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Abstract 

Background:  Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of 
reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for 
a more accurate BG level prediction system. However, continuous glucose monitoring (CGM) readings are susceptible 
to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the 
most optimal machine learning model is used.

Methods:  In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-
term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman 
smoothing technique for the correction of the inaccurate CGM readings due to sensor error.

Results:  For the OhioT1DM (2018) dataset, containing eight weeks’ data from six different patients, we achieve an 
average RMSE of 6.45 and 17.24 mg/dl for 30 min and 60 min of prediction horizon (PH), respectively.

Conclusions:  To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM data-
set. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, 
and cumulative step counts in a fixed time interval, are crafted to represent meaningful features used as input to the 
model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick 
blood glucose readings—the ground truth. Our results indicate that the proposed approach is feasible for more reli-
able BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D 
diabetes management.

Keywords:  Blood glucose level prediction, Recurrent neural network, Stacked long short-term memory, Sensor fault 
correction, Kalman smoothing
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Background
Diabetes Mellitus is a chronic disorder associated with 
abnormally high levels of blood glucose because the body 
is unable to produce enough insulin to meet its needs. α
-cell and β-cell in the pancreas are responsible for main-
taining the glucose level in blood by secreting insulin 

and glucagon hormones [1]. Diabetes can be classified 
primarily into two categories. Type-1 diabetes is due 
to β-cell destruction and would cause absolute insulin 
deficiency. Type-2 diabetes is due to a progressive insu-
lin secretory defect on the background of insulin resist-
ance [2]. In type-1 diabetes, hypoglycemia sets in when 
blood sugar levels are too low (blood glucose concen-
tration < 70mg/dl ) [3] and hyperglycemia occurs when 
blood sugar levels are too high for a prolonged period 
(blood glucose concentration > 180mg/dl ) [4–6]. In the 
long term, hyperglycemia causes severe complications 
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of heart, blood vessel, eyes, kidneys, and other organs 
[7]. Therefore, proper diabetes management is vital for 
human health.

External insulin treatments are indispensable for T1D 
diabetes patients to maintain the blood glucose level in 
a healthy range [8]. With the naive approach for diabetes 
management, a patient needs to measure BG concentra-
tion several times throughout the day and night using the 
finger-stick test. Currently, it is the most common self-
monitoring approach. Improved techniques such as a 
combination of an insulin pump for Continuous Subcuta-
neous Insulin Infusion (CSII) and a device for continuous 
glucose monitoring (CGM), are required for an effective 
blood glucose management system, known as sensor-
augmented-pump (SAP) therapy [9]. CGM device takes 
glucose measurements with an interval of a particular 
time-frame. For example, most of the CGM devices take 
288 measurements per day with 5  min interval. SAP 
therapy has been further improved by utilizing control 
algorithms for dynamic insulin delivery. In terminology, 
that is known as “Artificial Pancreas” (AP), closed-loop 
control of blood glucose in diabetes [10]. Statistical and 
machine learning techniques with the availability of pre-
vious continuous BG records make BG prediction more 
convenient. This prediction mechanism allows a patient 
or control algorithm to take the initiative to lower the 
adverse effect of unintended glycemic events.

Various statistical and machine learning methodolo-
gies have been proposed for blood glucose forecasting. 
The autoregressive integrated moving average (ARIMA) 
model-based algorithm is an example of a classical sta-
tistical method for blood glucose prediction [11]. The 
primary limitation of naive machine learning approaches 
is that it fundamentally depends on the representation 
of the input data (e.g., support vector regression [12] or 
k-nearest neighbor classifier [13]). Daskalaki et  al. [14] 
proposed a generic physiological model of blood glucose 
dynamics to generate essential features of a Support Vec-
tor Regression (SVR) model that took daily events such 
as insulin boluses and meals into consideration. The meal 
model, insulin model, and exercise model were used with 
the SVR model in work [15].

Several works have been done for blood glucose pre-
diction using artificial neural networks (ANNs) [16–19]. 
Classically, an ANN has a single hidden layer. However, 
deep learning models have many hidden layers. These 
deep models with higher complexity outperform tra-
ditional shallow neural networks. These deep learning 
models with higher complexity can learn the pattern 
automatically from data [20, 21]. Especially for sequen-
tial data, recurrent neural networks outperform feed-for-
ward ANNs. However, the drawbacks of using classical 
RNNs are limitations in its ability to discover, that arises 

from the vanishing/ exploding gradient problem. This 
issue has been addressed by Long short-term memory 
(LSTM) networks [22] with the addition of memory cell 
and forget gate to classical RNN. In very recent works, 
[23–26], convolutional RNN and LSTM are investigated 
for BG prediction more accurately. Fox et  al. [27] used 
RNN with Gated Recurrent Unit (GRU) cell and Sun 
et al. [28] utilized Bi-LSTM based RNN for BG forecast-
ing. However, the accuracy achieved with state-of-the-art 
models for real patient data is not high enough that these 
approaches might not be applicable in the health domain. 
For example, the best average RMSE value achieved for 
the OhioT1DM dataset is 19.04mg/dl so far in the most 
recent works. Moreover, in these recently proposed 
methodologies with the RNN model, sensor fault is not 
taken into consideration. Comparatively, the less accu-
racy in the BG prediction schemes motivates us for this 
work to improve the reliability and accuracy of the BG 
forecasting mechanism.

Early detection and prevention of potential glycemic 
events such as hypoglycemia and hyperglycemia are one 
of the primary purposes of the artificial pancreas sys-
tem. Comparatively, more extended works have been 
done associated with hypoglycemia detection than the 
detection of hyperglycemic events. Several statistical 
methods were studied, such as linear prediction models 
[29], recursive auto-regressive partial least squares mod-
els [30] and multi-variable model [31], for modeling the 
CGM sensor data for a reliable hypoglycemia early alarm 
system. In work [32], an RNN model and two different 
autoregressive models were proposed to design a hypo-
glycemia/hyperglycemia early warning system (EWS). 
The author developed a time-sensitive ANN-based 
hypoglycemia prediction system that can predict future 
hypoglycemic events within a prediction horizon (PH) of 
30 min [33]. Additional physiological models, along with 
ANN, are studied in work [34] to predict nocturnal hypo-
glycemia. However, we see very limited works explicitly 
for the detection of hyperglycemia [35]. The authors have 
shown in this work that the electrocardiographic (ECG) 
signals can be employed with the ANN model to detect 
hyperglycemic events practically and non-invasively.

CGM sensor reading is a crucial factor in BG pre-
diction as a slight error in CGM sensor reading might 
result in the wrong prediction. However, sensor fault is 
very common in the CGM system. That is why most of 
the clinical BG data sets are prone to have errors. Sev-
eral factors are responsible for that kind of fault, such 
as the decay of sensor sensitivity, pressure-induced sen-
sor attenuation (PISA) [36], and interruption in signal 
transmission, etc. Furthermore, bias and latency might 
be present in a CGM reading [37]. Another issue is that 
the reading of sensors from the same manufacturer 
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might be different due to manufacturing variability. As 
a consequence, the predicted BG value and the estima-
tion for insulin might be erroneous due to such faulty 
BG reading. Consequently, it might decrease the effi-
cacy of the diabetes management system. So, to pro-
pose more reliable BG forecasting methodologies, 
sensor fault should be taken into consideration. How-
ever, synthesized data sets are exceptions of this case as 
this is out of the scope of the sensor fault.

Moreover, there might be another issue responsible 
for inaccurate BG prediction. The CGM sensor glucose 
is measured from interstitial fluid samples instead of 
the blood sample [38]. However, there is a discrepancy 
in time and magnitude between BG and interstitial glu-
cose (IG) [39]. In the BG forecasting system, CGM sen-
sor readings are used as one of the primary inputs to 
predict the future BG level. As IG and BG values are 
different, the BG prediction with IG as input is chal-
lenging. We find in our experiment that the BG predic-
tion made with the Kalman smoothed CGM reading is 
closer to actual BG reading measured with fingerstick 
than the prediction made with unprocessed CGM read-
ing. In this study, we assume the fingerstick BG reading 
as the ground truth.

In this work, we propose a deep learning approach 
for blood glucose prediction using a multi-layered 
LSTM based recurrent neural network model. We use 
OhioT1DM (2018 version) dataset [40], containing 
eight weeks’ data for each of six people with type-1 
diabetes, for training and evaluation of our proposed 
model. We utilize several features instead of only CGM 
measurement. This is because the dynamics of the glu-
coregulatory system depend on several factors such as 
carbohydrate intake from meals, the amount of bolus 
dose or infused insulin, exercise, and physical active-
ness. Using only the CGM measurement as input might 
not be enough for learning those complex dynamics. 
Therefore, we investigate several combinations of dif-
ferent physiological information from the OhioT1DM 
dataset and choose the most optimal combination of 
those for our proposed model. We find that step count 
information from a fitness band can be a useful feature. 
It turns out that the combination of CGM reading, step 
count, carbohydrate intake from the meal, and bolus 
dose, is the most optimal feature set as the input of the 
model. Note that we use preprocessed CGM data with 
Kalman smoothing (KS) [41] instead of using raw CGM 
data to mitigate the effect of sensor fault on BG predic-
tion. The overall architecture of our proposed BG pre-
diction system has been illustrated in Fig. 1.

Our main contribution can be summarized as follows:

•	 We propose a novel approach using a stacked LSTM 
based deep recurrent neural network architecture for 
BG prediction.

•	 We introduce a more reliable BG prediction system 
by utilizing Kalman smoothing for mitigating the 
sensor fault in CGM reading. We demonstrated that 
the prediction made with this approach is closer to 
the actual BG level (fingerstick BG reading) than the 
conventional prediction method.

•	 Our study reveals that a person’s step count informa-
tion from the fitness band can be effectively utilized 
for improving BG prediction accuracy.

Overall, our proposed methodologies provide more accu-
rate and reliable forecasting accuracy in terms of RMSE.

Method
Dataset
We use the OhioT1DM (2018 version) [40] dataset to 
train and test our model. This dataset includes eight 
weeks of data for each of six type-1 diabetes patients. 
The number of male and female patients was two and 
four, respectively. For data collection, Medtronic 530G 
insulin pumps and Medtronic Enlite CGM sensors were 
used throughout the data collection period. Each of the 
patients reported daily events data via a smartphone 
app and a fitness band. The dataset includes CGM blood 
glucose level every 5  min—288 samples per day, blood 
glucose levels with fingerstick (self-monitoring), insulin 
doses, in the form of bolus and basal, self-reported meal 
time with estimated carbohydrate intake, exercise time, 
sleep, work, stress, and illness. The data set also includes 
5-min aggregations of step count, heart rate, galvanic 
skin response (GSR), skin, and air temperature. In this 
study, we experiment with each of these attributes to find 
out the optimal attribute set for the BG prediction model. 
Table 1 shows the number of training and test examples 
for each patient.

At first, we train our model with input data containing 
the basic and single feature—that is CGM values. Then 

Table 1  Gender, number of training and test examples per 
patient

Patient ID Gender Training examples Test examples

# 559 Female 10796 2514

# 563 Male 12124 2570

# 570 Male 10982 2745

# 575 Female 11866 2590

# 588 Female 12640 2791

# 591 Female 10847 2760
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we calculate the accuracy of this model. We assume this 
accuracy as base accuracy. In the next phase of the study, 
we use incremental and brute force strategy for adding 
new attributes to the input of the model. After includ-
ing a new attribute to the input of the model, we deter-
mine the model’s performance/accuracy. If the accuracy 
gets better than the previous accuracy where the model 
is trained without that particular attribute, only then we 
consider that attribute as a potential attribute for further 
experiment. For example, we notice that the accuracy of 
the model trained with CGM values and bolus informa-
tion is better than the model trained with only CGM val-
ues (base accuracy). So we consider bolus information as 
a potential attribute. whereas, adding heart-rate informa-
tion with CGM values, does not provide better accuracy 
than base accuracy. So we do not include this attribute 
in the input of our model. From our experiment, it turns 
out that CGM values, carbohydrate intake from the meal, 
insulin dose as a bolus, and 5-min aggregation of step 
count from the fitness band, have a positive effect on the 

accuracy of the model. It is worth mentioning that some 
attributes such as insulin from basal, sleep, heart rate, 
GSR, and skin temperature have no effect or sometimes 
adverse effect on the accuracy improvement of our pro-
posed model. Table 2 shows the prediction accuracy for 
different feature sets as input.

Feature extraction from physiological information
We select CGM values, meal info, insulin dose, and step 
count info, as the final feature set. These four features 
constitute the 4-channel inputs for the proposed model.

Carbohydrate information
In the case of meal information, we consider the fact that 
blood sugar starts to rise after 15 min of having the meal 
and reaches its peak after 1 h [42]. We name this phase 
as the Increasing Phase. Then the carbohydrate level in 
blood starts to decrease. That is the Decreasing Phase. At 
any time-index ts , we calculate the amount of carbohy-
drate that is effective at that moment in the blood after 

Table 2  BG prediction experimental performance in terms of RMSE, with Stacked LSTM model for different feature set as input

G CGM value, C carbohydrate info, I insulin from Bolus, S step info, B insulin from basal, SL sleep info, GSR galvanic skin response, HR heart rate

Bold value represents the best prediction result among experiments with different feature set

Patient ID G G, C G, C, I G, C, I, S G, C, I, B G, C, I, SL G, C, I, GSR G, C, I, HR

# 559 19.42 18.73 18.03 17.85 18.07 19.04 19.01 18.87

# 563 19.07 18.92 18.76 18.65 18.74 19.03 19.12 19.09

# 570 16.26 16.11 16.12 15.94 16.13 16.17 16.86 16.23

# 575 22.68 21.89 21.02 20.93 21.08 21.66 22.73 21.58

# 588 19.12 18.64 18.19 17.71 18.17 18.21 19.24 18.77

# 591 23.41 21.87 20.39 20.35 20.42 20.38 22.47 21.42

Mean RMSE 19.99 19.36 18.75 18.57 18.77 19.08 19.90 19.33

Fig. 1  Architecture of the proposed BG prediction system
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having a meal. The calculated amount of carbohydrates 
is treated as the input for the time-index ts to the model. 
Every time the subject encounters a meal, we need to 
keep track and update the time-index tmeal and the 
amount of carbohydrate Cmeal from the meal. We ignore 
the first 15  min (3 samples of data-point with 5  min of 
an interval) right after having a meal since it takes 15 min 
to have the effect of the meal on the blood glucose level. 
Thus, the equation for the effective carbohydrates Ceff  in 
blood for any time-index ts within the first 60 min of time 
interval after having the meal, is as follows:

Here βinc is carbs increasing factor. We use βinc = 0.111 , 
which implies that the carbohydrate level in the blood 
reaches its maximum (100% of the amount of carbohy-
drate taken from the meal) by increasing with the rate of 
11.1% for every increment of time-index (5 min interval). 
Note that, tmeal >= ts . At the 60th minute after having 
the meal, Ceff  attains the maximum value by increasing 
with a rate of 11.1% per time-index. At that moment, the 
value of (ts − tmeal)βinc has been approximately less than 
or equal to 1.00. Note that we do not consider the first 
15 min (3 time-indexes) right after having the meal in the 
above equation; instead, we consider nine time-indexes 
out of twelve time-indexes withing 60-min interval so 
that the value of Ceff  doesn’t exceed 100% of Cmeal . When 
Ceff  reaches its maximum, then the decreasing phase 
begins. We calculate the amount of carbohydrate effec-
tive or appeared in the blood as glucose at any particular 
time-index ts within the decreasing phase is as follows.

Here, βdec is the carbs decreasing factor. we set the value 
of βdec as 0.028 according to the assumption that the 
duration of the decreasing phase is around 3  h. This 
means that after 3 h (the number of time-index is 36), Ceff  
would be approximately near to 0.00. We update Ceff  in 
every steps where, Ceff = max(0,Ceff) . Thus, we ignore 
any negative values for Ceff .

Insulin information
We use crafted insulin information as one of the four 
inputs to the proposed RNN model. We consider only 
bolus information for further crafting. In this study, we 
find that basal insulin has no considerable effect on blood 
glucose prediction accuracy. There are two pathways of 
insulin absorption [43], slow and fast. Approximately 67% 
of delivered insulin passed through the slow channel with 
an average absorption rate of 0.011 min−1 , whereas 33% 
of insulin passed through the fast one with an absorp-
tion rate of 0.021 min−1 . Therefore, in this experiment, 

(1)Ceff (ts) = {(ts − tmeal)βinc}Cmeal

(2)Ceff(ts) = Cmeal{1− (ts − tmeal)βdec}

we use the weighted average of these two absorption 
rates, which is 0.014 min−1 . For every 5 min interval, we 
denote it with Rinsulin = 5 ∗ 0.014 . We calculate the effec-
tive insulin on the body Ieff  at any particular time-index ts 
with the equation as follows:

Here, Ibolus is the amount of insulin delivered in the form 
of bolus to the patient, and tbolus is the time-index when 
the most recent insulin delivered to the patient. We 
update Ieff  in every steps, where Ieff = max(0, Ieff) . This 
calculated effective insulin in the body Ieff  is used as one 
of the inputs for the RNN model. In the above equation, 
we do not consider insulin absorption delay.

Step count information
We compute a weighted average of the number of steps 
taken by the patient at time ts . To calculate Savg , we con-
sider the previous 50 min (10 readings with 5 min of the 
interval) where the steps count for most recent time-
index has a more significant weight. Note that the weight 
decreases gradually with time-index.

In the above equation, n = 10 as we only consider the 
previous 50 min or 10 data points. The computed Savg is 
treated as one of the inputs. Theoretically, RNN can learn 
from the previous sequential data by its nature. How-
ever, we have observed from our extensive experiments 
that using additional weight for calculating the step 
information improves the prediction accuracy to a small 
extent but consistently for each of the six patients. This 
explicitly implied weight in the recent 50 min out of the 
120  min step count history (24 data points), emphasize 
the effect of the recent walking pattern. Eventually, this 
emphasis facilitates the RNN model to predict BG level 
with marginally better accuracy.

Glucose level information from CGM readings
Either unprocessed or Kalman smoothed CGM readings 
are considered as an input channel out of the four inputs.

Kalman smoothing for preprocessing
In this section, we discuss Kalman filtering and Kalman 
smoothing briefly. The KS method outputs an interpolated 
time series of glucose estimates with mean and variance. 
It can automatically correct errors in the CGM readings 
where the estimated variance can be utilized for determin-
ing at which times the data are reliable. In our study, KS has 
been used as a pre-processing technique for sensor fault 

(3)Ieff(ts) = Ibolus − (ts − tbolus)Rinsulin

(4)Savg (ts) =
1

n

n−1
∑

i=0

(n− i)× steps(ts − i)
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correction in the CGM reading. We use a modified imple-
mentation of KS for the OhioT1DM dataset, from the work 
[41].

The Kalman filter is a technique of estimating the cur-
rent state of a dynamical system from the previous obser-
vations. In Kalman filtering, records of data are used for 
the calculation of the estimates. Thus, the Kalman filter is 
appropriate for real-time data processing. It is a forward 
algorithm where each step is computed analytically. The 
model and observation can be written as:

Here, x, u, and y are the system internal state, input to the 
system, and measured output respectively. Whereas v is 
the process noise, and w is the measurement noise. These 
noise processes are assumed to be zero-mean Gauss-
ian. φ is the transition matrix, and H is the measurement 
matrix.

In the phase of time update, the Kalman filter computes 
the priori estimates, a state estimate x̄ and state covariance 
matrix P̄ [44].

Then the phase measure update is performed, where the 
posteriori estimate x̂ and P̂ are calculated. The equations 
are as follows [44]:

(5)xk+1 =φkxk + Bkuk + wk

(6)yk =Hkxk + vk

(7)x̄k =φk−1x̂k−1 + Bk−1uk−1

(8)P̄k =φk−1P̂k−1φ
T
k−1 + Qk−1

Kalman smoothing can be applied to get better estimates 
than Kalman filtering. However, it is required to have the 
whole dataset available at the time of performing Kalman 
smoothing. In our experiment, that is true. The Rauch–
Tung–Striebel (RTS) algorithm [44] utilizes previous as 
well as the following data at the time k to generate the 
estimate. In RTS, there is one forward pass through the 
available data applying the Kalman filter to generate the 
priori, posteriori, and covariance matrices. These gener-
ated estimates and covariance are then treated as input 
to a subsequent backward pass. In this phase, RTS calcu-
lates the smoothed estimate x̂sk and P̂s

k.

We apply Kalman smoothing on CGM readings from the 
OhioT1DM dataset to get smoothed CGM values. In the 
OhioT1DM dataset, there are two separate individual 
files for each patient (Total 12 data files in the dataset). 
These two files contain training and test data, respec-
tively. These training and test data sets for each patient 

(9)Kk =P̄kH
T
k

(

HkP̄kH
T
k + Rk

)−1

(10)x̂k =Kk

(

yk −Hkx̄k
)

(11)P̂k =(I − KkHk)P̄k

(12)Ck =P̂kφk P̄
−1
k+1

(13)x̂sk =x̂k + Ck

(

x̂sk+1 − x̄k+1

)

(14)P̂s
k =P̂k + Ck

(

P̂s
k+1 − P̄k+1

)

CT
k

Fig. 2  Kalman smoothed CGM values vs raw CGM readings for 12 h time window from the patient #563. Here red dots are raw CGM readings, 
where the blue line is the smoothed CGM values
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are non-overlapping as they comprise patient informa-
tion from different time windows (days). In the preproc-
essing phase, we apply Kalman smoothing on training 
and test data files independently for a particular patient 
to ensure no data/label leakage between the training 
and test data set. Consequently, we can effectively avoid 
situations where the preprocessing parameters are fitted 
with the knowledge of the test set. Original CGM read-
ings (represented by red dots) and smoothed CGM val-
ues (represented by the blue line) are shown in Fig. 2. It is 
noticeable that, after applying Kalman smoothing, there 
are fewer abrupt changes or fluctuations in smoothed 
CGM values.

Modeling
Our model uses a neural network to learn the prediction. 
A recurrent neural network is a feed-forward neural net-
work that can model sequential data. It utilizes weight 
sharing between each element in the sequence over time. 

There are diverse variants of RNN. In the basic RNN 
variant termed as Vanilla RNN, the transition function is 
a linear transformation of the hidden state vector h and 
the input vector x, followed by an activation function for 
non-linearity.

Where W is weight matrix, b is a bias vector, and tanh 
is the activation function. Classical RNN has the form 
of a chain of repeating modules of neural networks with 
straightforward architecture. Theoretically, RNN can 
learn long term dependency. However, practically it suf-
fers from vanishing gradient problem and exploding gra-
dient problem as a result of long term dependency. This 
dependency makes RNN less useful and more challeng-
ing to train [45]. Hochreiter and Schmidhube [22] pro-
posed Long short-term memory (LSTM) for addressing 
this issue. The LSTM network mitigates this long-term 
dependency problem to some extent by utilizing the 

(15)ht = tanh (W [ht−1, xt ]+ b)

Fig. 3  Two layered stacked LSTM network
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concept of memory, the gate structure, and constant error 
carousel. In the case of our study, LSTM is more suitable 
to model blood glucose levels as there are dependencies 
upon immediate previous entries in sequential diabetes 
patient data. Consequently, we prefer the LSTM based 
RNN model over the other model architectures to make 
the BG prediction more rigorous.

In our work, we build an LSTM network containing 
128 element hidden vector.

We add a dropout layer after the first LSTM layer. 
Dropout is intended to reduce overfitting and improve 
the generalization of the model [46]. The last layer of 
the LSTM outputs a vector hi , fed as the input of a fully 
connected multi-layer network. This network consists 
of three layers, including two dense layers and one out-
put layer. These dense layers contain 512 neurons, 128 
neurons, and the output layer contains a single neuron, 
respectively. There is an activation function for each 
layer. We choose the rectified linear unit (ReLU) activa-
tion function for the first two dense layers and the expo-
nential activation function for the output layer.

The input of the model is a multi-dimensional sequence 
of preprocessed BG level from CGM reading, carbohy-
drates amount from the meal, carbohydrates amount 
from the bolus, and step count related data. The output 
of the model is a prediction regarding BG level withing 
a prediction horizon. We experiment with the prediction 
horizon of 30 and 60 min.

Our proposed model adopts the negative log-likelihood 
(NLL) loss function. We use Adaptive Moment Estima-
tion (Adam) as the optimizer.

We study the correlation between BG prediction accu-
racy and depth of the model architecture. We see in 
previous work that the deep recurrent neural networks 
provide empirical superiority over shallow networks 
[47]. The shallow network cannot precisely model the 
information with a temporal hierarchy [48]. However, 
the concept of depth in an RNN is not the same as it is 
in feedforward neural networks [49]. To make the RNN 
model deeper, we employ the stacking technique. Our 
proposed model consists of two LSTM layers. The first 
LSTM layer provides a sequence output that is fed as one 
input to the LSTM layer above. Both LSTM layers have 
the same internal architecture described earlier. Figure 3 
illustrates the architecture of two Layered Stacked LSTM.

We also experimented with the GRU cell instead of 
the LSTM cell. However, in this application, the network 
with the LSTM cell outperforms the network with GRU 
cells. A comparison between the performance of these 
two types of RNN is shown in “Results” section. Thus, we 
choose the LSTM cell for our final RNN model.

We also consider the practicality of the self-attention 
based model for BG prediction. In recent years, models 

with attention mechanisms such as transformer [50] 
outperform naive RNN models, especially in machine 
translation and natural language processing tasks [51]. 
However, Mirshekarian et  al. [52] show that a neural 
attention module can improve the BG prediction perfor-
mance improvement for only synthetic data, whereas the 
authors do not find any prediction performance improve-
ment for real data. As we focus on improving BG predic-
tion accuracy for only real data, we do not consider using 
the self-attention mechanism in this study further.

Experimental setup
We conduct extensive experiments on data and our pro-
posed model to tune hyperparameters and determine the 
optimal setup. We measure the efficacy of our proposed 
method to predict BG values for two different setups. In 
the first setup, we use raw CGM readings, whereas, in the 
second setup, we use Kalman smoothed CGM values for 
sensor error correction.

Hyperparameters
We experiment with two different RNN cell types—
LSTM and GRU cells, respectively. The dynamics of 
the glucoregulatory system are considered as nonlinear. 
Hence, learning blood glucose dynamics is a complicated 
task where consideration of previous data is very crucial 
for effective prediction mechanisms. As a consequence, 
we skip experimenting with Vanilla RNN cells because of 
its long term dependency problem [53]. Our experimen-
tal result demonstrates that the LSTM network achieves 
better prediction accuracy than a network with GRU 
cells. We train our model with the six patients’ training 
data from the OhioT1DM dataset. We experiment with 
30, 60, 120, and 240 min of data history as the input for 
the proposed model. Those contain 6, 12, 24, and 48 
training examples respectively as CGM readings are 
taken with every 5 min of interval. We also investigate the 
effect of the number of LSTM state hidden units and fully 
connected layers in the network. Different combinations 
of LSTM state size-of 64, 128, and 248 with two fully con-
nected layers are tested. We find that the network model 
with 128 LSTM states with two fully connected layers 
outperforms other configurations. A learning rate of 10−3 
was used for training with a maximum number of 6000 
epochs. However, an early-stopping patience threshold of 
128 epochs is employed for better convergence.

Training, testing, and validation
We use the T1DM dataset for training, validation, and 
testing purposes. This dataset contains 12 files for six 
data contributors. For each person, there are two files 
for training and testing data, respectively. We split the 
data in the training file into the training and validation 
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dataset. The entire dataset in the testing file is used for 
testing purposes for each subject. We partition the train-
ing data file such that 80% of the data is used for training, 
and the rest of the data is used for validation. The pur-
pose of the validation data is to provide an evaluation of 
the model after hyperparameter tuning.

In the training phase, the prediction from the model 
is used to determine the subsequent prediction curve at 
each epoch. It is possible to evaluate the model at a cer-
tain point in time if there are at least 24 prior data points 
are available (prior data points for 2 h or 120 min). This 
threshold is to assure that there are enough data points 
available for the model to make a feasible prediction. For 
the training process, we set the batch size to 128. How-
ever, we try with larger batch sizes than 128 and found 
that it makes the prediction accuracy worse in terms of 
RMSE. Finally, we train the two instances of the model 
separately with raw CGM data, and Kalman smoothed 
CGM data, respectively, along with other features includ-
ing carbohydrates from the meal, bolus insulin, and 
cumulative step counts in a fixed time interval. In this 
study, we consider the previous 50 min of history for cal-
culating the cumulative step numbers.

Development environment
We have implemented our proposed model with Python 
2.7, whereas Tensorflow-gpu v1.8.0 has been used as a 
machine learning framework. For utilizing the GPU’s 
computing capability, we use CUDA 9.0 and cuDNN 
v7.3.0. The other libraries we include in this project are 
Keras (built-in with TensorFlow), SciPy, Pandas, NumPy, 
Matplotlib, and Seaborn. Moreover, We implement the 
preprocessing module (Kalman smoothing) in Matlab.

Evaluation criteria and results
In this section, we discuss the BG prediction result of our 
proposed deep RNN model for the T1DM-testing data-
set. The performance of the model is compared based on 
the accuracy over the 30 and 60 min prediction horizon. 
The hyperparameters of the model are tuned extensively 
for optimal results.

Evaluation criteria
Initially, we investigate the usefulness of preprocessing 
the CGM values. We use Kalman smoothing for process-
ing the CGM readings. We compare the deviation of raw 
CGM readings and preprocessed CGM values from the 
ground truth reference value. In our analysis, we assume 
the BG level measured by fingerstick as ground-truth. 
The glucose readings from the sensor sampling in inter-
stitial fluid are substantially different from blood glu-
cose values measured at the same time [39]. As a result, 
CGM manufacturers suggested that patients should use 

capillary blood glucose measurements before any treat-
ment decisions. Moreover, the self-measurement of blood 
glucose (SMBG), has been used as a reference for differ-
ent CGM systems accuracy comparison [54]. Fingerstick 
testing is one of the most convenient SMBG methods. 
These are the principal reasons behind our assumption of 
choosing the fingerstick reading as the ground truth for 
comparison between raw CGM value and preprocessed 
CGM values. We used root-mean-square error (RMSE) 
to calculate the difference between CGM values (raw 
CGM, preprocessed CGM) and fingerstick reference BG 
values at a particular time.

Here, y denotes the CGM values (either raw CGM values 
or smoothed CGM values), and x denotes the fingerstick 
reference BG values.

We find that preprocessed CGM values are much 
closer to fingerstick BG reading than raw CGM values. 
Table 3 illustrates the accuracy comparison, in terms of 
RMSE, between raw CGM and Kalman smoothed CGM 
values with respect to fingerstick BG readings. Table  3 
shows that both of the CGM readings (measured from 
interstitial fluid) and pre-processed CGM values differ 
from finger stick reading (measure from blood glucose). 
However, most importantly, processed CGM values have 
a lower error than raw CGM values. Thus, we conclude 
that the model trained with Kalman smoothed CGM val-
ues along with other features, is more effective in fore-
casting the BG level.

However, the performance of a model can be evalu-
ated with different criteria. Among those, the root-mean-
square error (RMSE) between the reference CGM values 
and predicted BG level, is one of the most widely adopted 
methods to assess the BG prediction accuracy. Thus, we 
evaluate the performance of our model in terms of RMSE 
in this paper.

where ŷ(i|i − PH) denotes the model’s prediction results 
provided the previous data and y denotes the reference 
CGM reading, N is the number of data points.

Results for the dataset with unprocessed/raw CGM 
readings
In this section, we discuss the BG forecasting accuracy 
for the proposed stacked RNN model for the OhioT1DM 
dataset, where CGM readings are raw/unprocessed. 
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Initially, we investigate the effect of the depth of LSTM 
layers of the network on the prediction accuracy of the 
model. In our experiment, we consider the prediction 
horizon of 30 and 60  min. The experimental results for 
models with single LSTM layers and stacked LSTM lay-
ers are summarized in Table  4. Results from the table 
demonstrate that the RNN model with stacked LSTM 
layered architecture performs better than RNN with a 
single LSTM layer for all of the cases.

The proposed model’s (Stacked LSTM) predictive 
results for patient #570 and #575 over PH=30  min are 
illustrated in Fig.  4. The proposed model provides the 
lowest and the highest RMSE result for patient #570 and 
patient #575 respectively.

We also experiment with single GRU cell-based RNN 
for BG level prediction. However, both of the models 
with single and stacked LSTM cells provide better RMSE 
than the model with the GRU cell. The mean RMSE for 
the six patients’ BG prediction are 20.07 and 31.12 for the 
PH=30 and 60 min respectively.

Results for the dataset with Kalman smoothed CGM 
readings
In this section, the proposed model’s predictive accuracy 
with stacked LSTM layers is evaluated for the preproc-
essed testing dataset with Kalman smoothing technique 
described in “Kalman smoothing for preprocessing” 
section. Note that, In our study, only CGM values are 
preprocessed, and the rest of the features remain the 
same. Then we estimate the RMSE of the model’s pre-
diction individually with preprocessed CGM values and 
raw CGM values, respectively, from the testing dataset 
as our goal is to lower the difference between the pre-
dicted CGM values and the real fingerstick blood glucose 

readings. The preprocessing techniques are described in 
“Feature Extraction from Physiological Information” sec-
tion. Table 5 presents the forecasting accuracy (RMSE) of 
the model trained with the preprocessed (CGM values) 
dataset using the Kalman smoothing technique and origi-
nal (raw CGM values) dataset.

Figure  5 demonstrates that preprocessing the CGM 
reading with Kalman smoothing, improves the prediction 
accuracy to a substantial extent.

Analysis and result comparison
Initially, we compare our work with different machine 
learning models for the OhiT1DM dataset. However, Xie 
et al. provide the BG prediction performance comparison 
of several traditional machine learning approaches for 
the OhiT1DM dataset in their work [55]. We take their 
experiment result for comparing our work. The results in 
Table 6 show that LSTM model outperforms the conven-
tional machine learning model. Our proposed approach 
is more generalized as the prediction RMSE for all six 
patients is uniformly improved. As a consequence, we do 
not further experiment with traditional machine learning 
approaches.

From Table 4, it is evident that, with a wider prediction 
horizon, the forecasting model becomes more compli-
cated. However, we observe that deep approaches with 
stacked LSTM layers provide advantages over the shallow 
model with a single LSTM layer in forecasting BG level, 
particularly for a higher prediction horizon. As a result, 
we choose the deeper model for the final experiment.

From Table  5, we can observe that prediction RMSE 
for each patient ranges from 15.94 to 20.94 and 4.73 to 
8.54 for the model trained with raw CGM readings and 
processed CGM readings, respectively. The predic-
tions for patients #575 and #591 are comparatively more 

Fig. 4  12-h of prediction results over PH = 30, for patient #570 (left) and #575 (right), are illustrated. Here red dots are CGM readings (unprocessed); 
those are ground truths. Where the blue line is the prediction curve, and the light blue region is the standard deviation
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inaccurate than other patients, whereas we achieved 
better RMSE for patient #570 and #588. There might be 
several reasons for the RMSE difference. The first reason 
is that #575 and #591 have a larger number of missing 

Fig. 5  12-h period prediction over PH=30, for patient #563 with the model trained with unprocessed CGM readings (Left) and Kalman-smoothed 
CGM readings for sensor fault correction (Right) respectively

Table 3  Comparisons of the accuracy ( RMSE ) of raw CGM 
values and Kalman Smoothed CGM values with respect to self-
measured fingerstick BG readings (ground truth) for each patient

Patient ID Num. of fingerstick 
reading

Raw CGM Smoothed CGM

# 559 53 32.77 29.01

# 563 196 24.78 22.56

# 570 99 16.09 13.10

# 575 117 13.76 16.22

# 588 391 30.63 26.79

# 591 197 26.73 24.21

Mean RMSE N/A 24.12 21.98

Table 4  The table represents the prediction comparison of 
proposed models over 30 and 60 min of the prediction horizon

Here, the models are trained with the raw CGM readings along with the other 
three features mentioned before. The first one is the RNN model having a single 
LSTM layer, whereas the second one is stacked LSTM based deep RNN model

Patient ID PH = 30 min PH = 60 min

Single LSTM Stacked LSTM Single LSTM Stacked LSTM

# 559 18.03 17.85 31.89 31.55

# 563 19.20 18.65 31.01 30.42

# 570 16.63 15.94 26.28 25.74

# 575 21.12 20.93 32.90 31.97

# 588 18.07 17.71 31.11 30.45

# 591 20.71 20.35 32.06 31.80

Mean (RMSE) 18.96 18.57 30.88 30.32

Table 5  Accuracy (in terms of RMSE) of the final RNN model 
with stacked LSTM layers

The prediction result is for the dataset with raw CGM readings, and Kalman 
smoothed CGM values, respectively, over 30 min and 60 min of the prediction 
horizon

Patient ID PH = 30 min PH = 60 min

Smoothed CGM Raw CGM Smoothed CGM Raw CGM

# 559 4.73 17.85 16.17 31.55

# 563 5.74 18.65 16.31 30.42

# 570 4.81 15.94 14.22 25.74

# 575 8.45 20.93 22.12 31.97

# 588 5.10 17.71 15.73 30.45

# 591 6.53 20.35 18.88 31.80

Mean (RMSE) 5.89 18.57 17.24 30.32

Table 6  Performance comparisons of our work with traditional 
machine learning approaches, in terms of RMSE

Name of the model/approach Mean RMSE 
for six patient

Linear regression 19.62

Elastic net regression 20.15

Gradient boosting Tree 20.73

Huber regression 19.93

Lasso regression 20.22

Random forest 21.05

Ridge regression 19.62

SVR with linear kernel 19.72

SVR with radial basis kernel 19.53

Proposed model (without KS) 18.57

Proposed model (with KS) 5.89



Page 12 of 15Rabby et al. BMC Med Inform Decis Mak          (2021) 21:101 

data. On the other hand, #570 has the least missing data 
among all of the patients’ test dataset. Another reason 
is that the fluctuation of CGM readings in the test data-
set. It is noticeable that in the test dataset, #575 and 
#591 have substantially more fluctuation than #570 and 
#588. More specifically, the last portion of #575 and the 
first portion of #591 have more abrupt swings. Shown in 
Fig. 4, 12-h period BG level of #570 contains less fluctua-
tion than #575. It is noteworthy that the prediction error 
is highest around the spikes and turning regions of the 
CGM trajectory. Furthermore, there is a marginal time 
delay in the prediction curve. This delay is responsible for 
the prediction error.

Such abrupt fluctuations in training and testing dataset 
make it difficult for the model to learn and predict the BG 
level accurately. One of the possible reasons behind such 
fluctuation is the complicated dynamic of the glucoregu-
latory system. Another possible reason is the sensor fault 
of the CGM system. We mitigate such undesirable errors 
by applying the Kalman smoothing technique on the 
dataset that makes CGM values less likely to have abrupt 
fluctuations. Subsequently, it boosts the learning capabil-
ity of the model resulting in significantly better predic-
tion accuracy.

Figure 5 illustrates how error correction of CGM read-
ing, enhances the precision of the prediction curve for a 
particular 12-h time window for patient #563. Here we 
use patient #563 as the dataset for this patient has aver-
age fluctuation. Note that, the SD (light blue region) is 
remarkably less for the prediction made with the model 
trained with processed data. Hence, the model trained 
with the error corrected dataset (Fig. 5—Right), is capa-
ble of forecasting BG with more confidence than the 
model trained with the unprocessed dataset (Fig.  5—
Left). Moreover, we notice an improvement in the time 
delay in the proposed model.

We provide a performance comparison of our work 
with related works for the OhioT1DM dataset in Table 7. 
For comparison, we consider previous works [24, 25, 

56] those uses the OhioT1DM dataset for result evalu-
ation. Table  7 demonstrates that our proposed model 
with KS provides the best accuracy for every patient 
among all other related works. Even without utilizing KS, 
we achieved the topmost accuracy for the four patients 
out of six. For patient #563 and #570, the work [24] has 
slightly better accuracy than ours. [25] and [24] use 
LSTM and dilated RNN for BG prediction respectively 
whereas [56] uses a convolutional neural network (CNN) 
trained with the OhioT1DM dataset for the BG level pre-
diction. To the best of our knowledge, we achieved the 
leading average prediction accuracy for the OhioT1DM 
dataset.

Discussion
Our proposed method provides a notably precise pre-
diction mechanism for the typical blood glucose range 
( < 70mg/dl and > 180mg/dl ). However, our elabo-
rated experimental results suggest that prediction accu-
racy decreases slightly when blood glucose level values 
(Ground Truth) lie outside the ideal range. The primary 
reason for this issue might be the smoothing process. 
With the KS preprocessing technique, the spikes and 
extreme CGM readings get smoothed and become less 
sharp. The smoothed values are imperceptibly biased 
to the average BG value. Those smoothed values tend 
to lie in the normal range. After preprocessing, these 
smoothed values are used in training steps. It reduces the 
learning capability of the model marginally, particularly 
for extremely high or low BG values. Further study might 
be done to improve the prediction accuracy for extremely 
high or low blood glucose range.

Another point is that there are some missing data in 
the OhioT1Dm dataset. For the patient, 575 and 591 
have 1309 and 782 missing data points, each. Continuous 
missing data has been observed between Dec 26 to Dec 
28 and Dec 26 to Jan 5, respectively. Whereas patient 570 
has only 649 missing data. However, these missing data 
might have an adverse effect on prediction. Moreover, 

Table 7  Prediction accuracy comparison, in terms of RMSE, between the proposed model and models from related works for the 
OhioT1DM dataset (PH = 30 min)

Here, italics values and bold values represents the best and second-best result, respectively

Patient ID RMSE w/ KS RMSE w/o KS RMSE of [24] RMSE of [25] RMSE of [56]

# 559 4.73 17.85 18.78 19.50 22.48

# 563 5.74 18.65 18.12 19.00 20.35

# 570 4.81 15.94 15.46 16.40 18.26

# 575 8.45 20.93 22.83 24.80 25.65

# 588 5.10 17.71 17.72 19.30 21.69

# 591 6.53 20.35 21.34 25.40 24.59

Mean 5.89 18.57 19.04 20.73 22.17
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the device type used for acquiring the patient’s data is 
fixed; that is the Medtronic Enlite CGM sensor. The 
slow sampling rate also limits the size of the dataset. In 
our future work, we would also consider a faster sam-
pling rate for patient data acquisition. Also, the patient 
number and racial diversity are limited in the dataset. 
We have the plan to collect more patient-data with sev-
eral devices from the broad and racially diverse patient-
base and use those data to explore more generalized 
approaches for BG forecasting. Additionally, we plan to 
work on glycemic event detection, especially on hypogly-
cemic event detection. Besides, there might be scope for 
further experiments in the future to assess the potential-
ity of using the self-attention mechanism for BG predic-
tion.  Furthermore, the precise glucose level prediction 
might help to address different types of attacks on wire-
less insulin pumps [57–60].

Conclusion
This work investigated methods for more accurate blood 
glucose prediction. We demonstrated that preprocess-
ing the CGM readings with Kalman smoothing for sen-
sor error correction could be useful for improving the 
robustness of the BG prediction. We utilized different 
physiological information such as meal, insulin, aggre-
gations of step count, and preprocessed CGM data in 
our method. We proposed a novel approach leveraging 
the stacked LSTM based deep RNN model to improve 
the BG prediction accuracy in this paper. It is evident 
from our study that preprocessing the CGM values with 
Kaman smoothing makes the BG prediction curve less 
uncertain and less fluctuating. Our proposed approach 
provides more reliable predictions than traditional meth-
ods while we assumed fingerstick BG readings as the 
ground truth in our experiment. We want to lower the 
difference between the predicted CGM values and the 
real fingerstick blood glucose readings. The BG predic-
tion with Kalman smoothed CGM data is closer to the 
actual BG level (The Fingerstick BG reading) than with-
out the Kalman filter. This more accurate prediction can 
aid diabetes patients to avoid adverse glycemic events. 
Our proposed methodologies could be employed to get 
insight into T1D patient’s future BG level trends that 
might result in a more dependable diabetes management 
system.
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