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Abstract 

Background:  Controlled vocabularies are fundamental resources for information extraction from clinical texts using 
natural language processing (NLP). Standard language resources available in the healthcare domain such as the 
UMLS metathesaurus or SNOMED CT are widely used for this purpose, but with limitations such as lexical ambiguity 
of clinical terms. However, most of them are unambiguous within text limited to a given clinical specialty. This is one 
rationale besides others to classify clinical text by the clinical specialty to which they belong.

Results:  This paper addresses this limitation by proposing and applying a method that automatically extracts Span‑
ish medical terms classified and weighted per sub-domain, using Spanish MEDLINE titles and abstracts as input. The 
hypothesis is biomedical NLP tasks benefit from collections of domain terms that are specific to clinical subdomains. 
We use PubMed queries that generate sub-domain specific corpora from Spanish titles and abstracts, from which 
token n-grams are collected and metrics of relevance, discriminatory power, and broadness per sub-domain are 
computed. The generated term set, called Spanish core vocabulary about clinical specialties (SCOVACLIS), was made 
available to the scientific community and used in a text classification problem obtaining improvements of 6 percent‑
age points in the F-measure compared to the baseline using Multilayer Perceptron, thus demonstrating the hypoth‑
esis that a specialized term set improves NLP tasks.

Conclusion:  The creation and validation of SCOVACLIS support the hypothesis that specific term sets reduce the 
level of ambiguity when compared to a specialty-independent and broad-scope vocabulary.
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Background and contributions
Limitations of language resources for the analysis 
of clinical narratives
Information extracted from clinical narratives has been 
used for a wide range of biomedical applications [1–4], 
and natural language processing (NLP) and machine 
learning (ML) techniques have evolved as important 
parts of clinical information extraction initiatives [5]. 
Information extraction supports a wide variety of clinical 

and research use cases, such as building disease-specific 
cohorts [5], processing and analyzing mentions of signs 
and symptoms [6, 7], detecting and assessing adverse 
drug events and risks [8–10], extracting key information 
for reporting or quality assurance [11–14], among others.

Most of these studies rely on controlled vocabularies 
(CVs) in different flavors, known as dictionaries, lexi-
cons, terminologies and ontologies[15]. They are curated 
by experts and public bodies and are mostly tailored to 
specific purposes like disease or adverse event reporting, 
annotation of health records for billing, data collection 
for clinical research, and literature indexing. They exhibit 
large differences in scope, granularity and underlying 
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formalism, ranging from term lists, over informal the-
sauri, e.g., medical subject headings (MeSH) [16], single-
hierarchy classification systems such as ICD-10 [17] and 
formal ontologies such as SNOMED CT [15, 18].

Biomedical CVs have known drawbacks: some of them 
have a broad scope (covering all medicine), but lack the 
granularity required by particular clinical specialties or 
services. Others are restricted to a specific semantic cate-
gory like diseases or drugs. Even those that provide good 
conceptual coverage of a domain, often lack sufficient 
lexical coverage, in particular for languages other than 
English. In fact, some studies have found out that seman-
tic features recognized using CVs in clinical narratives 
are useless for some classification problems, probably 
because they are too broad [19]. Because of that, research 
projects often end up creating their own vocabulary [20–
24], which is, e.g. documented by the large number of 
sources in repositories such as the UMLS Metathesaurus 
and BioPortal.

The predominance of the English language in biomedi-
cal publications is reflected by the fact that many CVs 
are restricted to English, whereas others have only par-
tial translations to other languages. The Unified Medi-
cal Language System UMLS [25, 26] has been addressing 
these problems for several decades by linking common 
identifiers to 200 international clinical terminologies, 
thus extending the representation of medical terms in 
several languages. More recently, the creation of interface 
terminologies, separated but linked to reference termi-
nologies has been emphasized [27]. Whereas reference 
terminologies are defined as representing, first, a domain 
in terms of formally or informally defined and language-
independent representational units (concepts, descrip-
tors, or classes), interface terminologies focus on the 
collection of clinical terms as used in practice, found in 
clinical narratives, with a focus on sub-language and user 
aspects.

Contribution
Considering the availability of terminologies suited to 
cover a given clinical specialty in a certain natural lan-
guage, a way to effectively apply NLP and ML technology 
to clinical narratives is to extend the scope of specialized 
language resources that are openly available for inter-
national and multilingual communities. Such resources 
are expected to accelerate the development and use of 
NLP and ML technology in the clinical domain, and to 
reduce the complexity of NLP tasks that deal with the 
severe problem of semantic (especially lexical) ambi-
guity, particularly in tasks like concept extraction [28], 
co-reference resolution [29] and domain-specific text 
classification.

This study scrutinizes the aforementioned problem 
from a Spanish language perspective. With its several 
dialects and varieties, Spanish is an official language in 
about 20 countries and is spoken by around half a billion 
people. Our source for Spanish is content from the lit-
erature database PubMed, for which we have proposed a 
method for automated harvesting medical term sets that 
are highly specific for a clinical specialty. Clinical special-
ties are subdivisions of the field of health care, such as 
represented by institutional divisions in health facilities, 
by fields of clinical research, and by undergraduate and 
post-graduate medical curricula. Instances of specialties 
are neurology, pathology, radiology, surgery and inter-
nal medicine, among many others, with sub-specialties 
like nephrology, diabetology, etc. There is no world-wide 
standard of clinical specialties, which explains high vari-
ations regarding subdivision of and overlaps between 
specialties.

The focus of this study is the development of a method 
for extracting lexical content from PubMed records, 
tagged by clinical specialties, and the creation of lists 
of terms that are specific for each specialty. The ration-
ale is not to produce vocabularies that replace existing 
controlled terminologies but to support the production 
of specialized term sets, mainly for text classification 
purposes.

An additional contribution of this paper is to custom-
ize existing CVs to clinical specialties. This is the reason 
why we created SCOVACLIS (Spanish Core Vocabulary 
About Clinical Specialties).1

Analysis of medical sublanguages in clinical narratives
Clinical sublanguage aspects have been addressed in 
many studies. Some of them identified differences in lexi-
cal and semantic patterns used within clinical specialties 
and types of clinical authors [30, 31], such as by applying 
clustering to a large set of clinical narratives using bag-
of-words plus bag-of-UMLS features.

An early example is a method proposed by Bernhardt 
et al. [32], which identifies prominent clinical specialties 
linked to disease prevalence in the U.S. To this end, they 
connected mortality and morbidity information to medi-
cal literature. Epidemiology-related terms were extracted 
from national reports and standardized with MeSH 
terms.

In order to identify redundant information across spe-
cialties and clinical settings, Zhang et  al. [33] automati-
cally identified clinically relevant new information in 
inpatient and outpatient notes. Using semantic similarity 
techniques, they compared the language model extracted 

1  https://github.com/plubeda/scovaclis.
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from a clinical note with the model extracted from pre-
vious notes from the same patient. Once they identified 
new and redundant information, they compared differ-
ences by specialty obtaining redundancy variations of 
68.3% in inpatient notes compared to outpatient pro-
gress notes (60.7%). Pediatric notes exhibited the highest 
redundancy and radiology notes the lowest.

Finally, some studies [32, 34] applied supervised learn-
ing-based NLP to develop a medical subdomain classifier. 
They produced different classifiers and tested 105 com-
binations of data representations of the medical notes. 
Their main conclusion was that a “deep learning architec-
ture with distributed word representation yielded better 
performance, yet the shallow learning algorithm”.

Vocabulary extraction methods in healthcare
Harvesting vocabulary from biomedical literature has 
been subject to many studies in biomedical NLP research. 
In an early review, Krauthammer and Nenadic [35] dis-
tinguished three steps in a term identification process: 
term recognition, term classification, and term mapping. 
Meystre et al. [36] reviewed studies on clinical terminol-
ogy extraction, most of which combined NLP techniques 
for term discovery with lexico-syntactic patterns for 
semantic relation discovery. The importance of terminol-
ogies to improve query expansion, information retrieval, 
ontology creation and data analysis was emphasized.

A method for extracting terms in a molecular biol-
ogy context was described by Takeuchi and Collier [37]. 
The extracted terms were classified into ten semantic 
categories (e.g. protein, virus, cell type), using a support 
vector machine (SVM) model trained with a manually 
annotated MEDLINE abstract dataset. Regarding other 
medical sub-domains, some studies extract concepts that 
describe medical images [38] or medical curricula [39].

For languages other than English, Marciniak and 
Mykowiecka [40] harvested a list of single and multi-
word terms used in Polish hospital discharge summaries. 
They observed that 70% of the obtained terms were not 
included in the Polish MeSH.

Finally, Sandoval et al. [41] created a biomedical corpus 
of validated terms from Spanish, Arabic and Japanese, by 
using several tools for optimal exploitation of the infor-
mation contained in the corpus.

In this paper, we focus on the use of NLP techniques 
and tools for harvesting Spanish vocabulary from Pub-
Med for a specific goal, viz. the construction of sets of 
terms that are maximally specific to clinical specialties. 
Such term sets can be useful for document classification, 
but also for adding new content to existing CVs. Our 
technique can be applied to any language as long as the 
related PubMed records include enough titles and links 
to abstracts in the original language. Subsequently, we 

will suggest a refinement for the term identification task, 
for which different statistical measures will be proposed 
in order to improve the selection of candidate terms. 
These measures are based on the importance of each 
term in each specialty and its importance in the overall 
corpus. Finally, this list of terms is used as an extra fea-
ture in a multi-label classifier.

Methods
Overview
The method was designed to extract terms that are both 
frequent in and specific for a clinical specialty, thus result-
ing in a maximally characteristic term set for each clinical 
specialty. The balance between term frequency discrimi-
native power then would result, e.g., for clinical oncol-
ogy, in the selection of the important and frequent terms 
“carcinoma” and “tumor”, but also of less frequent, but 
highly specific terms like “leucemia mielomonocítica” or 
“dermatofibrosarcoma”. The main phases of this method 
are depicted in Fig. 1.

•	 The first phase of our method is the acquisition of 
domain corpora classified by clinical specialty (cf. 
"Specialty-specific corpus acquisition" section). Clini-
cal texts might be the best source, but de-identified 
and therefore shareable clinical corpora, particu-
larly for languages other than English do not exist, 
a well-known problem in biomedical NLP. This was 
the reason we decided to use Spanish content from 
PubMed, aware of the known terminology mismatch 
between scientific clinical language. For the selec-
tion of PubMed content by clinical specialty, several 
sources were combined. Aware that MeSH annota-
tions would not suffice to indicate the clinical spe-
cialty to which a PubMed record belongs, we also 
included authors’ affiliation as a source of specialty-
related information as a group of terms directly 
related to the specialty (e.g. “skin disease” for derma-
tology).

•	 The second phase (cf. "Term extraction" section), 
term extraction, yields word n-grams from PubMed 
titles and abstracts. Not all n-grams are good term 
candidates, therefore this phase contains an impor-
tant automatic cleansing step.

•	 The last phase, term consolidation (cf. "Term consoli-
dation strategy" section), identifies the importance 
of each previously identified word n-gram for the 
chosen sub-language and, according to this analy-
sis, applies a filtering algorithm that produces a final 
term set for each clinical specialty. The filtering algo-
rithm detects and removes those n-grams that are 
common to all or almost all clinical specialties and 
whose relevance to those clinical specialties is similar. 
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These “stop n-grams” are useless for differentiating 
between specialties.

Specialty‑specific corpus acquisition
Figure  2 illustrates this phase in detail. The number of 
clinical specialties was 129 in the beginning (n). L refers 
to the number of specialties per hierarchical level. Out of 

129 specialties, 45 belonged to the first level (L1) and 65 
belonged to the second level (L2) of the hierarchy.

For defining the set of clinical specialties, the method 
starts extracting the branch of the MeSH thesaurus under 
“Disciplines and occupations” > “Health Occupations” > 
“Medicine” (Step 1).

Most subcategories obtained under this branch are 
clinical and paraclinical specialties, but others on edu-
cation, research, epidemiology, or public health, were 
considered out of scope because they do not produce 
routine, non-research, textual content in health care sce-
narios (Step 2). Examples are “aerospace medicine”, and 
immunochemistry (a subspecialty of allergology and 
immunology). Another category considered as non-spe-
cialties, such as “clinical medicine”—an umbrella term 
for all clinical specialties, but in fact, it is orthogonal 
within the taxonomy, including “precision medicine” and 
“evidence-based-medicine” - none of them being clinical 
specialties that would produce a distinct kind of textual 
data and therefore be relevant for specific vocabulary 
generation. So, this branch was excluded as well.

Subcategory selection was the only step done manually, 
given the resources available, the inherent complexity of 
subdividing clinical specialties, the idiosyncratic nature 
of the division of the medical realm and the apparent lack 
of principled modeling of the specialty subtree in MeSH.

Fig. 1  Overview of the extraction method

Fig. 2  Clinical specialty selection process. Including the variations 
in the number of specialties (left) when applied to the Spanish case 
(right)
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Out of this specialty selection, we generated the queries 
for retrieving specialty-specific PubMed content (Step 3), 
under the assumption that a text belongs to a clinical spe-
cialty S and is, therefore, relevant for term extraction if it 
fulfills one of the following conditions:

•	 The affiliation of the first author corresponds to an 
institution or department associated with S.

•	 The article was written for a publication in the area of 
S.

•	 The article was categorized using keywords relevant 
to S.

•	 The article was indexed with MeSH terms relevant to 
S.

The rationale behind these criteria is that the articles that 
contain specialty-relevant terms are rarely ever indexed 
with a MeSH term from the clinical specialty subtree. 
E.g., “RF-New Recombinant Vaccine for the Prevention 
of Herpes Zoster” is an article relevant for dermatology, 
but it is not annotated with the MeSH term “Dermatol-
ogy”. This is also obvious when counting only 20,000 arti-
cles indexed with the MeSH term “cardiology”, opposed 
to 830,000 ones with the word “heart” in title or abstract. 
Following our goal, we exclusively analyzed Spanish 

content; a mandatory condition is that the PubMed 
record contains at least a Spanish title.

Our query generators (Step 3) performed PubMed que-
ries using Biopython [42] for extracting specialty-specific 
corpora. The terms used to query for clinical special-
ties were extracted from the MeSH hierarchy. First, the 
MeSH term denoting the specialty itself, which is then 
expanded by the terms available via “See Also” links in 
MeSH, suggesting other specialty-relevant MeSH terms, 
e.g., Fig. 3 shows the specialty “Cardiology”, where three 
semantically close MeSH terms are suggested under “See 
also”.

In order to expand our query further, we added for each 
of these terms (MeSH and “See also”) Spanish MeSH 
translations retrieved from the UMLS Metathesaurus, 
marked as MSHSPA. E.g., the MeSH term “General Prac-
tice” is expanded by Medicina General for the MeSH ID 
D058006.

Despite the possibility to obtain more related terms like 
synonyms and term variants for describing a specialty, we 
decided to restrict ourselves to a limited set of cue terms 
that optimally delineate the scope of a clinical specialty. 
This strategy should maintain a high precision regard-
ing the goal of our study, i.e. harvesting specific terms. It 
also allows easy reproduction of the query generation by 
using the UMLS Metathesaurus only. An example of the 

Fig. 3  Example of MeSH term information
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automatically generated query that selects dermatology 
content is the following:

The following PubMed query demonstrates our inter-
est in retrieving Spanish content from dermatology by 
selecting the following fields and values in the PubMed 
record:

•	 Has Spanish(SPA) as document language (LA).
•	 Contains “dermatology” or “dermatología” in at least 

one of the following fields: translated journal title 
(TA), title or abstract translated to English (TIAB), 
corporate author (CN), secondary source (SI), as key-
word set by the author (OT), in some affiliation (AD), 
in MeSH Terms (MH:noexp) or MeSH Subheadings 
(SH:noexp).

•	 Finally, we include the terms “See Also”, in this case 
“Skin Diseases”, in the query to search for them in the 
MeSH terms [MH].2

Since many sub-specialties share the terminology prefer-
ences of the specialty from which they are derived, our 
method integrates terminology extracted from more 
fine-grained specialties to entries belonging to a higher 
level in the specialty hierarchy (Step 4).

Harvesting important terms that are highly specific 
for a specialty requires a considerable amount of text. 
The number of required texts may vary according to the 
diversity of terms for each specialty; however, a minimum 
amount of texts is desirable. For this reason, the process 
removes all second-level specialties with less than 1000 
Spanish titles (Step 5) and then maintains only one spe-
cialty when it has duplicates, which means that it belongs 
to more than one MeSH subtree (Step 6). This happened 
with“Gynecology”, belonged to both the MeSH subtree 
“Reproductive Medicine” and “Specialties, Surgical”. The 
final step 7 eliminates specialties in the first level that 
have not yet achieved a significant amount of content.

From the final set of titles and abstracts per spe-
cialty, those with “case reports” as publication type were 
retained to be used as evaluation benchmark (i.e. test 
data set). The reason was that case reports seem to use a 

language that is closer to clinical narratives. Case reports 
typically document interesting observations on individ-
ual patients, e.g., new syndromes, particular and unusual 
evolution of diseases (often orphan diseases), compli-
cations of common treatments as well as beneficial or 
adverse effects of common or unusual therapies [43].

Term extraction
Once we obtained a collection of Spanish titles and 
abstracts per specialty, all texts were then submitted to a 
process that extracts possibly relevant terms.

Term candidates were word n-grams with n between 1 
and 3. E.g., from “Manejo práctico de inmunosupresores 
en dermatología”, the unigrams extracted are: Manejo, 
práctico, de, inmunosupresores, en, dermatología. The 
bigrams extracted are: Manejo práctico, practico de, 
de inmunosupresores, inmunosupresores en, en derma-
tología. The trigrams are: Manejo práctico de, practico 
de inmunosupresores, de inmunosupresores en, inmuno-
supresores en dermatología. We decided not to include 
n-grams for n > 3 due computational cost and expected 
low frequency of longer n-grams.

The first step was to split each text into sentences, 
the established sentence boundary being “.”, “;”, “?”. “!”. As 
expected, many n-grams were not terms in a strict sense, 
such as those beginning or ending with articles and prep-
ositions (e.g. “de”, “en”, “manejo práctico de”, “inmunosu-
presores en”. Term cleansing removed those n-grams that 
match one of the following rules, which were formulated 
after the inspection of an n-gram sample:

•	 Unigrams included in a Spanish stopword list, punc-
tuation marks and digits.

•	 Bigrams that include at least one stopword or punc-
tuation marks.

•	 Trigrams that include at least two stopwords or 
punctuation marks or whose last position is a stop 
word.

•	 N-grams that include a country, region or nationality 
name.

•	 N-grams containing dates or years.

Finally, all n-grams were normalised to singular nouns, 
e.g. from “hematomas” to “hematoma”. During this 
phase, we also extracted the acronyms and their expan-
sions organized by clinical specialty. The new acronym 
resource is composed of 619 classified acronyms, and the 
method that we employed to built it is explained in detail 
in [44].

Term consolidation strategy
In this last step, we applied a term weighting strategy 
that characterizes the n-grams that belong to a clinical 2  https://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK38​27/​table/​pubme​dhelp.​Tn/.

https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.Tn/
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specialty and then filters n-grams below a threshold, we 
refer to them as stop n-grams. The term weighting and 
filtering strategies consider the following restrictions: 

1	 TF = 1 challenge The volume of titles and abstracts 
from Spanish articles, furthermore split by clinical 
specialty, was just too small for applying the TF-IDF 
measure [45]. In most cases, the term frequency was 
just one, which is known as the TF = 1 challenge 
[46].

2	 Multi-class texts A text may belong to more than one 
specialty, e.g., endocrinology and nephrology, which 
increases the overlapping of sets of specialty-related 
terms.

3	 Multipurpose vocabulary Most proposals for weight-
ing terms (or characteristics) have a well-defined 
application, such as text classification [47] or query 
expansion [48, 49]. Since we want to generate a raw 
set of terms that can serve several purposes, the 
characterization must take into account different 
needs. Some applications may require to have only 
the most discriminating terms for a specialty, others 
may require its most representative terms, even if 
they are also frequent in other specialties.

Term weighting
Taking into account the aforementioned restrictions, 
the weighting strategy considered the following three 
measures:

•	 Term global measure (TGM) a corpus measure, 
which quantifies the concentration of a term along 
with all specialties.

•	 Local precision measure (LPM) a specialty-level 
measure, which represents the specificity of a term 
for a specialty. Accordingly, high LPM values char-
acterize terms that never or rarely occur in texts 
belonging to other specialties.

•	 Local relevance measure (LRM) it represents the 
capacity of a term to describe the specialty. Terms 
with high values are those with high frequency in the 
specialty, compared to other terms in the specialty, 
and compared to the frequency in other specialties.

The three measures contribute to addressing the “TF = 
1 challenge” restriction because the relevance of a term 
is not computed by text, but by the specialty. In addition, 
the ability to distinguish the importance of the same term 
for different specialties and the corpus as a whole deals 
with the “multi-class texts” restriction.

Similarly, the proposed local measures include two 
types of terms: (1) infrequent ones with a high predictive 

power (e.g., “celoteioma” for oncology), and (2) terms that 
are not only very frequent in text of the specialty, but also 
in other texts (e.g., “cáncer”or “quimioterapia” for oncol-
ogy). Although unspecific they are relevant for the spe-
cialty. The differences between these measures contribute 
to deal with the “multipurpose vocabulary” restriction 
(see "Term consolidation strategy" section). The notation 
used to define these measures is explained in Table 1.

The global measure defined in Eq. 1 is a derivative of the 
entropy measure that evaluates the level of disorder or 
unpredictability, given a set of classes and a set of fea-
tures [50]. A value of 1 would correspond to terms that 
exclusively occur in text from the specialty, whereas 0 
would correspond to terms that are spread equally across 
texts belonging to all specialties. Whenever a term occurs 
in more than one specialty, a higher value is assigned to 
those terms whose difference in distribution among spe-
cialties is high (e.g. fet1 = 20 , fet2 = 2 , fet3 = 1 , fet4 = 3 , 
fet5 = 1 ) and lower values when the difference is low (e.g. 
fet1 = 3 , fet2 = 5 , fet3 = 2 , fet4 = 1 , fet5 = 0).

The first part of Eq.  2 measures the distribution of the 
term among the specialties and the second part evaluates 
the local importance using the negative texts within the 
specialty, i.e., the texts that do not contain the term.

If the term occurs in the texts belonging to a single 
specialty only and appears in all texts of this specialty 
the value of this measure will be greater. The global part 
range from 0 to 1 and the local from 0 to 1/(Nei − Nt

ei
 ). 

(1)TGM(t) = 1+

k
∑

i=1

feti
F t × log

feti
F t

log(N )

(2)LPM(t, i) =
Nt
ei

N t
+

Nt
ei

Nei

Table 1  Method notation

Notation

t The term under scrutiny

N The total number of texts in the corpus

Nei The number of texts belonging to the specialty i

Nt The number of texts that contain the term t

Nt
ei

The number of texts belonging to a specialty i that contain the term 
t

Et The number of specialties that contain the term t

fe
t
i

The number of occurrences in texts of the specialty i of the term t

Ft The number of occurrences of the term t in all texts (Spanish 
abstracts and titles harvested from PubMed records) of all special‑
ties
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Higher values are assigned to those terms that are highly 
specific for the specialty but can be rare.

Typically, the measures used for assessing the importance 
of a term in a class penalize frequent terms that belong 
to different document classes because of their inability 
to accurately discriminate between classes. However, 
potentially important terms may be revealed consider-
ing their frequency in conjunction with their probability 
in the specialty and their probability in the corpus. The 
last measure defined in Eq. 3 evaluates this importance. 
L corresponds to the value of the 90% percentile of the 
global frequency value of terms that belong to the spe-
cialty i.

Filtering of stop n‑grams
The last step filters the stop n-grams using the LRM(t, i) 
measure and the algorithm presented in 1.

(3)

Given L = P90
(

{∀Ft; t ∈ ei}
)

LRM(t, i) =

{

Nt
ei

N t , if F
t ≥ L

0, otherwise

n-gram. We selected the threshold of 47 specialties as it 
allows us to identify n-grams that are in more than 90% 
of the available specialties. This, combined with the anal-
ysis of importance metrics, allowed us to identify empty 
n-gram that should not be covered in the resource.

Results
The proposed method was applied to create a set of 
Spanish terms called SCOVACLIS. For the validation of 
our initial hypothesis, this resource was used to address a 
text classification problem.

The following sections present the analysis of the 
method and the results of a text classifier using SCO-
VACLIS. The text classification experiments were made 
using the complete SCOVACLIS resource and a reduced 
version containing only the terms that are also found in 
SNOMED CT.

Extraction of indicative terms for SCOVACLIS
Source acquisition
The first phase consisted of the acquisition of a corpus, 
consisting of Spanish titles and abstracts belonging to 

The hypothesis behind the algorithm is that an n-gram 
is irrelevant if its importance in all specialties where it 
appears is similar and if there is no specialty where its 
importance is considerably high. The input of the algo-
rithm is the collection of frequent n-grams, i.e., n-grams 
appearing in more than 47 specialties. Using this 

collection, the algorithm detects the stop-n-gram can-
didates by evaluating the standard deviation of its LRM 
and the maximum value of its LRM across all specialties 
where the N-gram appears. When an n-gram has a stand-
ard deviation lower than a thresholdSD and a maximum 
value lower than a thresholdMAX, it is considered a stop 



Page 9 of 17López‑Úbeda et al. BMC Med Inform Decis Mak          (2021) 21:145 	

Fig. 4  Terms per specialty and number of Spanish PubMed titles and abstracts. The value inside the point indicates how many standard deviations 
a specialty is away from the mean (a.k.a. z-score). The average number of tokens in the titles is 13.3, in the abstracts is 249.72
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51 clinical specialties. Figure 4 describes the number of 
available titles and abstracts for each specialty.

Term consolidation
The consolidation step yielded 635,699 n-grams. The 
most frequent ones across the specialties are presented in 
Table 2. Considering their provenance, these terms give 
an impression of the dominating research areas in the 
Spanish-speaking community, under the assumption that 
the rate of publishing in Spanish does not differ between 
communities.

As expected, some specialties overlap. Figure 5 visual-
izes the similarity between clinical specialties. That the 
three most similar pairs of specialties are obstetrics—
perinatology, nephrology—urology and preventive medi-
cine—epidemiology is evident from the closeness and 
partial overlapping of these disciplines.

Medical text classification enriched using SCOVACLIS
In order to test the hypothesis that NLP tasks benefit 
from more specific terminologies, such as SCOVACLIS, 
we assessed how much a text classification task can be 
improved by using the new vocabulary.

We propose a multi-label classification. In this classi-
fication, the goal was to classify case reports, extracted 
from PubMed, by one or more clinical specialties to 
which they belong. To create the gold standard, a Pub-
Med query with publication type “Case report” and lan-
guage “Spanish” retrieved 54,881 PubMed records with 
Spanish titles, of which 714 also had a Spanish abstract. 

Our classification uses both titles and abstracts, counting 
on average 11.28 and 163.23 tokens, respectively.

We used 75% of the case reports for training (41,159 
texts) and the rest for blind testing (13,720 texts). Our 
available repository contains more information about the 
distribution of labels for each partition (train and test) 
created for this evaluation.3 For the primary evaluation 
standard metrics from the ML and NLP community were 
used: micro-averaged precision (P), recall (R), and bal-
anced F1-score (F1).

In addition, taking into account SNOMED  CT as a 
reference terminology in Spanish, we have performed 
two experiments, (1) using the complete SCOVACLIS 
and, (2) filtering SCOVACLIS with terms covered by 
SNOMED CT.

Multi‑label classification
Because a PubMed record can be related to one or more 
clinical specialties, the experiment involved multiple 
labels per case report (title and abstract). Labels are 
binary variables that indicate class (i.e., clinical specialty) 
membership. This scenario implies greater difficulty 
due to the computational cost of model generation and 
querying, as well as the presence of unbalanced labels. 
In ML, the first step towards training a classifier is text 

Table 2  Most frequent n-grams and clinical specialties in which they appears. Riesgo: risk, población: population, atención primaria: 
primary care

N-gram Total frequency Specialties in which the n-gram mainly occurs

Cáncer 21,545 Medical oncology, preventive medicine, geriatrics, pathology, general surgery

Riesgo 15,796 Preventive medicine, epidemiology, cardiology, geriatrics, general surgery

Salud 14,608 Preventive medicine, epidemiology, community psychiatry, geriatrics, family practice

Renal 13,884 Urology, nephrology, preventive medicine, general surgery, geriatrics

Evaluación 10,655 Preventive medicine, geriatrics, epidemiology, general surgery, cardiology

Población 9592 Preventive medicine, epidemiology, geriatrics, cardiology, endocrinology

Tumor 8598 Medical oncology, pathology, preventive medicine, geriatrics, general surgery

Virus 7997 Preventive medicine, epidemiology, venereology, immunochemistry, medical oncology

Carcinoma 7973 Medical oncology, pathology, geriatrics, preventive medicine, general surgery

Atención primaria 7526 Family practice, preventive medicine, geriatrics, epidemiology, cardiology

Factor de riesgo 6747 Preventive medicine, epidemiology, cardiology, geriatrics, endocrinology

Mortalidad 6572 Preventive medicine, epidemiology, geriatrics, neonatology, cardiology

Arterial 6425 Cardiology, preventive medicine, geriatrics, epidemiology, nephrology

Programa 6216 Preventive medicine, community psychiatry, epidemiology, geriatrics, family practice

Trasplante 6103 General surgery, preventive medicine, urology, nephrology, thoracic surgery

Pronóstico 6040 Preventive medicine, geriatrics, medical oncology, cardiology, pathology

Insuficiencia 5995 Cardiology, preventive medicine, nephrology, urology, geriatrics

3  https://​github.​com/​plube​da/​scova​clis/​blob/​master/​Distr​ibuti​on-​of-​labels.​
md.

https://github.com/plubeda/scovaclis/blob/master/Distribution-of-labels.md
https://github.com/plubeda/scovaclis/blob/master/Distribution-of-labels.md
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pre-processing, where feature extraction and vectoriza-
tion take place.

The entire implementation was done using Python on 
a single Tesla-V100 32 GB GPU with 192 GB of RAM. 
We performed experiments with different classifiers that 
would allow multi-label classification such as:

•	 Random Forest [51] In our experiment, the number 
of trees taken into account is 100, as a function of 
measuring quality we use entropy.

•	 K-nearest Neighbors [52] The number of neighbors 
used in our experiment is 5, the weight function used 
in the prediction is uniform (all points in each neigh-
borhood are weighted equally), and the other default 
parameters.

•	 Decision Tree [53] Similar to the parameters used in 
Random Forest, here we also use entropy as a func-
tion to measure the quality of a split and the other 
default parameters.

•	 Multilayer Perceptron (MLP) [54] a multilayer per-
ceptron network consisting of three layers: (1) one 
input layer, (2) one hidden layer, and (3) one output 
layer. The number of nodes in the hidden layer is 100, 

use reLU activation, 0.001 in learning rate and use 
early stopping for controlling overfitting.

We tested different parameters to adjust the classifiers to 
the problem (for detail you can refer to our repository.4) 
We also performed tests with different word representa-
tion vectors such as TF-IDF, one-hot encoding and bag-
of-words. The best results were obtained using TF-IDF 
with the following parameters: lowercase = True, stop-
words = Spanish stop words and n-gram range = (1,3).

To validate the usefulness of SCOVACLIS, we added 
features as extra information to each text, using a vector 
with size 51 according to the number of clinical special-
ties. The value of each feature is a score calculated follow-
ing Eq. 4.

where:

d is the document (in our case a title or an abstract)
n is the number of n-grams
s is the specialty

The results obtained by the different combinations of 
classifiers and word representation are shown in Table 3.

In the KNN, Decision Tree and MLP classifiers the use 
of the term set as a feature improved the baseline (TF-
IDF). The 10% increase using the MLP method stands 
out, achieving 64.9% using TF-IDF with the created col-
lection (TF-IDF + SCOVACLISs).

In the second scenario, in which we used only the 
term set ( SCOVACLISs ), we observed a small increase in 
almost all cases except the MLP classifier.

In the third scenario (TF-IDF + SCOVACLISs—stop 
ngrams) we removed stop-ngrams. We observed the 
same as in the first scenario (TF-IDF + SCOVACLISs ), so 
we improved the base case in most cases. However, the 
difference with the first scenario was small, which led us 
to conclude that the stop-ngrams did not add too much 
noise to the classification. Here we achieved the highest 
precision and recall score, with an F1 measure of almost 
65.2% using MLP (results in bold).

Finally, the scenario in which we removed stop-ngrams 
( SCOVACLISs—stop ngrams) obtained values similar to 
the second scenario ( SCOVACLISs).

We concluded the study by observing that the term 
set improved the baseline in both cases, using it alone or 

(4)SCOVACLISs(d) =

n
∑

i=1

TGM(t),∀t ∈ s,

Table 3  Multi-label classification. Annotated data results with 
SCOVACLIS Score ( SCOVACLISs ) and removing stop-ngrams 
( SCOVACLISs—stop ngrams)

Classifier Word representation P (%) R (%) F1 (%)

Random forest TF-IDF 71.7 25.1 38.4

Decision tree TF-IDF 47.9 38.1 42.4

KNeighbors TF-IDF 63.3 39.0 48.2

MLP TF-IDF 75.1 53.3 59.3

Random forest TF-IDF + SCOVACLISs 70.0 17.5 28.7

Decision tree TF-IDF + SCOVACLISs 46.2 43.5 44.8

KNeighbors TF-IDF + SCOVACLISs 69.3 42.6 52.7

MLP TF-IDF + SCOVACLISs 74.7 57.4 64.9

Random forest SCOVACLISs 76.0 32.6 45.6

Decision tree SCOVACLISs 42.6 43.1 42.8

KNeighbors SCOVACLISs 69.4 42.1 52.4

MLP SCOVACLISs 75.8 43.5 55.3

Random forest TF-IDF + SCOVACLISs—stop 
ngrams

70.3 18.9 30.6

Decision tree TF-IDF + SCOVACLISs—stop 
ngrams

46.4 43.9 45.1

KNeighbors TF-IDF + SCOVACLISs—stop 
ngrams

68.9 42.7 52.7

MLP TF-IDF + SCOVACLISs—stop 
ngrams

77.5 57.7 65.2

Random forest SCOVACLISs—stop ngrams 76.8 32.6 45.8

Decision tree SCOVACLISs—stop ngrams 43.1 43.1 43.1

KNeighbors SCOVACLISs—stop ngrams 68.9 42.7 52.7

MLP SCOVACLISs—stop ngrams 75.6 43.5 55.4

4  https://​github.​com/​plube​da/​scova​clis/​blob/​master/​Detai​led-​class​ifiers.​md.

https://github.com/plubeda/scovaclis/blob/master/Detailed-classifiers.md
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including it as a set of features in the classifier (see more 
details in GitHub.5)

SCOVACLIS has been generated with the aim of 
improving vocabulary resources taking into account 
clinical specialties. Currently, no standard or reference 
terminology classifies terms per clinical specialty, so no 
direct comparison can be made. However, to analyze the 
relationship of our resource with curated terminology, we 
performed experiments using SNOMED CT.

The goal is to quantify the level of overlapping between 
SCOVACLIS and SNOMED CT, and to analyze whether 
the non-overlapped terms in SCOVACLIS were useful to 
perform a task that requires discrimination per clinical 
specialty. To this end we downloaded the international 
SNOMED  CT release in Spanish (2020-04-30 release) 
and performed the same pre-processing as for our term 
set ("Term extraction" section).

For this experiment, SCOVACLIS was reduced for each 
clinical specialty, taking into account only those terms 
that were included in SNOMED CT. The average number 
of terms covered by SNOMED CT in all specialties was 
28.16%. E.g., dermatology has been reduced from 46,000 
terms to around 12,000 and cardiology from 110,000 to 
around 20,000 terms. With this resource we repeat the 
classification experiments and applied them to the test 
data set.

We analyzed the characteristics of the terms that were 
not covered by SNOMED CT in order to recognize pos-
sible noise terms in our term set (for more details you 
can refer to our results.6) We could demonstrate that 
many SCOVACLIS terms with high Et values (cf. "Term 
weighting" section) were found in SNOMED CT. A high 
Et means that the term was found in several specialties. 
90% of the terms found between 38 and 52 specialties 

were included in SNOMED CT, in contrast to only 15% 
of the terms found between 1 and 13 specialties. This 
corroborates that the Spanish SNOMED  CT gives pref-
erence to terms of wide-spread use but lacks coverage 
of very specific terms only used in one specialty. This 
seems interesting, because SCOVACLIS could be used 
for adding more content wherever an NLP task requires 
these specific and complementary terms. The manual 
analysis of the terms yields that some of the missing 
terms are related terms to formal ones (e.g. “filled breast” 
instead of “breast implant” in “Surgery plastic”), and 
others are more specialized than the ones contained in 
SNOMED CT (e.g. “thoracoabdominal wall” in “Thoracic 
Specialty” and “kayakista” in “Sports Medicine”). Lastly, 
we found that specialties with a broad lexical nature, such 
as preventive medicine and general practice, apparently 
include terms of minor relevance. However, they are 
useful for improving classification performance, as illus-
trated in the classification experiment.

Finally, Table  4 shows the comparison between the 
classification results with the original term set (origi-
nal columns) and with the reduced term set restricted 
to terms occurring in SNOMED  CT (SNOMED  CT 
filter columns). The latter, reduced term set does not 
improve the original classification. Particularly, when 
taking into account the F1 measure, we obtained a reduc-
tion between 4 and 18 points. This means that the terms 
included in SCOVACLIS improve the recognition of the 
specialties, even though they are not canonical or curated 
terms.

Label distribution analysis
Considering that the datasets used for training and test-
ing were not balanced regarding the specialty, this section 
analyzes the classification error versus the distribution of 
the class by dividing the F1 results into ranges: 0 to 25%, 
25% to 50%, 50% to 75% and 75% and above. 18 special-
ties with an average of 356 texts for training, obtained 

Table 4  Multi-label classification. Annotated data results with SCOVACLIS Score ( SCOVACLISs ) and filtered terms with SNOMED CT

Original SNOMED CT filter

Classifier Word representation P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Random forest TF-IDF + SCOVACLISs 70.0 17.5 28.7 69.1 14.0 22.6

Decision tree TF-IDF + SCOVACLISs 46.2 43.5 44.8 37.3 34.0 35.8

KNeighbors TF-IDF + SCOVACLISs 69.3 42.6 52.7 62.8 31.1 41.6

MLP TF-IDF + SCOVACLISs 74.7 57.4 64.9 70.1 56.1 60.5

Random forest SCOVACLISs 76.0 32.6 45.6 65.4 14.0 23.1

Decision tree SCOVACLISs 42.6 43.1 42.8 31.5 26.8 28.9

KNeighbors SCOVACLISs 69.4 42.1 52.4 57.9 29.0 38.7

MLP SCOVACLISs 75.8 43.5 55.3 73.4 24.3 36.6

5  https://​github.​com/​plube​da/​scova​clis/​blob/​master/​Detai​led-​resul​ts.​md.
6  https://​github.​com/​plube​da/​scova​clis/​blob/​master/​SNOMED-​CT-​analy​
sis.​md.

https://github.com/plubeda/scovaclis/blob/master/Detailed-results.md
https://github.com/plubeda/scovaclis/blob/master/SNOMED-CT-analysis.md
https://github.com/plubeda/scovaclis/blob/master/SNOMED-CT-analysis.md
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an F1 value of less than 25%. nine specialties (including, 
e.g. geriatrics and psychiatry), obtained an F1 between 25 
and 50%, with an average of 2049 texts for training and 
688 for testing. Specialties such as pathology and obstet-
rics and 13 others had an F1 between 50 and 75%, with an 
average of 2635 training texts. Finally, the specialties that 
reported the best results (i.e., over 75%) were nine, with 
oncology and cardiology among them, having on aver-
age, 5915 titles/abstracts to train the system. In the first 
range (i.e., 0–25%), there were six specialties with F1 = 0; 
they contained less than 30 training titles/abstracts and 
less than seven titles/abstracts for testing, among them 
were forensic medicine, general practice and allergy, and 
immunology.

This analysis allows the conclusion that, as expected, 
the more texts the system has for learning, the better it 
classifies. Our multi-label approach makes the task more 
problematic as demonstrated by the following misclassi-
fications examples:

Example #1.
Text: Infiltración pleural en la recaída de un 

mieloma múltiple.
Translation: Pleural infiltration in multiple 

myeloma relapse.
True specialties: cardiology, hematology, 

medical oncology, pathology and preventive 
medicine.

Predicted specialties: cardiology, hematology, 
medical oncology and pathology.

Example #2.
Text: Osteoartropatía hipertrófica en adeno-

carcinoma de pulmón.
Translation: Hypertrophic osteoarthropathy 

in lung adenocarcinoma.
True specialties: medical oncology, pulmonary 

medicine and rheumatology.
Predicted specialties: medical oncology.
Example #3.
Text: Derivación gástrica en Y de Roux como 

procedimiento de urgencia para resolver la fuga 
en un SADI-S.

Translation: Roux-en-Y gastric bypass as an 
emergency procedure for resolving SADI-S leak.

True specialties: bariatric medicine and gen-
eral surgery.

Predicted specialties: bariatric medicine, gen-
eral surgery and gastroenterology.

We highlight the difficulty that our classifier has to 
detect specialties considered transversal (i.e., that do 
not have a very specific vocabulary) such as pathology, 

internal medicine or general surgery (cf. detailed 
results.7)

Discussion
Term identification is crucial for many tasks of automated 
biomedical text processing of biomedical [7–14], with 
CVs as fundamental resources [15]. We have proposed 
and validated a method not only to harvest terminology 
from texts but to classify texts by clinical specialties.

The application of this method to a Spanish Core 
Vocabulary About Clinical Specialties (SCOVACLIS) 
is the first accomplishment of this research. The results 
obtained allow us to recommend this method for obtain-
ing specialized clinical term sets in any language suffi-
ciently represented in PubMed titles and abstracts. Our 
approach proved useful for recognizing frequent, infre-
quent, and equally relevant terms that are characteristic 
of given clinical specialties. The completeness of the term 
sets obtained by our method is directly related to the vol-
ume and richness of the texts obtained for each specialty. 
It was not surprising that broad, overarching specialties 
such as general practice or preventive medicine con-
tained less specific terms. and, consequently, underper-
formed in text classification. Our goal is not to replace 
existing controlled terminologies, but to support the 
production of specialized term sets tailored to tasks that 
require terms with high predictive value, as they occur in 
clinical or research texts, regardless of naming conven-
tions used for the building of CVs. In contradistinction to 
these intensively curated resources, the emphasis of our 
method is on producing term sets in a fully automatic 
manner, which may include non-standard terms, e.g. 
with custom abbreviations or frequent spelling variants. 
This, however, does not exclude at all the potential of our 
method to provide useful input to terminology develop-
ers who maintain and extend clinical terminologies, par-
ticularly interface terminologies [27], which focus on the 
language used in research or clinical documentation. For 
the latter purpose, real-world clinical would be prefer-
able as input, for which a good data protection strategy 
is indispensable. Unfortunately, nearly all de-identified 
clinical document collections that are publicly accessible, 
e.g. MIMIC III [55], are in English so that no sufficient 
amount of publicly available Spanish clinical text could 
be obtained. Other methods need a manually labelled 
corpus [37] or use nomenclature rules to detect terms 
that do not exist in large lexicons such as UMLS [56]

A resource named SCOVACLIS is the second accom-
plishment of our research. It allows us to enrich the set 

7  https://​github.​com/​plube​da/​scova​clis/​blob/​master/​Binary-​confu​sion-​
matrix.​md.

https://github.com/plubeda/scovaclis/blob/master/Binary-confusion-matrix.md
https://github.com/plubeda/scovaclis/blob/master/Binary-confusion-matrix.md
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of resources available for NLP in Spanish. Creation and 
validation of SCOVACLIS support the hypothesis that a 
term set classified by clinical specialties might reduce the 
level of ambiguity when compared to a specialty-inde-
pendent, broad-scope vocabulary. Disambiguation, par-
ticularly of short forms, is a known bottleneck in clinical 
text processing.

Regarding the validation of SCOVACLIS, its use for 
improving the features in a multi-class classification 
approach using a Multilayer Perceptron classifier achieved 
an increase in 6 percentage points in the F1-measure com-
pared to the baseline. This shows its usefulness to improve 
contextual knowledge about medical texts and thus bet-
ter solve NLP problems such as named entity recogni-
tion and classification. Also, SCOVACLIS demonstrated 
an increased text classification performance, compared 
to the use of curated terms such as the ones included 
in SNOMED  CT, currently the largest source of Span-
ish clinical terminology. Sotelsek and Villena [57] obtain 
similar results with their MIDAS system that assigns ICD-
9-CM codes to radiology reports. In their case they use 
a manually developed lexicon of words, multiwords and 
abbreviations to help their system.

Implementing this method and producing the language 
resource was not straightforward; were several challenges 
had to be addressed. Also for the creation of SCOVAC-
LIS, the inevitable restriction to the terminology used in 
titles and abstracts of research papers is a known limita-
tion, because of its difference from the jargon found in 
clinical documents, which are known to be hastily writ-
ten and marred with typos and cryptic short forms. To 
what extent SCOVACLIS is a useful resource for han-
dling clinical documents still has to be investigated. For 
future work, we plan to expand our term set and use 
comprehensive reports.

We also had to find criteria to decide which clini-
cal specialties to use; our solution, mainly based on the 
MeSH occupation hierarchy enriched by other features 
extracted from PubMed metadata, is more complex than 
it would have been with clinical texts, whose provenance 
(clinical department in the document header) would 
have been trivial to ascertain. In contradistinction, an 
easily accessible source of biomedical texts is the litera-
ture database MEDLINE, with PubMed as a free search 
engine. From more than 26 million records approx. 2.2 
million are about non-English publications, including 
about 330,000 Spanish entries for which a Spanish title 
and sometimes a Spanish abstract is available. By using 
the publication type “case reports” for evaluation, we 
have extracted a publication genre that is supposed to 
be closer to clinical language than other, purely scientific 
papers.

Thanks to the existence of freely available query inter-
faces to PubMed and MeSH, the process of obtaining 
relevant texts for each specialty was executed. The fact 
that the universe of publications linked to a medical spe-
cialty in MEDLINE is much larger than the set of articles 
indexed by an occupation-specific MeSH term, led us to 
enrich the search method by incorporating new elements 
that allow us to increase the recall of the query.

In contrast to related works [36], the extraction of texts 
as input for term extraction is done automatically, includ-
ing classification by specialty. Our manual effort was 
limited to the crafting of the search strategy using MeSH 
terms and text words in the authors’ affiliations. There-
fore, our method can be applied in any language that 
has available scientific publications in PubMed. [37, 39]. 
Likewise, it can be used to create term sets for different 
domains, depending on the initial descriptors [40, 41].

Even though we used the Spanish titles and abstracts to 
create the term set, we found a limitation because only 
4592 PubMed records were linked to an automatically 
accessible abstract in Spanish. Thus, most of the texts 
under scrutiny consisted of titles only. The use of Span-
ish full texts could be a solution, with about 64,000 Span-
ish full text sources being freely accessible from PubMed. 
This, however, would require considerable manual effort.

For future work, we plan to explore word embeddings 
and train some to use them in traditional ML [58] or 
neural network approaches. In addition, there are avail-
able pre-trained models for the biomedical domain, such 
as BioBERT [59], we could consider. Although BioBERT 
is in English, an ideal scenario would be the generation 
of a new model for Spanish trained by a large biomedical 
corpus. It is also important to evaluate the value of using 
specific terminologies in NLP tasks involving specialties 
with a broad lexical nature, such as preventive medicine 
and general practice.

The research hypothesis chosen and tested in this 
paper was that SCOVACLIS improves classification of 
medical texts. That SCOVACLIS might also be useful for 
other NLP tasks is only being discussed, but this could 
be a subject of future research, given its usefulness for 
text classification. That our task is fully automated does 
not exclude human judgements in the evaluation pro-
cess. MEDLINE is annotated by human experts; our gold 
standard is largely grounded on these annotations, which 
we can consider of good quality.

Conclusions
The following objectives were pursued with this study: 
first, to elaborate a method for extracting non-English 
content from PubMed records; second, to tag these 
extracts by clinical specialty; and third, to generate char-
acteristic term lists for each clinical specialty.
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The method for the automatic extraction of medical 
terms involves the following steps: 

1.	 Selection of clinical specialties to be evaluated.
2.	 Generation of a PubMed extract (titles and abstracts) 

labeled by clinical specialties.
3.	 Extraction of word n-grams.
4.	 Normalization of word n-grams.
5.	 Generation of metrics that support the selections of 

the relevant terms in each clinical specialty.
6.	 Identification of stop n-grams.

The resource obtained by applying this method to Span-
ish titles and abstracts, named SCOVACLIS, was evalu-
ated in a multi-label classification task. The results have 
shown that our resource improved the baseline (without 
SCOVACLIS). We obtained an F-measure of 65.2% using 
an MLP network, 77.5% in precision and 57.7% in recall 
using TF-IDF representation, and SCOVACLIS without 
stop n-grams as features.

Finally, the creation and validation of SCOVACLIS 
support the hypothesis that specific term sets classified 
by clinical specialty might reduce the level of ambiguity 
when compared to a specialty-independent and broad-
scope vocabulary.
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