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Abstract 

Background:  Regional citrate anticoagulation (RCA) is an important local anticoagulation method during bedside 
continuous renal replacement therapy. To improve patient safety and achieve computer assisted dose monitoring and 
control, we took intensive care units  patients into cohort and aiming at developing a data-driven machine learning 
model to give early warning of citric acid overdose and provide adjustment suggestions on citrate pumping rate and 
10% calcium gluconate input rate for RCA treatment.

Methods:  Patient age, gender, pumped citric acid dose value, 5% NaHCO3 solvent, replacement fluid solvent, body 
temperature value, and replacement fluid PH value as clinical features, models attempted to classify patients who 
received regional citrate anticoagulation into correct outcome category. Four models, Adaboost, XGBoost, support 
vector machine (SVM) and shallow neural network, were compared on the performance of predicting outcomes. 
Prediction results were evaluated using accuracy, precision, recall and F1-score.

Results:  For classifying patients at the early stages of citric acid treatment, the accuracy of neutral networks model is 
higher than Adaboost, XGBoost and SVM, the F1-score of shallow neutral networks (90.77%) is overall outperformed 
than other models (88.40%, 82.17% and 88.96% for Adaboost, XGBoost and SVM). Extended experiment and validation 
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Background
With the increasingly widespread use of continuous renal 
replacement therapy (CRRT) in critically ill patients, 
choosing a safe, effective, sustained, and stable antico-
agulation approach is very important for intensive care 
units (ICU) practitioners. Multiple organ failure, surgical 
trauma, active bleeding, disseminated intravascular coag-
ulation, etc. are common in critically ill patients. Hepa-
rin has been widely used for anticoagulation treatments 
owing to its good anticoagulant effect and low price [1]; 
however, improper heparin application increases the risk 
of bleeding, leading to heparin-related thrombocytope-
nia, bleeding, or other adverse outcomes. Moreover, this 
is likely to delay the detection of the anticoagulation level, 
reduce filter life and increase cost [2]. Local regional cit-
rate anticoagulation provides good cardiopulmonary 
bypass anticoagulation, fewer bleeding complications, 
and improved filtration membrane biocompatibility [3, 
4], has gradually replaced heparin as the first-line local 
anticoagulation strategy in CRRT process in guidelines 
such as the Kidney Disease Improving Global Outcomes 
(KDIGO) Clinical Practice Guidelines [5–7].

Local citrate/calcium antagonism is an important local 
anticoagulation method during bedside renal replace-
ment therapy. The method involves using citrate to 
chelate ionized calcium in the blood in  vitro to achieve 
anticoagulation, and passing it through the vein pathway 
pumps. The body self-metabolizes the citrate-calcium to 
supplement the lost calcium ions. During treatment, it 
is necessary to repeatedly monitor the ionized calcium 
before and after the filter [i.e., the ionized calcium level 
after regional citrate anticoagulation (RCA)] to detect 
effective hypocalcemia, as well as monitor the total blood 
calcium (i.e., the total calcium level after supplemen-
tation in the body), for timely adjustment of the citrate 
level to ensure safety [8–10].

Local regional citrate anticoagulation has been proven 
to have an effective in vitro anticoagulation effect and can 
be used to avoid prolonged heparin exposure and hepa-
rin accumulation during CRRT involving heparin antico-
agulation [4–8]. The advantages of local regional citrate 
anticoagulation include reduction in dialysis-related 
bleeding complications, improvement in the permeability 
of the dialyzer, improvement in the biocompatibility of 

the CRRT, and prolongation of the service life of the fil-
ter. In addition, citrate anticoagulation abolishes degran-
ulation of polymorphonuclear cells and platelets and 
reduces oxidative stress during hemodialysis [11–14]. 
Therefore, it has been used in the treatment of critically 
ill patients with acute kidney injuries. However, the lack 
of dose monitoring in RCA treatment can still cause 
serious complications during RCA, such as metabolic 
alkalosis and acidosis, hypernatremia, hypocalcemia, or 
hypercalcemia, which are caused by citrate accumulation 
[15, 16]. Insufficient anticoagulation will cause frequent 
coagulation, and thrombosis will decrease the function-
ality of the filter, leading to a serious shortening of the 
effective treatment time of hemofiltration. This not only 
increases the cost of treatment but also causes the loss of 
additional blood components. Excessive anticoagulation 
can lead to citric acid overdose and can endanger the life 
of the patient.

Furthermore, citrate mainly binds to calcium and to 
a lesser extent with other cations (such as magnesium). 
A citric acid overdose mainly occurs when the filtration 
increases the loss of the calcium combined with the cit-
ric acid. The implementation of an effective and safe local 
regional citrate anticoagulation regimen depends largely 
on rapid regulation of blood calcium levels in the body, as 
hypocalcemia directly threatens the life of the patient and 
hypercalcemia can cause anticoagulation failure. Con-
trolling the citric acid intake pump is very important, and 
there is an urgent need for standardized clinical imple-
mentation in regional citrate anticoagulation. Therefore, 
to avoid the occurrence of adverse reactions, it is neces-
sary to monitor the concentration of ionized calcium in 
the body, and timely adjust the calcium supplementation 
rate [17]. In recent years, with the rapid development of 
machine learning technologies, data-driven methods 
has been introduced in this fields to provide algorithm 
generated outcome predictions and dosing related clini-
cal decision supports for clinicians [18, 19]. These pre-
vious studies demonstrated that by closely monitoring 
the bedside patient data, it is possible to predict treat-
ment outcomes, and to provide computer generated 
recommendations.

The purpose of this study was to predict the ranges 
of post-filter ionized calcium levels which reflect the 

were further conducted using the MIMIC-III database, the F1-scores for shallow neutral networks, Adaboost, XGBoost 
and SVM are 80.00%, 80.46%, 80.37% and 78.90%, the AUCs are 0.8638, 0.8086, 0.8466 and 0.7919 respectively.

Conclusion:  The results of this study demonstrated the feasibility and performance of machine learning methods for 
monitoring and adjusting local regional citrate anticoagulation, and further provide decision-making recommenda-
tions to clinicians point-of-care.

Keywords:  Anticoagulants, Continuous renal replacement therapy, Machine learning, Intensive care units
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treatment outcomes of local regional citrate anticoagu-
lation based on machine learning methods. By further 
closely monitoring the ratio of total calcium measured 
in  vitro and free calcium measured in blood gas, this 
study is to early identify whether the patient is expe-
riencing citric acid overdosing, and to provide timely 
adjustment suggestions on citrate pumping rate and 10% 
calcium gluconate input rate to clinicians point-of-care.

Methods
Study design overview
The overall design of this study was shown as Fig.  1. A 
machine learning based early warning and adjustment 
method was developed and evaluated for local regional 
citrate anticoagulation therapy. Early warning of citric 
acid overdosing was achieved through predicting the 
ranges of post-filter ionized calcium levels which reflect 
the treatment outcomes by using machine learning mod-
els, such as shallow neural networks. Accordingly, timely 
adjustment suggestions were provided to clinicians 
point-of-care.

Outcome
The primary outcome was post-filter ionized calcium 
level. As the post-filter ionized calcium in the blood 
gas will change after 4  h when pumping citric acid for 
patients, the post-filter ionized calcium concentration 
4 h after the citric acid pumping time were selected and 
labeled as the classification targets for this treatment out-
come prediction task. Based on current practical imple-
mentation guidelines for citric acid anticoagulant renal 
replacement therapy, the post-filter ionized calcium val-
ues from common blood gas analyzers were divided into 
four ranges: < 0.25  mmol/L, 0.25–0.35  mmol/L, 0.35–
0.5 mmol/L, and > 0.5 mmol/L.

Study population
Our study used the ICU patient database of Peking Union 
Medical College Hospital (PUMCH) to identify patients 
with citric acid overdose. The PUMCH ICU database 

comprises the complete clinical data of patients admit-
ted to the PUMCH ICU with a retrospective cohort 
of totally 20,778 ICU patients during 2013–2019. For 
model development, testing and validation, we divided 
above PUMCH ICU patient data into two datasets. The 
dataset 1 with patient data from 2013 to 2018 used for 
model development and test, and to validate the predica-
tive ability of established models using an external and 
recent cohort, the dataset 2 with patient data of 2019 was 
extracted for validation.

We enrolled patient data from PUMCH ICU database 
in accordance with the following rules. All the adult 
patients that above 18 years old and received regional cit-
rate anticoagulation therapy during their ICU stay were 
included. Based on the measurement time of the ionized 
calcium in the blood gas, the blood gas arterial calcium 
within 1 h and citric acid before 4 h were then extracted. 
We further obtained the measurement values of pH, body 
temperature, and NaHCO3 levels within 0.5 h before and 
after of citric acid pumping time, as well as the total cal-
cium level within 8 h before and after the measurement 
time of ionized calcium in the blood gas, as shown in 
Fig. 2. As one patient has more than one observed record 
during their citrate treatment, we then randomly selected 
one record from each patient that with different values 
of post-filter ionized calcium. In total, 1503 records from 
312 patients were included in dataset 1 and 431 records 
from 81 patients were included in dataset 2.

Feature selection
Regional citrate anticoagulation can be applied in vari-
ous CRRT modes, including continuous venous–venous 
hemofiltration, continuous venous–venous hemodialysis, 
and continuous venous–venous hemodialysis. Moreover, 
anti-coagulation regimens are complex and diverse, and 
the regimens at different institutions are somewhat dif-
ferent, based on their own conditions. At present, there 
are two commonly used methods. One is the pre-filled 
method, which uses citric acid as a part of a replace-
ment fluid, to simultaneously provide anticoagulation 

Fig. 1  The machine learning based early warning and adjustment for local regional citrate anticoagulation therapy
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and bases, and to provide replenishment before the input 
of replacement fluid. This method is simple, but the 
changes in blood flow and replacement fluid will affect 
the anticoagulant effect. The second method is peripheral 
pumping, which is relatively complicated. The peripheral 
pumping method ensures the full anticoagulation of the 
entire dialysis line, which is convenient for adjusting and 
monitoring the dosage of citrate, but it is more prone to 
causing metabolic complications. Therefore, the replace-
ment fluid-related factors and esterification fluid-related 
factors were selected as the input features. In addition, as 
selection of the regional citrate anticoagulation regimen 
also relies on the concentration of citrate, the factors that 
affect the post-filer ionized calcium concentration were 
further included as input features. According to the above 
related factors analysis, patient age, gender, pumped cit-
ric acid dose value, 5% NaHCO3 solvent, replacement 
fluid solvent, body temperature value, and replacement 
fluid PH value were selected as the input features.

Data preprocessing
The PUMCH ICU database was well-curated with very 
few (less than 3%) missing data of our analysis datasets. 
For the occasional missing values of patient temperature 
and replacement fluid, a mean substitution method was 
used for imputation of the missing data. After the miss-
ing data were filled in, the mean value of the variable 
remained unchanged. The data were normalized using 
min–max normalization method as follows:

X
∗
= (Xi − Xmin)/(Xmax − Xmin)

where Xi is the original value of feature i and Xmin and 
Xmax represent the statistical minimum value and maxi-
mum value of the Feature i, respectively [20].

Predictive modeling for citric acid overdose
Machine learning models
The pumping speed of the citric acid affects the concen-
tration of the post-filter ionized calcium in the blood 
during citric acid pumping. We performed four binary 
classification tasks for each category to predict the con-
centrations of post-filter ionized calcium in the blood at 
the early stages of treatment [21]. Four machine learn-
ing models, i.e., the Adaboost, XGBoost, support vec-
tor machine (SVM), and shallow neural network, were 
selected for predicting these four binary classifica-
tion tasks. Both AdaBoost and XGBoost are based on 
using a boost as a learning method. This method selects 
known features to improve the predictive ability of the 
model, thereby reducing its dimensionality. The feature 
of a sample is the output of the weak classifier applied 
to each sample. AdaBoost trains different weak classi-
fiers by changing the weights of samples and combines 
the weak classifiers into a weighted sum representing the 
final output of the enhanced classifier [22] and XGBoost 
is a scalable tree boosting system that based on gradient 
enhancement [23]. The algorithm learns a set of enhance-
ment trees and makes a careful trade-off between classi-
fication errors and model complexity. XGBoost recently 
dominated a competition regarding applied machine 
learning and Kaggle-structured or tabular data. The SVM 
is based on maximizing the boundary between the two 
types of data, i.e., maximizing the minimum distance 
to the nearest sample separating the hyperplane. The 

Fig. 2  Patient data selection event timeline
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Gaussian kernel ensures that the classification is non-
linear. The neural network constructs multiple layers of 
neurons. Each neuron receives a large number of input 
variables and passes the results to the next layer [24]. A 
shallow neural network can learn complex functions 
related to input and output variables, and can handle 
variables, complex functions, and complex relationships. 
The shallow neural network is built using TensorFlow 
1.13.1. The key parameters of the four models were listed 
in Additional file 1: Appendix I.

We used the GridSearch function in the scikit-learn 
package to search for the best parameters of the SVM, 
AdaBoost, and XGBoost algorithms, and then used the 
best parameters to train the model. The shallow neural 
network model contains two hidden layers, each con-
taining 36/24 neurons, and we used a modified linear 
function as the activation function. The output layer is 
category number 2, and the loss function is the cross-
entropy loss function.

Among the results was the one-hot label of the sample, 
i.e., the probability of the output calcium type of the sam-
ple after passing through the network. A batch gradient 
descent algorithm was adopted in the training process, 
and the batch size was 500. The network training used 
dropout to randomly discard neurons, thereby enhancing 
the generalization ability of the model. The dropout drop 
rate is 0.75; an early stop setting was used, and a regu-
lar term is added to the loss function to prevent overfit-
ting. The initial learning rate is 0.0015, and a total of 3000 
rounds were trained.

To train and test their prediction performances, a five-
fold cross-validation method was used for Adaboost, 
XGBoost, SVM and shallow neural network, respec-
tively. The dataset 1 was randomly divided into 5 equal 
parts, one of which was taken as testing set each time; the 
remaining four were used as the training set. The training 
was performed five times for each model, and the com-
prehensive performance of each model was evaluated.

Model performance evaluation and validation
To evaluate the model performance in the classifica-
tion of post-filter ionized calcium, we used the preci-
sion, recall, F1-score, and accuracy as our evaluation 
indicators. Precision denotes the proportion of false 
positives. Recall measures false negatives against true 
positives. The F1-score is the harmonic average of the 
precision and recall. Accuracy is the proportion of cor-
rect predictions over the output results. For all samples 
of each label, the micro-averaged precision, recall, and 
F1 score are all equal to the accuracy; therefore, we 
measure the classification performance of these mod-
els by comparing the average accuracy of the models 
on a macro level. Furthermore, we used the LASSO to 

study the features. LASSO is a shrinkage estimation 
method. By regressing and penalizing all variables, the 
coefficients of relatively unimportant variables become 
0 and they are excluded from modeling, and then the 
independent variables that have a greater impact on 
the dependent variable are selected and calculated. To 
validate the model generalizability, we chose the model 
with the best comprehensive performance as the imple-
mentation model for external validation using dataset 
2. To further evaluate the capability of machine learn-
ing models for citric acid overdose predictive mod-
eling problem, we conducted an extended experiments 
and evaluation using The Multiparameter Intelligent 
Monitoring in Intensive Care (MIMIC) III database. 
The modeling implementations and results are listed in 
Additional file 1: Appendix II.

Determination method of citric acid overdose
A citric acid overdose can occur in cases of liver dys-
function and citric acid infusion, after prolonged renal 
replacement therapy exceeds the human metabolic 
capacity. A citric acid overdose can be detected by closely 
monitoring the total calcium level and post-filter ion-
ized calcium level. The measurement time for the total 
calcium in the renal total test is every 2 h in the first 8 h 
after hemofiltration, and every 4  h in the next 16  h. If 
the patient is stable, monitoring is conducted once every 
6–8  h.  When the ratio of the total calcium/ionized cal-
cium increases, a value greater than 2.5 indicates an 
overdose.

Early warning and adjustment by close monitoring 
of patient data
We further assessed the citric acid overdose incidence 
proportion among different post-filter ionized calcium 
levels groups using the PUMCH ICU dataset. The assess-
ment results may provide early warning and guide clini-
cians in implementing effective monitoring for different 
patient groups.

To achieve the desired level of citric acid anticoagula-
tion by timely controlling and adjusting the citrate pump-
ing speed and calcium supplementation rate at the point 
of care, two adjustment suggestions for regional citrate 
anticoagulation therapy are provided. These suggestions 
are based on the abovementioned prediction results 
obtained with the close monitoring of patient data, and 
they comprise: (1) adjustment suggestions regarding the 
citrate pumping rate to maintain an appropriate post-
filter ionized calcium level; (2) adjustment suggestions 
regarding the pumping of 10% calcium gluconate if the 
patient has citric acid poisoning.
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Results
Summary statistics
Based on classification, the collected PUMCH ICU 
patient data were divided into four categories. Summary 
statistics of selected features from PUMCH ICU dataset 
are listed in Table 1.

Model prediction results
We dichotomy each label and select all samples in each 
category, where the number of samples corresponding to 
label 0, 1, 2 and 3 are respectively: 84,379,802 and 238. 
For dataset 1, we have a total of 1503 positive samples. 
The model performance results are shown in Table 2.

The F1 score represents a comprehensive evaluation of 
the model performance. As listed in Table 2, extreme gra-
dient boosting achieved the second best F1 score (81.20%, 
86.41%, 82.17%, and 82.85% for labels 0, 1, 2, and 3 of the 
PUMCH ICU database, respectively), second only to 
that of shallow neural network (90.77%, 88.40%, 82.17%, 
and 88.96% for labels 0, 1, 2, and 3 of the PUMCH ICU 
database, respectively). The SVM model also performed 
very well for all three data sets (71.22%, 79.72%, 81.87%, 
and 72.56% for labels 0, 1, 2, and 3 of the PUMCH ICU 
database, respectively). The adaptive boosting model 
performed slightly worse (69.99%, 60.04%, 59.85%, 
and 70.03% for labels 0, 1, 2, and 3 of the PUMCH ICU 

database, respectively) than the above three models. 
Therefore, we recommend shallow neural network as the 
practical classifier model for predicting post-filter ion-
ized calcium levels using close monitoring of patient data 
during regional citrate anticoagulation therapy.

When externally validating the application capability of 
recommend shallow neural network classifier model, the 
validation results in dataset 2, a recent and new cohort 
of patient admitted in 2019, are list in Table  3. The F1 
score (80.00%, 80.46%, 80.37%, and 78.90% for labels 0, 1, 
2, and 3 of the PUMCH ICU database, respectively), and 
the AUC (0.8638, 0.8086, 0.8466, and 0.7919) for labels 0, 
1, 2, and 3 of the PUMCH ICU database, respectively). 
Figure  3 shows the ROC and AUC of validation results 
in dataset 2. The external validation results proved that 
shallow neural network has stable performance for pre-
dicting post-filter ionized calcium levels.

Table  4 shows the feature significance measuring by 
LASSO regression, which represents the importance 
of the features. By analyzing the importance of the 
features of the data, we found that PH of replacement 
fluid has the greatest impact on the model, followed by 
Value of Citrate, and then 5% NaHCO3, AGE, Tempera-
ture, and replacement. Fluid and Gender, but in clinical 
trials, Value of Citrate should be the most influential, 
followed by PH of replacement fluid and 5% NaHCO3, 

Table 1  Summary Statistics of PUMCH ICU dataset

Features Outcomes (post-filter ionized calcium levels)

< 0.25 mmol/L 0.25–0.35 mmol/L 0.35–0.5 mmol/L > 0.5 mmol/L

Dataset 1: PUMCH (n = 1503) 84 379 802 238

Age 62.98 (15.06) 59.65 (15.14) 56.01 (15.89) 56.86 (15.56)

Temperature 36.64 (0.62) 36.58 (0.62) 36.61 (0.67) 36.58 (0.70)

Replacement fluid pH value 7.21 (0.17) 7.25 (0.12) 7.27 (0.09) 7.29 (0.09)

Value of citrate 207.94  (82.20) 201.86 (34.90) 201.64 (52.70) 169.49 (60.35)

5% NaHCO3 75.41  (31.47) 75.50 (32.38) 73.95 (34.07) 83.43 (38.06)

Replacement fluid 1880.82  (1234.24) 1879.92 (929.15) 1820.23 (740.11) 1685.53 (509.19)

Gender, n (%)

 Male 67.86 (%) 63.06 (%) 65.84 (%) 65.13 (%)

 Female 32.14 (%) 36.94 (%) 34.16 (%) 34.87 (%)

Dataset 2: PUMCH (n = 431) 20 100 219 92

Age 58.50 (15.83) 60.67 (14.68) 59.39 (15.14) 63.00 (12.56)

Temperature 36.43 (0.65) 36.41 (0.56) 36.40 (0.66) 36.41 (0.63)

Replacement fluid PH value 7.36 (0.07) 7.36 (0.07) 7.36 (0.06) 7.35 (0.07)

Value of citrate 196.48 (77.69) 185.27 (84.73) 172.48 (60.07) 132.83 (42.09)

5% NaHCO3 41.79 (31.09) 48.05 (34.92) 53.57 (36.02) 66.25 (43.49)

Replacement fluid 1770.55 (645.64) 1850.79 (974.67) 1698.43 (543.06) 1649.49 (820.87)

Gender, n (%)

 Male 65.00 (%) 73.00 (%) 64.38 (%) 40.22 (%)

 Female 35.00 (%) 27.00 (%) 35.62 (%) 59.78 (%)
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then AGE, Temperature, replacement fluid and Gender, 
we use LASSO regression to analyze the feature impor-
tance of the data. By observing the results, we find that 
the feature importance of Value of Citrate and PH of 
replacement fluid is not much different, which is basi-
cally consistent with clinical analysis.

An extended experiments and evaluation were fur-
ther conducted on MIMIC-III database to verify the 
feasibility of this study, and the results also demon-
strated shallow neural network achieved the best per-
formance among four models. The detailed results are 
descried in Additional file 1: Appendix II.

Assessment results on citric acid overdose
A 10-round random selection of 400 records was con-
ducted for each group. We counted the average num-
ber of records with citric acid overdoses to evaluate 
the citric acid overdose distribution in the four groups. 
The results demonstrated that the lower post-filter ion-
ized calcium level, the greater the number of records 
showing citric acid overdose. The results are shown in 
Table 5.

Adjustment suggestions for regional citrate 
anticoagulation therapy
According to the prediction results for the post-filter ion-
ized calcium levels, different adjustment suggestions for 
the citrate pumping rate can be provided to clinicians, as 
displayed in Table 6.

By calculating the ratio of the total calcium measured 
in vitro and free calcium measured in the blood gas, it is 
possible to identify whether a patient has citric acid poi-
soning. When the ratio of the total calcium to ionized 
calcium is greater than 2.5, a citrate intoxication alert 
should be provided to clinicians. We thus recommend 
adjusting the pumping of 10% calcium gluconate to main-
tain the ionized calcium of the artery at 1.0–1.2 mmol/L. 
The specific adjustments are shown in Table 7.

Discussions
With the continuous deeper integration of computer 
technology and medical treatments, the application 
of machine learning methods in clinical medicine has 
become an important research topic. Regional citrate 
anticoagulation has different advantages than heparin 

Table 2  Model performances for predicting post-filter ionized calcium levels

The bold means the best performed model for each evaluation indicator

Labels Models Precision (%) Recall (%) F1-score (%) Accuracy (%)

“0”: < 0.25 mmol/L AdaBoost 70.43 69.61 69.99 77.94

XGBoost 83.73 79.41 81.20 86.76

SVM 91.13 67.65 71.22 83.82

Shallow neural network 90.76 90.77 90.77 90.76

“1”: 0.25–0.35 mmol/L AdaBoost 67.39 59.21 60.04 76.32

XGBoost 82.65 78.54 86.41 85.17

SVM 92.93 77.41 79.72 86.25

Shallow neural network 88.45 88.4 88.40 88.45

“2”: 0.35–0.5 mmol/L AdaBoost 70.22 59.11 59.85 77.17

XGBoost 83.77 80.92 82.17 83.77

SVM 81.07 80.89 81.87 81.89

Shallow neural network 83.74 80.92 82.17 88.77

“3”: > 0.5 mmol/L AdaBoost 73.15 68.40 70.03 79.69

XGBoost 83.91 81.94 82.85 87.50

SVM 91.38 68.75 72.56 84.38

Shallow neural network 88.98 88.96 88.96 88.96

Table 3  Performance of the recommend shallow neural network classifier models in validation dataset

Labels AUC​ Precision (%) Recall (%) F1-score (%) Accuracy (%)

“0”: < 0.25 mmol/L 0.8638 80.00 80.00 80.00 80.00

“1”: 0.25–0.35 mmol/L 0.8086 80.75 80.50 80.46 80.50

“2”: 0.35–0.5 mmol/L 0.8466 80.37 80.37 80.37 80.36

“3”: > 0.5 mmol/L 0.7919 78.45 78.00 78.90 78.32
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Fig. 3  ROC curves and AUC for each classifier

Table 4  Feature significance by LASSO regression

Gender Age Value of citrate 5%NaHCO3 PH of replacement fluid Replacement fluid Temperature

0.000000000 0.0000000 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000

0.000000000 0.00000000 0.00000000 0.0000000 0.02172580 0.000000000 0.00000000

0.000000000 0.00000000 − 0.03739033 0.0000000 0.05911613 0.000000000 0.00000000

0.000000000 − 0.02880499 − 0.06103975 0.0000000 0.07894143 0.000000000 0.00000000

0.000000000 − 0.10513137 − 0.13510577 0.1056217 0.16482696 0.000000000 0.00000000

0.000000000 − 0.11214836 − 0.14049981 0.1159727 0.17347107 − 0.004691875 0.00000000

0.000000000 − 0.12624543 − 0.14999870 0.1331873 0.18787215 − 0.012946584 − 0.01223604

0.005256983 − 0.13273391 − 0.15501799 0.1405570 0.19460279 − 0.016788690 − 0.01857270
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anticoagulation. First, the risk of systemic bleeding is sig-
nificantly reduced; second, the frequency of detection is 
significantly reduced. Finally, and most importantly, the 
service life of the filter is significantly extended. At pre-
sent, it is gradually becoming the mainstream anticoagu-
lation model for bedside kidney replacement in critically 
ill patients. However, as the indicators that must be 
monitored are more complicated than those for heparin 
anticoagulation (and simultaneously can be mixed with 
human factors), the processes for starting anticoagula-
tion and adjusting the citrate dosage (to avoid overdosing 
that would harm the liver) and calcium gluconate pump-
ing dosage may sometimes vary, i.e., they may be person-
alized. Therefore, it fits an artificial intelligence algorithm 
more naturally. According to our knowledge, this article 
is the first original work to discuss a regional citrate anti-
coagulation adjustment strategy under the guidance of 
artificial intelligence; thus, it may be more beneficial to 
the future of intelligent ICUs.

This article explores the feasibility of machine learn-
ing method supported regional citrate anticoagulation 
that are based on the current mainstream regional citrate 
anticoagulation guidelines, expert consensus, and clini-
cal operation paths (to a certain extent). It is in line with 
various renal replacements in current intensive medi-
cal treatment processes. Furthermore, two databases, 
PUMCH ICU and MIMIC III, were used for developing 
and evaluating the model methods. The results from the 
overall comparison of the four models show that the clas-
sification effect of the shallow neural network is the best.

An increasing number of examples show that neural 
networks have broad application prospects in the medi-
cal field. The neural network structure is like a biologi-
cal nervous system and is used to simulate interactions 
between living things and the natural environment. A 
neural network has a self-learning function, associative 
storage function, and ability to seek optimized solutions 
at high speed. Under the modern conditions of a regional 
citrate anticoagulation treatment, human intervention is 
getting increasingly less important.

This study has limitations. At present, the PUMCH 
ICU database is used for master analysis. Although the 
data collected from MIMIC III database were used for 
evaluation, due to the differences of clinical environ-
ments and patient cohorts, the MIMIC III dataset does 
not record consistent ranges of the post-filter ionized 
calcium with the PUMCH ICU database, so we classified 
it according to the empirical values (< 0.8 mmol/L, 0.8–
0.9  mmol/L, and 0.9–1.0  mmol/L), and the results also 
recommended shallow neural network as the practical 
implementation model. We plan to complete a perspec-
tive multi-center study, and expand the verification set to 
meet the real-time needs for more accurate results and 
fine granularity.

In the future, to prevent citric acid overdose during 
patient treatment, we will continuously work on citrate 
monitoring, prediction, and adjustment related studies. 
Our study results can be utilized and further validated 
in clinical practice to better support the development 
of high-quality, evidence-informed, clinical practice 
guidelines.

Conclusions
In this study, we prototyped machine learning models 
with adjustable parameters to determine how to adjust 
the speed of the pump. The results of this study dem-
onstrated the feasibility of machine learning method for 
monitoring and adjusting local regional citrate anticoag-
ulation, and further provide data-driven decision-making 
recommendations to clinicians.

Table 5  Citric acid overdose distribution on four patient groups

Post-filter ionized 
calcium levels

Average number of records 
of citric acid overdosing

Randomly selected 
number of records

< 0.25 mmol/L 36 400/10 rounds

0.25–0.35 mmol/L 34 400/10 rounds

0.35–0.5 mmol/L 31 400/10 rounds

> 0.5 mmol/L 21 400/10 rounds

Table 6  Adjustment suggestions on citrate pumping rate

Post-filter ionized calcium levels (mmol/L) Citrate pumping rate

< 0.25 Reduce 10 mL/h

0.25–0.35 Stay still

0.35–0.5 Increase 10 mL/h

> 0.5 Increase 20 mL/h

Table 7  Adjustment suggestions on 10%  calcium gluconate 
input rate

Arterial or venous ionized calcium (mmol/L) 10% calcium 
gluconate input 
rate

> 1.45 Reduce 1.5 mL/h

1.21–1.45 Reduce 0.8 mL/h

1.00–1.20 Stay still

0.90–1.00 Increase 0.8 mL/h

< 0.9 After static push-
ing 10 mL, 
increase 1.5 mL/h
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