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Abstract 

Objective:  To explore an effective algorithm based on artificial neural network to pick correctly the minority of preg‑
nant women with SLE suffering fetal loss outcomes from the majority with live birth and train a well behaved model 
as a clinical decision assistant.

Methods:  We integrated the thoughts of comparative and focused study into the artificial neural network and pre‑
sented an effective algorithm aiming at imbalanced learning in small dataset.

Results:  We collected 469 non-trivial pregnant patients with SLE, where 420 had live-birth outcomes and the other 
49 patients ended in fetal loss. A well trained imbalanced-learning model had a high sensitivity of 19/21 ( 90.8% ) for 
the identification of patients with fetal loss outcomes.

Discussion:  The misprediction of the two patients was explainable. Algorithm improvements in artificial neural net‑
work framework enhanced the identification in imbalanced learning problems and the external validation increased 
the reliability of algorithm.

Conclusion:  The well-trained model was fully qualified to assist healthcare providers to make timely and accurate 
decisions.

Keywords:  Systemic lupus erythematosus, Imbalanced data, Fetal outcome, Artificial neural networks, Clinical 
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Background
Systemic lupus erythematosus (SLE) is a multi-systemic 
autoimmune disease, affecting predominantly women of 
childbearing age [1]. The prevalence of SLE is 111.6 per 
100, 000 in African-American, 47.5 per 100, 000 in Cau-
casian, 42.1 per 100, 000 in Hispanic, 24.9 per 100, 000 in 
Asian and 46 per 100, 000 in China [2]. With a low preva-
lence across the world, pregnant cases of SLE patients are 

extremely rare, which limits the predictive power of data-
driven models.

The pregnancy of SLE patients is regarded as high-risk 
events due to high incidence of obstetric complication 
(such as pre-eclampsia, eclampsia, thrombocytopenia) 
and SLE flare, which results in adverse maternal and 
fetal outcomes [3]. Recently, with the deep insights into 
rheumatology and advances in techniques of obstetric 
monitoring, most pregnancies of SLE patients can get 
favorable outcomes, however, fetal loss, including spon-
taneous abortion, therapeutic abortion and stillbirth, still 
exists in a certain proportion (8–40% ) [3–5]. Fetal loss 
outcomes are mostly related to exacerbation of SLE and 
other obstetric complications [3]. Prediction of fetal loss 
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in advance helps obstetricians choose the appropriate 
treatment and avoid dispensable fetal loss. A variety of 
factors affect the pregnant outcomes in different degrees, 
which makes it complex to assess the state of the disease 
and predict the pregnant outcomes of SLE patients [6, 7]. 
The severe shortage of data and the imbalanced class of 
pregnant outcomes, along with the complexity of assess-
ment, lead to bare investigations on the prediction of 
fetal loss.

Artificial neural network (ANN) [8–11], a mathemati-
cal model in machine learning mimicking the human 
neural architecture of the brain, describes complex statis-
tical relations between the output and input via densely 
interconnected simple artificial neurons. The network 
is usually arranged in a multilayer structure, including 
input layer, hidden layer and output layer, and is mainly 
used as a classifier. It is designed to find deep connec-
tions within datasets and provides indispensable tools for 
intelligent medical data analysis [9, 12–14].

With scarce clinical samples and imbalanced pregnant 
outcomes of pregnant SLE patients, conventional algo-
rithms including ANNs, can not identify the minority of 
pregnant women with SLE suffering fetal loss outcomes 
[15]. Such imbalanced learning problem is actually chal-
lenging but there is no denying that it makes sense in 
clinical practice and many other fields [16, 17]. In con-
ventional machine learning algorithms, dealing with 
imbalanced data is regarded as a 10 challenging prob-
lem in data mining research [16]. An algorithm ignores 
the minority in purpose and always predicts the major-
ity, which can win a high accuracy but it learns noth-
ing. Sampling methods are usually used in imbalanced 
learning applications to balance categories in the training 
set, since a balanced data set has a better classification 
performance [18, 19]. Undersampling method removes 
a large amount of valuable non-trivial data to keep cat-
egories balanced [20]. Oversampling method generates 
multiple similar copies with the minorities, which may 
exaggerate noisy information and dilute the important 
features of the original minorities’ [21, 22]. There are also 
some modified or updated versions of resampling meth-
ods, such as Cluster-Based Over Sampling method [23] 
and a well-known oversampling approach called Syn-
thetic Minority Over-sampling TEchnique (SMOTE) 
[24–26].

An alternate approach to imbalanced learning is the 
tree-based ensemble methodology which integrates sev-
eral classifier modules to aggregate their predictions. 
Ensemble methodologies, such as bagging-based, boost-
ing-based, gradient tree boosting algorithms and extreme 
gradient boosting (XGBoost) have good performances 
in some specific situations [27–33]. In the neural net-
work framework, several methods perform a heuristic 

mathematical exploration, such as penalizing the objec-
tive function, learning rate adjustment and minimization 
of misclassification costs [34, 35]. In our work, we inte-
grated the thoughts of comparative and focused study 
into the neural network to analyze the imbalanced fetal 
outcomes of pregnant women with SLE and distinguish 
the minority of positives (fetal loss) from the majority of 
negatives (live birth).

Methods
Patients
A retrospective collection of pregnant SLE patients with 
an electronic medical records (EHR) was performed 
in the Department of Obstetrics and Gynecology, Ren 
Ji Hospital Affiliated to Shanghai Jiao Tong University 
School of Medicine from September 2011 to June 2018.

•	 Inclusion Criteria: Pregnant patients with SLE who 
had established archives and labored in Ren Ji Hospi-
tal from September 2011 to June 2018; no limitation 
to age and gestational weeks; SLE classification diag-
nostic criteria were according to the 1997 American 
College of Rheumatology (ACR) revised SLE classifi-
cation criteria [36].

•	 Exclusion criteria: Multiple gestation or abortions 
due to personal reasons were excluded.

	 469 pregnant women with SLE who met the above 
criteria had been included in this study. Among 
them, 49 cases had fetal loss, and the remaining 420 
cases had live births, with a fetal loss rate of 10.4% . 
338 samples from September 2011 to May 2017 were 
used for training and internal validation. In consid-
eration of the divisibility and the rough ratio 7  :  3 
of training samples to internal validation samples 
[37], random 234 out of the 338 samples were used 
for training and the remaining 104 samples were 
for internal validation. After the model was trained 
well and wrapped as a clinical decision assist, 131 
(11 patients had fetal loss outcomes) latest pregnant 
SLE patients from June 2017 to June 2018 were col-
lected and ran in the model as external validation. All 
patients were assessed at least once a month by an 
experienced obstetrician and by a rheumatologist at 
least once every trimester.

Medical definitions

•	 Live birth: the birth of a living baby [38].
•	 Fetal loss: defined as all pregnancies that did not end 

with live birth [5], including spontaneous abortions, 
therapeutic abortions, stillbirths or intrauterine fetal 
deaths.
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•	Spontaneous abortion: spontaneous termination 
of a pregnancy before 28 weeks of gestation [39].

•	Therapeutic abortion: abortion for therapeutic 
reasons as the pregnancy might threat maternal 
health, such as a life-threatening SLE flare or other 
severe obstetric complications [40]

•	Stillbirth or intrauterine fetal deaths: any baby 
born without signs of life after 28 weeks of gesta-
tion [41]

•	 Pre-gestational SLE status—Remission stage: a 
patient takes a low dose of or has stopped prednisone 
treatment without clinical manifestations of SLE 
activity for more than 6 months prior to conception 
[42]

•	 Pre-gestational SLE status—Active stage: a patient 
presents clinical manifestations of SLE activity. Dis-
ease activity was evaluated according to the SLE Dis-
ease Activity Index 2000 (SLEDAI-2K) [43]

•	 Pre-gestational SLE status—Initial onset: a new onset 
or diagnosis of SLE during pregnancy

•	 SLE clinical manifestations: including nephritis, cuta-
neous lesion, hematological disorder, arthritis, serosi-
tis [36]

•	Nephritis: proteinuria > 0.5g/24h or Cr.CL. 
< 60ml/min/1.73m2 with active urinary sediment

•	Cutaneous lesion: including malar rash, discoid 
rash, photosensitivity, oral ulcers

•	Hematological disorder: including hemolytic 
anemia with elevated reticulocytes, leukopenia 
< 4000/mm3 , lymphopenia < 1500/mm3 , throm-
bocytopenia < 100, 000/mm3

•	Arthritis: nonerosive arthritis ≤ 2 peripheral 
joints, characterized by pain, tenderness or swell-
ing

•	Serositis: pleural effusion, pericarditis

Data processing
SLE-affected pregnant patients with a live birth outcomes 
were regarded as negatives and ones with fetal loss out-
comes were positives. 29 medical indices from patients’ 
data (shown in Table  1 ) were selected as inputs, x. No 
data were missing except some in 24-hour-urinary pro-
tein level and we filled them in a reasonable way.

Each medical index with continuous real values was 
normalized to unity and the binary feature was repre-
sented as 0 or 1. In such way, the divergence in training 
was prevented to some degree.

The pre-gestational SLE status was a triple-classified 
variables, including pre-gestational active stage, remis-
sion stage and initial onset during pregnancy. We divided 

them into 3 independent variables ( x11 , x12 and x13 ) for 
the neural network.

24-hour-urinary protein level: 199 out of 469 pregnant 
SLE did not have records of 24-hour-urinary protein 
level test, because for patients whose urinary-protein 
level in routine urine test is below 30mg/dl, obstetricians 
would not prescribe 24-hour-urinary protein level test. If 
one’s 24-hour-urinary-protein level was blank or below 
0.5g/24h, the value would be set as 0, as the level above 
0.5g/24h means renal damage [44, 45]. Mathematical 
expression is as follows:

Imbalanced learning model establishment integrating 
comparative and focused study
Seminal articles [10, 13, 46, 47] on ANN provided a com-
prehensive and practical introduction to the conventional 
neural networks algorithm. In our ANN framework, 
each patient’s medical records with 29 medical indices 
(Including baseline characteristics, history, clinical mani-
festation, laboratory data and treatments) were expressed 
mathematically by a 29-dimensional input vector x . The 
corresponding category or class of each patient sample 
was labeled (positives: fetal loss; negatives: live birth), as 
illustrated schematically in Fig. 1a.

The learning rate is an important configurable hyper-
parameter which controls the step size of change in 
response to the estimated error at each iteration. Con-
ventionally, one sample propagates through the network 
and produces training error. For an imbalanced-learning 
problem, the learning rate is binary, where it is lr1 when 
the sample is from the majority, and it increases to lr2 
when the sample is from the minorities (Fig.  1b). How-
ever, training one sample at each iteration tends to pre-
dict the majorities and the features of the minorities are 
hard to be extracted. We first introduced the thoughts 
of comparative study and combined a number of train-
ing samples into a batch to work through before the 
model’s weights are updated. We then counted the num-
ber of minority samples in each batch and introduced the 
thoughts of focused study. The more fetal loss (minority) 
samples were in one batch, the more focuses (referring to 
a higher learning rate) should be concentrated on, since 
intrinsic distinctions were formed by comparison with 
samples of different categories.

In our work, we integrated such thoughts of com-
parative and focused study [8, 34, 35, 48] into the ANN 
(Fig. 1c) and the network tuned the learning rate dynami-
cally and continuously according to the number of 
minorities in a batch. For each network, we randomly 

(1)x26 =

{

Proteinuria− 0.5 Proteinuria > 0.5

0 Proteinuria ≤ 0.5
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split the 338 samples into 234 (approximately 70% ) for 
training and the other 104 for internal validation. The 
training set was divided into batches and all samples in 
one batch were fed into the network together. Learning 
rate lr was positively related to the number of fetal loss 
cases in that batch:

(2)lr(i) = lr0 + n(i)×�lr

n(i) represented the number of fetal loss samples (labeled 
positive) in the ith batch. In consideration of divisibility, 
we set the batch size as 13 in this paper.

Evaluation indices
Aiming at finding fetal loss patients to the greatest extent, 
we set sensitivity, which measures the percentage of 
pregnant patients with fetal loss who are correctly iden-
tified, as the most significant evaluation index. Accuracy 

Fig. 1  Sample features and learning algorithms. a 29 medical indices of one SLE patient were arranged in one column. The label was denoted 
in green when the SLE patient had a live birth and it was red when the patient had a fetal loss. However, these two classes had largely different 
quantities where only 38 patients labeled fetal loss in all the 338 patients. b Each sample was fed into the artificial neural network (ANN), where the 
learning rate was dependent on the sample label. c Every several samples were trained simultaneously in one batch in the ANN, where the learning 
rate positively depended on the number of fetal loss samples in the batch
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is also an important index computing the correct predic-
tion percentage all over samples. Specificity is the extent 
to which actual negatives are correctly identified as such. 
Some other metrics like F1-score, Precision Recall Area 
Under Curve (PR-AUC) and Matthews correlation coef-
ficient (MCC) are also used as the evaluation indices.

Stochastic optimization algorithm, concretely speak-
ing stochastic gradient descent, is used to train the neural 
network with randomly initialized weights. In the phase 
of parameter establishment, to overcome the contingency 
and generalize the results, we trained about 120 neu-
ral networks with both random initialization of weights 
and randomly-selected samples. For each network, ran-
dom 234 out of 338 samples were put in the training set 
and the remaining 104 ones, not used for training, were 
tested and predicted in the calculation of evaluation indi-
ces (Sensitivity, specificity or accuracy). Some networks, 
which were not convergent in the training process or 

performed totally wrong test results, were excluded and 
then we averaged the remaining indices to determine 
network parameters.

Given optimal parameters (learning rate, hidden neu-
rons, etc.), we trained thousands of neural networks in 
the phase of classified prediction and picked the one with 
a high sensitivity and comprehensive consideration of 
accuracy and specificity.

Hidden neuron configuration
In ANN, each neuron in the hidden layer conducts a 
nonlinear function on the input and learns some knowl-
edge by mapping from medical indices to predictive 
categories. Redundant neurons lead to an over-fitting 
while insufficient ones give an incomplete expression. 
In order to establish the number of artificial neurons in 
the hidden layer, we selected sensitivity as the key indica-
tor. Given �lr , we trained 120 neural networks for each 

Table 1  29 medical indices in input neurons

*Medical terms are shown in the Method section

Neurons Inputs

x01 Baseline characteristics Age

x02 Region (city/rural)

x03 History History of live birth* (frequency) (city/rural)

x04 History of spontaneous abortion* (frequency)

x05 History of therapeutic abortion* (frequency)

x06 History of artificial abortion* (frequency)

x07 Other adverse reproductive history irrelevant to SLE (frequency)

x08 History of caesarean (frequency)

x09 Other chronic disease: Diabetes/Hypertension (Y/N)

x10 History of SLE (years)

x11 Pre-gestational SLE status Remission stage (Y/N)

x12 Pre-gestational SLE status Active stage (Y/N)

x13 Pre-gestational SLE status Initial onset (Y/N)

x14 Clinical manifestation Nephritis (Y/N)

x15 Cutaneous lesion (Y/N)

x16 Hematological disorder (Y/N)

x17 Arthritis (Y/N)

x18 Serositis (Y/N)

x19 Laboratory data Anti-Ro/SSA (Positive/Negative)

x20 Anti-La / SSB (Positive/Negative)

x21 Anti-dsDNA (Positive/Negative)

x22 Anti-Sm (Positive/Negative)

x23 APL (Positive/Negative)

x24 C3 hypocomplementania-C3 (g/L)

x25 C4 hypocomplementania-C4 (g/L)

x26 24-hour-urinary protein level (g/L)

x27 ADP(%)

x28 Treatments Glucocorticoid (Y/N)

x29 Asprin (Y/N)
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configuration and averaged their sensitivities as the per-
formance parameter, where the optimum determined the 
number of neurons in the hidden layer.

Decision threshold
In the previous literature, cost-sensitive learning was 
used to modify the cost of misclassification in the deci-
sion process [34]. We made a novel adjustment applied 
easily to the ANN framework to have almost the same 
effect. Extracting values from the two corresponding out-
put neurons, we obtained two outputs o1 and o2 , and they 
met the normalization constraint:

In a general condition, the positive (minority) category 
is predicted if o1 > 0.5 > o2 , and vice versa. In fact, it is 
very hard to predict positives with enough confidence 
due to the shortage of its samples. The classification cri-
teria could be changed in dependence on the quantity 
contrast of two categories. We set � as the variation of 
decision threshold, which meant the minorities or posi-
tives were predicted if o1 > 0.5−� (Fig. 4b).

Results
Evaluation by a conventional ANN method in imbalanced 
learning
The seminal work of dealing with imbalanced data made 
cost-sensitive modifications of the back-propagation 
learning algorithm in the ANN framework [34] and the 
schematic graph was shown in Fig. 1b. Each sample was 
fed into the ANN and the network decides the learning 
rate lr based on the label of this sample:

lr0 was assigned as 1. We performed a proof-of-princi-
ple demonstrations by assigning δlr from 0 to 1 spacing 
0.2. We calculated the sensitivity of each δlr and showed 
them in the gray curve in Fig.  2. Presetting 8 artificial 
neurons in the hidden layer in the 3-layer ANN empiri-
cally, the result indicated that optimal sensitivity was 
3.5% with scanning δlr and equivalently fewer than one 
out of twenty positive samples could be picked correctly 
on average.

Integrating the thoughts of comparative and focused 
study into the neural network framework
Figure  2 showed the relation between �lr and sensitiv-
ity. Integrating the thoughts of comparative study and 
focused study, we observed a significant increase from 
3.5% to 19.9% and then to 22.3% when �lr was around 0.2.

(3)o1 + o2 = 1

(4)lr =

{

lr0 labeli = negative
lr0 + δlr labeli = positive

Subsequently, we established the number of artificial 
neurons in the hidden layer in Fig.  3 and the inset was 
the structure of our ANN. A steady rise was found until 
14 neurons and then a drop appeared after that, which 
explained a 14-neuron hidden layer exactly described the 
mathematical expression bridging inputs and outputs. 
Therefore, the configuration of 3-layer ANN was assigned 
as 29-14-2 in substitution of the previous 29-8-2.

Given the optimal network parameters, we trained 
thousands of neural networks (without cross validation). 
Training is stopped to avoid overfitting when the sum 
squared error on the validation set has begun to rise. 

Fig. 2  The relation between �lr and sensitivity. Red curve referred to 
our algorithm shown in Fig. 1c, �lr reaches the optimum when it was 
around 0.2. Gray curve showed the results according to the algorithm 
in Fig. 1b

Fig. 3  Number of configured artificial neurons in the hidden layer. 
An optimal number of hidden neurons was selected as 14 which 
obtained a highest sensitivity. Inset: ANN configuration
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We then picked one with high performance (Sensitivity: 
70% ), whose confusion matrix with the internal valida-
tion set was shown in Fig. 4c. We found that 7 out of 10 
patients with fetal loss outcomes were correctly identified 
but the other 3 were misdiagnosed.

Shifting the decision threshold
To improve identification of patients with fetal loss out-
comes, we increased � gradually to lower the decision 
threshold for fetal loss prediction. Figure  4a showed a 
trade-off between sensitivity and specificity with dynami-
cally varying � from −20 to 25% (Dynamic evolution is 
shown in the Additional file  1: Video 1). Figure  4d and 
e visualized confusion matrix when � was 15% and 25% , 
respectively. Remarkably, the sensitivity arrived at 100% 
and the specificity was also over 80% when � was 25% . 
To avoid sample selection bias, we generated optimal 
models with different input/output combinations and 
averaged the evaluation indices according to � in Table 2. 

Among them we visualized the three metrics (i.e. sensi-
tivity, MCC, F1-score) suitable for imbalanced datasets 
in Fig. 4f. Overall, the well-trained ANN with shifting the 
threshold by 25% was well qualified and equipped as a 
clinical decision assistant [49, 50].

External validation
To further validate the model, we externally validated 
the developed network using the latest 131 samples of 
pregnant patients with SLE from June 2017 to June 2018 
treated in the same hospital, other than the 338 ones 
before May 2017. Figure  5a showed confusion matrix 
given by our model, where 9 out of 11 SLE patients with 
fetal loss outcomes were picked correctly from all 131 
samples. In fact, the two misdiagnosed fetal-loss patients 
were explainable and we expanded them in detail in the 
Discussion section. Besides, the receiver operating char-
acteristic (ROC) curve, depicting the trade-off between 
true positive rate (TPR) and false positive rate (FPR), was 
shown in Fig. 5b and the area under the curve (AUC) was 
0.886. Statistical performances of the external validation 
were measured in Fig. 5c.

Comparison of other models
XGBoost and AdaBoost were firstly implemented in R 
using xgboost and JOUSBoost package. (XGBoost: maxi-
mum depth of a tree: 2,4,6; L2 regularization term:1,2; 
the learning rate:1; max number of boosting iterations: 
500; learning objective: logistic regression for binary 

Fig. 4  Internal validation of the well-trained ANN models and the strategy of shifting diagnosis threshold. a The relation between specificity 
and sensitivity with varying � from −20 to 25% . b � was the variation of decision threshold and the minorities or positives were predicted if 
o1 > 0.5−� . c–e showed the confusion matrix when � was 0, 15% and 25% . Category 1 showed SLE patients with fetal-loss outcomes and 
Category 2 were ones with live-birth outcomes. f visualization of the three metrics in different �.

Table 2  The average evaluation indices for different �

� MCC F1-Score Sensitivity Accuracy

0 0.42± 0.10 0.47± 0.09 0.67± 0.08 0.85± 0.04

0.05 0.44± 0.09 0.48± 0.08 0.75± 0.04 0.84± 0.05

0.15 0.48± 0.07 0.49± 0.08 0.87± 0.05 0.82± 0.07

0.25 0.49± 0.11 0.50± 0.11 0.94± 0.05 0.81± 0.08

0.35 0.48± 0.13 0.48± 0.12 0.96± 0.05 0.79± 0.09
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classification. AdaBoost: maximum depth of a tree: 1-6, 
max number of boosting iterations: 500.) We then per-
formed the SMOTE algorithm with nine combinations of 
the parameters (percentover: 500, 600, 700; k:3,4,5) using 
DMwR package in R [24]. We also tried another five clas-
sification algorithms applicable to the imbalanced learn-
ing problem, such as fine tree, boosted tree, bagged tree, 
linear discriminant and logistic regression. Accordingly, 
we choose the sensitivity as the key indicator and error 
bars are calculated by the standard variance of tens of 
individual results within each algorithm in Fig. 5d. All of 
them were below the sensitivity of 81.8% in our network.

Discussion
ANN has the “black box” nature, where some parameters 
and output results cannot be explained intuitively and 
directly. As SLE is a complex disease and many factors 
may lead to the fetal loss outcome in pregnant women 
with SLE [51]. ANN, representing complex statisti-
cal relations with densely interconnected neurons, may 
describe the complex associations of the fetal loss out-
come and clinical information.

We further analyzed the 2 patients who were misdi-
agnosis: No.92 Patient had a 10-year SLE history and 
the assessment before pregnancy indicated the remis-
sion stage of illness. Unfortunately, she suffered fetal loss 

due to antepartum bleeding of placenta previa, tocolytic 
agents failed to stop colporrhagia, so a caesarean had to 
be performed to terminate the pregnancy at 22+ 3w . 
This spontaneous abortion was attributed to antepartum 
bleeding of placenta previa, which had not been reported 
having relationship with SLE.

The other misdiagnosed patient (NO.117) had a 13-year 
SLE history and her assessment before pregnancy 
showed a remission stage of illness. During the gestation, 
her state of illness kept quiescent in clinical manifestation 
and laboratory test, but she suffered preterm premature 
rupture of membranes (PPROM) at 20+ 2w and failed to 
keep the fetus. The previous studies have reported that 
pregnant SLE patients were liable to get genital infection 
with long-term use of glucocorticoids and had a higher 
risk of PPROM than general population [40]. Such case 
of spontaneous abortion caused by PPROM is very rare 
and our machine has not learnt similar samples in train-
ing or internal validation dataset. Despite this, it could be 
picked correctly when the decision threshold was shifted 
onto 35% , which illustrated that the algorithm had indeed 
found deep connections behind input data.

The fetal loss rate in this work was 10.4% (49/469). 
The low fetal loss rate produced the imbalanced data 
and brought difficulties in training the machine learning 
algorithm [15]. The conventional approach tended to be 

Fig. 5  Wrapped clinical decision assistant and the experimental study with newly-obtained samples. a 131 newly generated patient data ran into 
the assistant and the confusion matrix was displayed. Category 1 showed SLE patients with fetal-loss outcomes and Category 2 were ones with 
live-birth outcomes. b the ROC curve and the AUC. c showed part of configuration parameters in the wrapped machine. d presented the statistical 
performances of the external validation



Page 9 of 11Ma et al. BMC Med Inform Decis Mak          (2021) 21:127 	

overwhelmed by the majority and ignored the minor-
ity to pursue an accurate performance. The thought of 
comparative study is to divide samples into batches. The 
randomness of batch arrangement brings robust sample 
features into the training process. Concretely, randomly 
matched samples in a batch find a maximum discrimi-
nation and determines a resultant descending gradient. 
Focused study places emphasis on the minorities and 
customizes the learning rate. This approach improves the 
flexibility of samples and avoids over-fitting from sample 
duplication, because the non-discrete learning rate weak-
ens the individual characteristics. Our approach in this 
study works out the puzzle of dealing with imbalanced 
data which can be used for reference in dealing with 
other imbalanced non-trivial medical data.

The application of threshold shift is in accordance with 
the function and the actual requirement of the algorithm. 
In this work, to find fetal loss patients as many as pos-
sible, we lowered the threshold for fetal loss prediction to 
distinguish more potential fetal loss patients. The sensi-
tivity, rather than the accuracy, was supposed to be the 
most important evaluation index, since a higher sensitiv-
ity meant less fetal loss patients were in truth omitted.

The external validation was composed by 131 inde-
pendent patients who had not been used in neither the 
training process nor the internal validation. The external 
validation verified the reliability of the predictive model, 
since constant samples could avoid random selection in 
training or internal validation set, which leads to acciden-
tal high accuracies.

Our work realized a neural-network-based predictor, 
where the algorithm, compared to conventional neu-
ral network, could be applied to predict imbalanced 
pregnant outcomes and discover potential fetal loss 
patients. In clinical practice, the number of pregnant 
patients with SLE that a physician meets is limited, thus 
it is a difficulty for physicians to predict the fetal loss of 
patients. This model learnt the experience of hundreds 
of patients, which is more experienced than physicians 
to help find the high-risk patients of fetal loss. For clini-
cal application, the prediction can help obstetricians 
find high-risk pregnant SLE patients who are liable to 
fetal loss and more severe in the state of illness, as fetal 
loss is often related to SLE flare. If the algorithm pre-
dicts ’fetal loss’ for patients whose fetus have a great 
probability to survival, intensive monitoring should be 
taken and the termination of pregnancy in time should 
be thought to avoid dispensable fetal loss during expec-
tation treatment. For patients who have adjusted treat-
ment or revaluated during pregnancy, the algorithm 
can re-predict their pregnant outcomes to assess the 
curative effect or the progression of illness. For patients 

in early gestation period, if the algorithm predicts ’fetal 
loss’ with exacerbation of SLE, therapeutic abortion 
should be considered to prevent life-threaten events.

Our study had some limitations. In Shanghai China, 
the antenatal care of pregnant women before 12 weeks 
of gestation was taken at community hospital, the 
spontaneous abortion of SLE patients are treated at 
out-patient service. The clinical data of these patients 
could not be found in electronic health record (EHR) of 
the hospital and were not included in this study. More-
over, the black-box nature of the algorithm [52] makes 
it difficult to interpret the risk factors and their weight 
in fetal loss of pregnant SLE patients.
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