-III database has three types of 
data: (1) static variables such as age, gender, and admis-
sion type; (2) temporal (sequence) data such as vital signs 
and laboratory measurements; (3) unstructured data in 
the form of clinical notes. Shallow models often aggre-
gate time series data collected over the first 24 or 48 h of 
admission into scalar variables, while deep learning mod-
els for sequence classification accept time series data as 
inputs. Zhang et al. [27] proposed two hybrid deep learn-
ing architectures for learning from all three types of data.

Several in-hospital mortality prediction models have 
been evaluated using all adult ICU patients (e.g., [26, 27]), 
while others have been evaluated for a sub-population of 
the ICU patients. Lin et al. [25] proposed a RF model for 
predicting in-hospital mortality for ICU patients with 
acute kidney injury (AKI). Kong et al. [24] evaluated four 
shallow machine learning algorithms on predicting in-
hospital mortality for sepsis patients in the ICU.

Recent efforts in developing machine learning algo-
rithms for in-hospital mortality prediction for ICU 
patients have also focused on supporting the reproduc-
ibility and the interpretability of the developed models. 
Models reproducibility had been mainly supported via 
sharing the source code with the scientific community in 
public repositories. Interpretability of the models have 
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been supported via techniques for reporting or visu-
alizing feature importance [28]. Despite these efforts, 
simple severity scores (e.g. APACHE and SOFA) remain 
commonly used in real-world settings for supporting 
real-time decision making and for characterizing Elec-
tronic Health Records (EHR) datasets used for research. 
For example, during the COVID-19 pandemic, enor-
mous research papers have used the SOFA score for 
characterizing the datasets (e.g., [29–31]). In addition, 
some researchers assessed the predictive performance 
of the SOFA score for predicting in-hospital mortality 
for COVID-19 patients [32, 33]. Moreover, novel sever-
ity scores for COVID-19 patients have been developed 
[34–36]. We believe that two important factors can in 
part justify the lack of using deep learning models in the 
ICU settings (and healthcare settings in general): (1) lack 
of trust in ‘black-box’ models [37, 38], especially deep 
learning models published without associated techniques 
for interpretating how the model work or for explaining 
the model predictions; (2) implementing a severity score 
is far easier than deploying a deep learning model based 
on its source code and scripts for retrieving and pre-pro-
cessing of the raw input test data. To support the usabil-
ity of machine learning predictive models in healthcare 
settings, we argue the developers of these models to 
share their learned models as online calculators or as 
standalone software components (e.g., Docker contain-
ers [39]) and, therefore, enable easy deployment of their 
models to be used and validated by other researchers.

Methods
Ethics statement
The retrospective cohort training and test datasets were 
extracted from the Medical Information Mart for Inten-
sive Care III (MIMIC-III) database (version 1.4) [21]. 
MIMIC-III is a publicly available database of 46,476 ICU 
patients hospitalized in Beth Israel Deaconess Medical 
Center (BIDMC) and the public access to the de-identi-
fied database has been approved by the BIDMC and MIT 
institutional review boards [21]. All data processing and 
analyses presented in this study have been conducted in 
accordance with MIMIC-III guidelines and regulations.

Study population
MIMIC-III contains clinical data for 49,785 hospital 
admissions associated with 38,597 adult patients admit-
ted to ICU between 2001 and 2012. The following criteria 
were used to exclude patients from our cohort dataset: 
(1) age less than 18 years or greater than 90 years; (2) ICU 
stays with duration less than 24 h. For patients with mul-
tiple ICU stays, we included the first ICU stay with LoS 
greater than or equal to 24 h. The primary outcome for 
our analysis was in-hospital mortality. Our final dataset 

included 31,884 distinct patients and ICU stays. We ran-
domly partitioned the data into 70% and 30% for training 
and testing, respectively. Missing variables were imputed 
as normal [40] such that their corresponding missing 
subscores were ZEROs.

Data extraction
We downloaded MIMIC-III files from https://​mimic.​
physi​onet.​org/. Then, we followed the instructions from 
the MIMIC code repository [41] to build a local Post-
greSQL [42] database and adapted MIMIC-III code to 
extract our dataset and compute patient comorbidities 
and first day severity scores. For supporting reproducibil-
ity of our work, the PostgreSQL query script is provided 
in the supplementary material (see Additional file 2).

Point‑based severity scores
Since their presentation in the 1980s, point-based sever-
ity scores (e.g., APACHE-II, SAPS-III, OASIS) have been 
commonly used in the ICU settings for assessing dis-
ease severity in critically ill patients and predicting poor 
health outcomes such as in-hospital or 30-day mortality 
[15]. Many severity scores are calculated using clinical 
variables (e.g., temperature and heart rate) and biologi-
cal variables (e.g., white blood cell count) collected from 
the first day in the ICU (see Additional file 1: Table S1). 
Other severity scores such as (SOFA) [13] can be com-
puted repetitively every day or every time new measure-
ments are presented.

A common characteristic among point-based severity 
scores is that they are based on logistic regression mod-
els and, therefore, can be viewed as multivariate additive 
linear models for predicting the severity of critical illness. 
Such models can be easily computed and interpreted by 
a physician. Briefly, each variable is transformed into a 
subscore such that a subscore of ZERO indicates that the 
measured variable is within its normal range and higher 
subscores penalize for observed variables outside their 
normal range (or value). These subscores are determined 
using a consensus opinion or data-driven approaches [1]. 
An overall severity score is then computed as the sum of 
all subscores. The higher the overall score, the greater the 
disease burden and the higher likelihood of poor health 
outcomes. For example, let’s consider the OASIS severity 
score [14]. This score is computed using 10 clinical vari-
ables from first day in the ICU. Using Table 1, each clini-
cal variable is transformed into a corresponding subscore 
and the OASIS score is the sum of these 10 subscores. An 
OASIS probability of mortality is also computed using 

1

1+e−(0.1275x−6.1746) where x is the OASIS score.
In the present study, we assessed the predictive per-

formance of nine previously developed severity scores 
(summarized in Additional file 1: Table S1) for predicting 

https://mimic.physionet.org/
https://mimic.physionet.org/
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in-hospital mortality using data collected during the first 
ICU day.

Machine learning models
We experimented with three widely used supervised 
machine learning algorithms: (1) Random Forest [19] 
with 200 trees (RF200); (2) eXtreme gradient boosting 
[20] with 200 weak tree learners (XGB200); (3) Logis-
tic Regression (LR) [43] with L2 regularization. These 
algorithms are implemented in the Scikit-learn machine 
learning library [44]. We accepted all the default set-
tings for the hyperparameters except for the number of 
decision trees which we set it to 200. The LR model is a 
linear and human interpretable model while RF200 and 
XGB200 models are ensembles of 200 non-linear deci-
sion trees. To get insights into how these ensemble mod-
els work, we used feature importance scores to quantify 
the contribution of each feature to the predictions made 
by both RF200 and XGB200.

Statistical analysis and performance evaluation
Categorical variables are reported as percentages and the 
chi-square test was used to assess whether two (or more) 

proportions are different from each other. Continuous 
variables are summarized as medians and interquartile 
ranges (IQR) and the non-parametric Mann–Whitney 
test was used to determine the differences in the distribu-
tion of a variable (e.g., Age) in survival and non-survival 
groups. All statistical analyses were performed using R 
version 3.6.2 [45] and a p value less than 0.05 was consid-
ered significant.

The predictive performance of the machine learning 
models was assessed using five commonly used predic-
tive performance metrics [46]: Accuracy (ACC), Sensitiv-
ity (Sn); Specificity (Sp); Matthews correlation coefficient 
(MCC); and Area Under the receiver operator Curve 
(AUC) [47]. The prognostic performance of different 
models is assessed using calibration curves [48] and the 
root-mean-square error (RMSE) is used to quantify cali-
bration errors [49].

Results
Characteristics of train and test sets
Basic summary statistics of the training and test sets 
are provided in Table  2 and Additional file  1: Table  S2, 
respectively. Both tables show that the following variables 

Table 1  Mapping OASIS clinical variables into subscores

Variable Range Subscore Variable Range Subscore

Age (years) < 24 0 Temperature (°C) < 33.22 3

24–53 3 33.22–35.93 4

54–77 6 35.94–36.39 2

78–89 9 36.40–36.88 0

> 90 7 36.89–39.88 2

GCS 3–7 10 > 39.88 6

8–13 4 Urine output (cc/day) < 671 10

14 3 671–1426.99 5

15 0 1427–2543.99 1

Heart rate (per minute) < 33 4 2544–6896 0

33–88 0 > 6896 8

89–106 1 PreICU LoS (hours) < 0.17 5

107–125 3 0.17–4.94 3

> 125 6 4.95–24.00 0

Mean blood pressure (mmHg) < 20.65 4 24.01–311.80 2

20.65–50.99 3 > 311.80 1

51–61.32 2 Ventilated? No 0

61.33–143.44 0 Yes 9

> 143.44 3 Elective surgery? No 6

Resp. rate (per minute) < 6 10 Yes 0

6–12 1

13–22 0

23–30 1

31–44 6

> 44 9
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are significantly associated with in-hospital mortality 
in ICU patients: increased age, increased length of stay, 
increased number of pre-existing conditions (i.e., comor-
bidities), and increased severity of the critical illness 
(using any of the nine pre-existing severity scores con-
sidered in our analysis). Although this exploratory analy-
sis suggests that any randomly selected patient from the 
non-survival group is likely to have severity scores higher 
than those for a randomly selected patient from the sur-
vival group, it is of particular interest to assess how well 

these severity scores can discriminate between patients 
within each of the two groups.

Table 3 characterizes the 10 clinical variables used for 
computing OASIS severity scores in the training and test 
sets. For both datasets, all clinical variables (except pre-
ICU LoS) were found to be drawn from significantly dif-
ferent distributions for survival and non-survival groups. 
It should be noted that the non-parametric Mann–Whit-
ney test is a rank sum test that ranks all of the observa-
tions from each group and then sums the ranks from one 

Table 2  Summary statistics of MIMIC-III training data

Variable Survivals (n = 19,953) Non-survivals (n = 2365) p value

Age (years) 64.09 (51.39–75.54) 71.32 (58.56–80.46) < 0.001

LoS (days) 2.36 (1.55–4.31) 4.38 (2.17–8.93) < 0.001

No. of comorbidities 3 (2–5) 4 (2–5) < 0.001

Ethnicity

African 1504 (7.54%) 121 (5.12%) < 0.001

Asian 484 (2.43%) 61 (2.58%)

Hispanic 667 (3.34%) 42 (1.78%)

White 14,217 (71.25%) 1596 (67.48%)

Others 3081 (15.44%) 545 (23.04%)

Gender

Female 8320 (41.7%) 1065 (45.03%) < 0.01

Male 11,633 (58.3%) 1300 (54.97%)

APS-III 37 (28–48) 59 (43–77) < 0.001

LODS 3 (2–5) 6 (4–8) < 0.001

MLODS 2 (1–4) 4 (2–6) < 0.001

OASIS 30 (24–36) 39 (33–45) < 0.001

QSOFA 2 (1–2) 2 (2–2) < 0.001

SAPS 17 (14–21) 22 (18–25) < 0.001

SAPS-II 32 (24–40) 47 (37–58) < 0.001

SIRS 3 (2–4) 3 (3–4) < 0.001

SOFA 3 (2–5) 6 (4–9) < 0.001

Table 3  Summary statistics of OASIS variables in train and test sets

Variable Train (n = 22,318) Test (n = 9566)

Survivals (n = 19,953) Non-survivals (n = 2365) p value Survivals (n = 8560) Non-survivals (n = 1006) p value

Age 64 (51–75) 71 (58–80) < 0.001 63 (51–75) 71.5 (60–80) < 0.001

GCS 15 (14–15) 15 (13–15) < 0.001 15 (14–15) 15 (12–15) < 0.001

Heart rate 101 (90–115) 111 (95–128) < 0.001 101 (90–115) 110 (94–126) < 0.001

Mean blood pressure 59.67 (52.67–86) 55 (47–82) < 0.001 59 (53–86) 55 (47–81.21) < 0.001

Respiratory rate 26 (18.5–30) 28 (24–33) < 0.001 26 (18–30) 28 (24–33) < 0.001

Temperature 36.17 (35.7–37.5) 36 (35.44–37.5) < 0.001 36.17 (35.72–37.5) 36.06 (35.5–37.71) < 0.001

Urine output 1895 (1245–2770) 1189 (645–2050) < 0.001 1900 (1235–2785) 1167 (640.5–1972.5) < 0.001

Pre-ICU-LoS 0 (0–18) 0 (0–23) < 0.001 0 (0–17) 0 (0–27) 0.12

ventilated?: Yes 9723 (48.73%) 1570 (66.38%) < 0.001 4186 (48.9%) 676 (67.2%) < 0.001

Elective surgery?: Yes 3357 (16.82%) 76 (3.21%) < 0.001 1367 (15.97%) 38 (3.78%) < 0.001
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of the groups which is compared with the expected rank 
sum. Therefore, it is possible for the two groups to have 
significantly different rank sums while their medians are 
equal as we noted for the Glasgow Coma Score (GCS) 
and Pre-ICU LoS variables.

Additional file  1: Table  S3 summarizes the baseline 
characteristics of Elixhauser comorbidities [50] for the 
survival and non-survival groups in the training and 
test datasets. Out of the 30 Elixhauser comorbidities, 18 
comorbidities in the training set and 16 comorbidities 
in the test set have significantly different proportions of 
survivals and non-survivals. The top three most frequent 
comorbidities are: Hypertension (more frequent in sur-
vivals), Fluid and Electrolyte Disorders (more frequent in 
non-survivals), and Cardiac Arrhythmias (more frequent 
in non-survivals).

Assessment of nine severity scores on predicting 
in‑hospital mortality
We evaluated the performance of nine previously 
developed severity scores (Additional file  1: Table  S1) 
on predicting in-hospital mortality using the MIMIC-
III test set. Table  4 presents the performance of these 
nine severity scores using five widely used metrics. 
Since every scoring method has different scale, we nor-
malized each score in the range [0, 1] and we used the 
MIMIC-III training set to estimate the optimal thresh-
old for transforming the scores into binary labels (i.e., 
survivals vs. non-survivals). The optimal threshold was 
computed by maximizing the Youden’s J statistic [51]. 
Figure  1 shows the Receiver Operating Curve (ROC) 
curves and corresponding AUC scores for each of the 
nine severity score methods. We found that models 
with the best performance (i.e., AUC ∈ [0.77−0.8] ) 
were based on OASIS, APS-III, and SAPS-II. SOFA, 
MLODS, SAPS, and LODS demonstrated moderate 
performance (i.e., AUC ∈ [0.72−0.75]) , and SIRS and 
QSOFA performed poorly with AUC scores of 0.61 

and 0.59, respectively. Not only did the SAPS-II model 
have the highest AUC, but its ROC curve demonstrated 
superior performance (in terms of threshold-depend-
ent metrics) at all possible thresholds compared to the 
ROC curves for the other eight severity models.

Of the top three severity scores, SAPS-II and APS-III 
scores are computed using 14 and 20 variables, respec-
tively (See Additional file 1: Table S1), and OASIS score 
is computed using 10 variables (See Table  1). There-
fore, among these three scores, OASIS score: uses the 
smallest number of variables; uses no biological vari-
ables; and has the lowest performance on predicting 
in-hospital mortality. In what follows, we present a 
novel variant of OASIS score, OASIS +, that leverages 
non-linear machine learning supervised algorithms for 

Table 4  Performance comparisons of nine severity score models for predicting in-hospital mortality estimated using MIMIC-III test set

Method ACC (%) Sn Sp MCC AUC​ Threshold

APSIII 89.4 0.16 0.98 0.24 0.78 0.27

LODS 89.0 0.17 0.97 0.23 0.75 0.30

MLODS 89.3 0.12 0.98 0.19 0.74 0.24

OASIS 69.4 0.70 0.69 0.25 0.77 0.49

QSOFA 39.1 0.81 0.34 0.10 0.59 0.67

SAPS 71.6 0.62 0.73 0.23 0.74 0.48

SAPSII 88.0 0.29 0.95 0.28 0.80 0.35

SIRS 20.4 0.94 0.12 0.06 0.61 1.00

SOFA 88.6 0.17 0.97 0.21 0.72 0.27

Fig. 1  Performance (in terms of ROC curves and associated AUC 
scores) of nine severity scores estimated using MIMIC-III test set for 
predicted in-hospital mortality
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outperforming the SAPS-II and APS-III models on pre-
dicting in-hospital mortality.

OASIS + outperforms all nine severity scores on predicting 
in‑hospital mortality
We considered two approaches for developing super-
vised learning classifiers using the 10 clinical variables 
used for computing OASIS scores (Table 1). In the first 
approach, we used the 10 subscores and OASIS prob-
ability as input features. In the second approach, we 
used the 10 clinical variables (without transforming 
them into subscores) as input features. In both cases, 
we evaluated one linear supervised learning algorithm, 
LR, and two algorithms for building ensembles of 200 
non-linear decision trees, RF200 and XGB200. The pre-
dictive performance of these six models is summarized 
in Fig. 2 and Table 5. Using OASIS subscores, the best 

performing model, XGB200, has an AUC score of 0.81 
while models based on LR and RF200 slightly outper-
form OASIS score. Using OASIS variables, RF200 and 
XGB200 have AUC scores of 0.82 and 0.83, respectively. 
The results show that the two ensemble learning algo-
rithms achieve better performance when trained using 
the measured values of the clinical variables as opposed 
to their non-linear transformation derived from OASIS 
benchmark dataset [14]. This observation suggests 
that OASIS non-linear transformations in Table  1 are 
more likely to be data-specific and might not generalize 
well to other patient populations. The main interesting 
observation is that a 0.06 improvement in AUC score is 
obtained by replacing the OASIS linear additive scoring 
function with the non-linear XGB model trained using 
non-transformed clinical variables (hereafter called 
OASIS + model).

Fig. 2  Performance (in terms of ROC curves and associated AUC scores) of three machine learning models for predicting in-hospital mortality 
trained using oasis score and subscores (left) and oasis variables (right)

Table 5  Performance comparisons of different machine learning models for predicting in-hospital mortality estimated using MIMIC-III 
test set

Features Method ACC (%) Sn Sp MCC AUC​ Threshold

OASIS subscores RF200 77.5 0.54 0.80 0.25 0.76 0.16

LR 73.9 0.66 0.75 0.28 0.78 0.12

XGB200 70.9 0.79 0.70 0.31 0.81 0.10

OASIS variables RF200 88.0 0.34 0.94 0.31 0.82 0.33

LR 70.0 0.69 0.70 0.25 0.77 0.10

XGB200 72.8 0.78 0.72 0.33 0.83 0.10
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Since OASIS + is a prognostic model for predicting 
the risk of in-hospital mortality, it should be evaluated in 
terms of discrimination (e.g., using AUC and threshold-
dependent metrics) as well as calibration [49, 52]. Fig-
ure  3 shows the calibration curves for SAPS-II, OASIS, 
and the three machine learning models trained using 
OASIS variables. We found that OASIS and SAPS-II have 
higher estimated calibration errors when compared with 
our three machine learning models. The lowest estimated 
calibration error is observed for XGB200 (OASIS +) and 
RF200 models.

Figure  4 shows the contribution of each variable in 
the predictions made by OASIS + model also called 
OASIS + feature importance scores. Comparing 
OASIS + feature importance scores (Fig.  4) with OASIS 
non-linear transformations (Table 1) reveals several dis-
crepancies between relative variable importance of the 
two models. For example, in OASIS + , the three variables 
with the highest feature importance scores are: elective 
surgery, ventilation use, and urine output. On the other 
hand, the three OASIS variables with the highest weights 
(i.e., OASIS subscore of 10) are: GCS in the range 3–7, 
respiratory rate less than 6 per minute, and urine out-
put less than 671 cc/day. Unlike OASIS +, each variable 
in OASIS can take different weights with a ZERO weight 
corresponding to normal measurements. Thus, for a 
given case, respiratory rate might have the highest con-
tribution (subscore of 10) to the computed OASIS score 
while in another case respiratory rate might be in the 
normal range (13–32) and have a ZERO contribution to 
the OASIS score.

Figure  5 shows the violin plots, estimated using the 
test set, for normalized OASIS scores, OASIS proba-
bilities, and OASIS + predicted probabilities in surviv-
als and non-survivals groups. A violin plot shows both 
a box plot and a rotated kernel density plot. We noted 
that OASIS scores follow a normal distribution. This 

Fig. 3  Calibration curves assessing the consistency between the 
actual risk and predicted risk of different models

Fig. 4  Features importance scores of the OASIS + model

Fig. 5  Violin plots, for a normalized OASIS scores, b OASIS probabilities, c OASIS + probabilities in survivals and non-survivals groups, computed 
using the MIMIC-III test set
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acknowledges the same finding reported in [14] on a 
different patient population. In the three cases, the 
median score or probability in the non-survival group 
is higher than the corresponding median in the sur-
vival group. However, the largest and most significant 
(p value equals 2.4e−250) difference between the two 
medians is observed for OASIS + probabilities.

Finally, Table  5 compares the performance of the 
six predictive models, considered in this experiment, 
using AUC and four threshold-dependent metrics. For 
all the models, we noticed that the optimal threshold, 
estimated using the training data only, for transform-
ing the model predicted probability into a binary label 
is lower than 0.5. This is an artifact of the uneven 
ratio of non-survivals to survivals since the number of 
survival cases is almost 10 times the number of non-
survivals. Figure  6 shows the tradeoff between sensi-
tivity and specificity in OASIS + for different choices 
of the probability threshold. At a threshold equals 0.1, 
the sensitivity and specificity of the model are 0.78 and 
0.72, respectively. The highest MCC of 0.36 is reached 
at a threshold of 0.13 which yields 0.70 and 0.80 sensi-
tivity and specificity, respectively. The complete set of 
OASIS + results at different thresholds is provided in 
Additional file 1: Table S4.

Performance improvements using more features
To facilitate the utility of OASIS + as an online severity 
score calculator, our design goal is to minimize the num-
ber of variables that the user has to manually input to get 
the predictions. However, it is of interest to identify how 
much improvement can be obtained using additional 
features. To address this question, we considered 84 
variables representing all the subscores used in the nine 
severity scores. We then evaluated the three machine 
learning algorithms trained using k = {10, 20, . . . , 80} 
features. For feature selection, we used RF feature impor-
tance (RFFI) scores [19] estimated from the training data. 
We found that XGB200 consistently outperformed the 
other classifiers. Figure  7 shows the AUC scores esti-
mated using the test data when the XGB200 model was 
trained using the top k selected features. The highest 
observed AUC score was 0.87 using at least 60 variables.

OASIS + web application
We deployed the OASIS + model using the stream-
lit framework, https://​github.​com/​strea​mlit/​strea​mlit, 
and made it publicly available at https://​oasis-​score.​
herok​uapp.​com/. The web app provides an interface for 
the user to input the measured values for the 10 clinical 
variables and select the values of the threshold for trans-
forming OASIS + predicted probabilities of in-hospital 
mortality into a binary label (e.g., deceased vs. survived). 
The displayed results include: OASIS severity score and 

Fig. 6  Trade-off between sensitivity and specificity for different choices of the threshold for discretizing the continuous predicted probability into a 
predicted binary label

https://github.com/streamlit/streamlit
https://oasis-score.herokuapp.com/
https://oasis-score.herokuapp.com/
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probability; interpretation of OASIS score; OASIS + pre-
dicted probability and predicted in-hospital mortal-
ity; OASIS + model interpretation in terms of feature 
importance scores quantifying the contribution of the 10 
clinical variable to the prediction made by the XGB200 
classifier (see Fig. 4); and a projection of the user-speci-
fied threshold on the ROC curve of the OASIS + indicat-
ing sensitivity and 1-specificity of OASIS + model at the 
user-specified threshold estimated using MIMIC-III test 
set.

Discussion
The present study introduced, OASIS +, a novel machine 
learning-based model for predicting in-hospital mor-
tality using the 10 clinical variables used in the OASIS 
severity score [14]. To the best of our knowledge, this is 
the first work to consider using OASIS variables and/or 
subscores for developing severity score prediction mod-
els. Our results suggest that there is room for improving 
the prognostic accuracy of traditional severity scores by 
replacing the simple linear additive scoring function with 
more sophisticated non-linear machine learning models 
such as RF and XGB. Our results also suggest that the 
two non-linear supervised learning algorithms consid-
ered in our experiments can be directly trained using the 
observed clinical variables without the need for trans-
forming these measurements into subscores.

Over the past two decades several severity scoring 
systems were subjected to continuous refinements and 
improvements. For example, SAPS and APACHE scores 
have three and four versions, respectively. A common 
pattern in these severity scoring methods with multiple 
versions is that newer versions often have more vari-
ables than those used in preceding versions. For example, 
SAPS scores versions I–III are based on 14, 17, and 20 
variables, respectively. Another example is APACHE 
scores versions I–IV which use 38, 12, 20, and 145 vari-
ables, respectively. While adding more relevant physi-
ologic measurements is likely to improve the predictive 
performance of a severity scoring methods, it makes 
implementation for use in real-time challenging. Ide-
ally, refinement and improved performance of existing 
scoring systems could be achieved without adding more 
variables. This objective can be reached using more 
sophisticated machine learning algorithms. To the best 
of our knowledge, OASIS + is the first study that demon-
strates the promise of focusing on the machine learning 
component of a severity scoring system to significantly 
improve its predictive performance. This opens up the 
possibility for improving existing severity scoring meth-
ods by adapting the approach presented in this work.

OASIS + shares several of the advantages of OASIS 
when compared to other severity scores. Both OASIS 
and OASIS + are based on fewer variables than the vast 

Fig. 7  Test performance (in terms of AUC scores) of the XGB200 classifiers trained using k selected features
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majority of severity scores. Also, these variables are fre-
quently measured during the ICU stay and do not have 
high rates of missing values. Another major advantage 
of the OASIS score is that it can be computed manu-
ally without the need for informatics support. However, 
because it uses an ensemble of complex 200 decision 
trees, OASIS + cannot be computed manually. To facili-
tate easy internet-based access to an OASIS + calcula-
tor for individual ICU patients, we have deployed an 
OASIS + model as a freely accessible web app for sci-
entific use. For batch computations on large-scale data, 
we shared OASIS + model and supplementary Python 
scripts on a public source code repository which can 
be accessed at https://​bitbu​cket.​org/​i2rlab/​oasis/​src/​
master/. Therefore, future studies can easily benchmark 
the performance of OASIS + using datasets from other 
health systems.

Taken the availability of large-scale datasets in health-
care systems together with the recent advances in 
machine learning research, we argue that population-
specific severity prediction models should be preferred 
over traditional severity scoring methods. We believe this 
for the following reasons. First, our results showed that 
MIMIC-III specific machine learning models using only 
10 clinical variables outperformed nine commonly used 
severity scoring methods. Several related studies (e.g., 
[24, 25, 53]) have also shown that machine learning mod-
els outperform severity scores on predicting in-hospital 
mortality. Second, developing health system specific (or 
local) prediction models enables continuous improve-
ments of the model by including more training data (as 
more data become available), adding new clinical or lab-
oratory variables to the model, or re-training the model 
using newly developed machine learning algorithms.

Several machine learning based predictive models are 
treated as “black-boxes”, which are systems that hide 
their internal logic to the user [54]. Such models often 
have better predictive accuracy compared with inter-
pretable models such as linear additive models [55]. 
However, relying on sophisticated non-linear machine 
learning models trained using large-scale biomedical 
datasets raises concerns regarding the ethics and trust-
ability of the utility of black-box decision making sys-
tems in ICU settings and healthcare in general [56, 57]. 
These concerns could be addressed in part by using 
techniques for post-hoc interpretation and explanation 
of the predictive model [54]. To shed some light on how 
the OASIS + model works, we used the XGB200 inferred 
feature importance scores to quantify the contribu-
tion of each of the 10 clinical measurements to the pre-
dictions made by OASIS +. We have also inspected the 
model via the application of sensitivity analysis to exam-
ine the effect of the OASIS + threshold parameter on the 

sensitivity and specificity of the model. Ultimately, we 
believe that machine learning predictive models should 
be held to the same standard as medications or other 
therapies given to patients. If using a predictive model 
improves patient outcomes during a prospective clini-
cal trial (for example where patients are randomized to 
either having the model results available or not), then the 
model should be adopted clinically regardless of whether 
the model is fully transparent or “black-box”. As evidence 
of this, a class of drugs known as beta blockers have been 
proven to prolong life when given to certain categories 
of patients with heart failure, but the underlying physi-
ology of these drugs and exactly how they improve sur-
vival remain poorly understood [58–60]. Despite this 
lack of understanding of their mechanism of action, beta 
blockers are widely used due to their proven efficacy. We 
believe that machine learning models should be held to 
the same standard.

The present study has some limitations. First, this is 
a retrospective study that used a dataset from a single 
health system. Second, the data used for training our 
models were extracted from the same source as the test 
dataset. Third, the inclusion of severity scores in our 
experiments was restricted by the availability of Post-
greSQL scripts for computing these scores from MIMIC-
III in the MIMIC code repository [41]. Our ongoing work 
aims at evaluating the generalizability of OASIS + on an 
independent validation set and including other com-
monly used severity scores such as APACHE-IV [6] in 
the analysis.

Conclusions
We have presented a novel machine learning based 
severity prediction model, OASIS +. OASIS + is a vari-
ant of the OASIS severity score, where the non-linear 
transformation of the input clinical variables is omit-
ted, and the simple additive function is substituted 
with an ensemble of 200 non-linear decision trees. 
Thus, using a machine learning approach we were able 
to enhance OASIS + model performance without the 
need for introducing additional variables beyond the 
10 readily available variables used in the OASIS model. 
In addition to the original OASIS score, OASIS + out-
performed eight other severity scores in predicting 
in-hospital mortality. The improved OASIS + perfor-
mance came with a trade-off in human readability and 
cannot be computed manually. To address these limita-
tions, we used feature importance and sensitivity analy-
sis to improve the interpretability of the model and we 
deployed the model as a publicly available web server to 
enable access to the model. Moreover, we supported the 
application of OASIS + model to large-scale datasets by 
sharing the learned model and necessary Python scripts 

https://bitbucket.org/i2rlab/oasis/src/master/
https://bitbucket.org/i2rlab/oasis/src/master/
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through a source code repository. Our future work 
aims at: improving the explanation of OASIS + model 
and its predictions; and evaluating OASIS + using an 
independent test set.
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