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Abstract 

Background:  Retrieving gene and disease information from a vast collection of biomedical abstracts to provide doc-
tors with clinical decision support is one of the important research directions of Precision Medicine.

Method:  We propose a novel article retrieval method based on expanded word and co-word analyses, also con-
ducting Cuckoo Search to optimize parameters of the retrieval function. The main goal is to retrieve the abstracts of 
biomedical articles that refer to treatments. The methods mentioned in this manuscript adopt the BM25 algorithm 
to calculate the score of abstracts. We, however, propose an improved version of BM25 that computes the scores of 
expanded words and co-word leading to a composite retrieval function, which is then optimized using the Cuckoo 
Search. The proposed method aims to find both disease and gene information in the abstract of the same biomedical 
article. This is to achieve higher relevance and hence score of articles. Besides, we investigate the influence of different 
parameters on the retrieval algorithm and summarize how they meet various retrieval needs.

Results:  The data used in this manuscript is sourced from medical articles presented in Text Retrieval Conference 
(TREC): Clinical Decision Support (CDS) Tracks of 2017, 2018, and 2019 in Precision Medicine. A total of 120 topics are 
tested. Three indicators are employed for the comparison of utilized methods, which are selected among the ones 
based only on the BM25 algorithm and its improved version to conduct comparable experiments. The results showed 
that the proposed algorithm achieves better results.

Conclusion:  The proposed method, an improved version of the BM25 algorithm, utilizes both co-word implementa-
tion and Cuckoo Search, which has been verified achieving better results on a large number of experimental sets. 
Besides, a relatively simple query expansion method is implemented in this manuscript. Future research will focus on 
ontology and semantic networks to expand the query vocabulary.
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Background
With the proliferation of computer technologies, 
the information available on the Internet has swiftly 
increased leading to various implementations utilized 

for information extraction from medical articles. Hence, 
medical treatment techniques have stepped into the age 
of Big Data. However, managing the immense data and 
extracting information from them is a critical endeavor. 
If this process can be improved, the advantages that it 
could offer would be so beneficial for medical doctors. 
For instance, some routine decision-making tasks require 
significant repetition, which takes time and increases 
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costs. However, computerized medical information 
retrieval systems can effectively improve efficiency, save 
costs, and reduce errors. Proper use of computer tech-
nology can bring efficacy to all fields where it will be 
used. Therefore, the development of medical information 
retrieval systems is crucial. In reality, every decision of a 
doctor is critical to the patient, so the doctor must fol-
low the state-of-the-art techniques and keep abreast with 
the latest technology and methods of clinical science. The 
academic literature providing the latest research results 
in the medical community can be accessed via the Inter-
net and the medical retrieval models play a crucial role. 
Furthermore, searching the relevant biomedical literature 
on the Internet for a reference can be highly beneficial for 
medical practitioners who encounter a difficult problem 
on a certain medical record.

Information Retrieval (IR) methods for Clinical Deci-
sion Support (CDS) have been the focus of recent 
research and assessment campaigns. Specifically, the 
CDS track between 2014 and 2016 Text Retrieval Con-
ferences (TREC) [1–3] sought to assess the systems 
providing evidence-based information in the form of 
either full-text or abstracts from an open-access subset 
of MEDLINE to the clinicians in return to their queries. 
Furthermore, the tracks from 2017 to 2019 [4–6] focused 
on important implementations in clinical decision sup-
port providing both useful and precise medical informa-
tion to clinicians treating cancer patients. In these, each 
case described the disease (a type of cancer), the relevant 
genetic variants (which genes), and basic demographic 
information (age and sex) of patients. Precision Medi-
cine introduced in [7] is a new medical concept utilizing 
individualized medicine that develops with the rapid pro-
gress of genome sequencing technology and the cross-
application of bioinformatics and Big Data science.

Preleminaries
The IR aims to retrieve related documents based on a 
given query. The relevancy of documents to queries is 
often gauged by the score assigned by an IR model, e.g., 
the widely-implemented BM25 model [8]. On the one 
hand, the past few decades witnessed the implementa-
tion of machine learning technology when information 
retrieval was a concern. The document ranking process 
could be classified into three groups as follows: (i) the 
single document methods, (ii) the document pair meth-
ods, and (iii) the document list methods. The common 
single-document methods, such as [9] utilizing a logis-
tic regression technique, deal with a feature vector of 
each document as an input, where the output is the rel-
evance of each document. The document pair methods, 
e.g., the ones utilizing Rank-SVM [10] or Rank-Boost 

[11], implement a feature vector of a pair of documents 
as the input and use the correlation between the docu-
ments as the output. The document list methods, e.g., the 
ones proposed List-Net [12], Ada-Rank [13], or Lambda-
Mart [14], employ a set of documents associated with 
a query as the input and a ranked list as the output. In 
recent years, query expansion methods have been widely 
implemented in information retrieval. Singh et  al. [15] 
suggested a method based on fuzzy logic, in which the 
top-ranked documents were regarded as relevant feed-
back documents for mining query information. Further-
more, the choice of different query expansion terms was 
determined according to their importance. These meth-
ods often assign each term to a different relevance score 
and then select the expansion term based on a certain 
threshold.

Keikha et  al. [16] considered the Wikipedia corpus as 
the feedback set space to train the Word Vector Model 
and determined the long-term selection of the best fea-
tures in both supervised and unsupervised models. 
Almasri et al. [17] also utilized vectors to represent query 
words and query expansion terms returned by pseudo-
correlation feedback. They added cosine similarity is 
to the Bag-of-Words Model, and the frequency of each 
word in the query term was recalculated. Singh et al. [18] 
proposed a classic correlation feedback method, which 
increased the entry weight of the related documents and 
reduced it to that of the non-relevant ones. However, one 
of the disadvantages of this method was to be very time-
consuming for practitioners in assessing the relevance of 
documents.

Cui et al. [19] developed a query expansion method for 
web search logs utilizing the interaction information of 
practitioners. The key assumption behind this method 
was that the documents chosen by a user to read were 
related to the query. The new words in the related docu-
ments were sorted according to their similarity with the 
user query, and the new words with the highest similar-
ity were selected as the expanded word. The candidate 
expanded words were extracted from the top documents, 
and then the candidate expanded words were weighted 
and sorted by the probability generated by the language 
model. Aronson and Rindflesch [20] proposed a method 
based on the Unified Medical Language System (UMLS) 
query expansion, which benefitted from the Meta-Map 
program [21] to identify the medical phrases in the origi-
nal query and then expanded the query with new phrases. 
Hence, the experimental results showed that the query 
expansion utilizing the UMLS was an effective method to 
improve the performance of information retrieval.

Li et al. [22] proposed a method of keyword-weighted 
network analysis to implement a medical full-text 
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recommendation, which helped to expand the medi-
cal acronym list by searching the full-text. Domain 
experts verified that the algorithm worked well in terms 
of accuracy in recommending medical literature. Bal-
aneshinkordan et  al. [23] developed a query expansion 
method utilizing the Bayesian approach, which expanded 
the genes of a disease to be no less than three words. The 
experiments revealed that the algorithm had a higher 
precision value.

The literature review brings us the idea of using both 
query expansion and keywords to retrieve documents 
that are highly related to a query. Hence, this manuscript 
proposes a method utilizing expanded words and co-
word analysis as new tools to optimize the information 
retrieval of biomedical articles implementing the BM25 
algorithm as a base method. This is to compute scores of 
the abstract, expanded words, and co-word as a compos-
ite retrieval function. Besides, when a disease and a gene 
both appear in the same biomedical article, the score of 
the article tends to increase. Finally, the Cuckoo Algo-
rithm [28] is utilized to optimize the parameters of the 
proposed retrieval algorithm.

As a classical information retrieval algorithm, BM25 
has been frequently implemented on TREC, such as 
2017, 2018, and 2019 Precision Medicine [34–49]. These 
algorithms mainly utilize either the original BM25 algo-
rithm or its improved version to retrieve information [37, 
38].

Experimental data
Data structure
The abstracts of biomedical articles are presented in 
XML format. The MeSH headings, chemical lists, and 

keyword lists for XML documents are selected to utilize 
abstracts whose displays are presented in Fig. 1.

Data distribution
While the total number of biomedical articles in both 
2017 and 2018 TREC Precision Medicine is 26,613,834, 
the 2019 set has 29,137,637 articles. Table 1 shows some 
of the statistics that are used in information retrieval, 
where Abstract-Mean-Length represents the aver-
age length of the abstracts after deleting stop-words; 
Abstract-Number represents the number of articles 
with abstracts; Chemical-Mean-Length represents the 
average length of the chemical lists; Chemical-Number 
represents the number of articles with a chemical list; 
Mesh-Mean-Length represents the average length of the 
MeSH headings; Mesh-Number represents the number 
of articles with MeSH headings; Keyword-Mean-Length 
represents the average length of the keyword list, and 
Keyword-Number represents the number of articles with 
keyword lists.

Fig. 1  General structure and the XML attributes of MEDLINE abstracts

Table 1  The statistics of  the  TREC Precision Medicine 
covering the period of 2017–2019

Name 2017 and 2018 2019

Abstract-Mean-Length 77.5 83.5

Abstract-Number 26,613,834 29,137,637

Chemical-Mean-Length 3.8 3.8

Chemical-Number 13,113,093 13,670,358

Mesh-Mean-Length 10.5 10.6

Mesh-Number 24,387,151 25,389,659

Keyword-Mean-Length 4.1 4.4

Keyword-Number 4,005,446 5,435,471
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Query expansion
Medical Subject Headings (MeSH) is a controlled vocabu-
lary developed by the U.S. National Library of Medicine, 
which is mainly utilized to index, catalog, and search articles 
relevant to both biomedical and health sciences. The impor-
tant role of the MeSH in medical information retrieval 
is mainly manifested with two aspects, namely accuracy 
and specificity. While indexers input information into the 
retrieval system, researchers utilize this information con-
cerning the two aspects. The MeSH is used as the platform 
making the terms consistent between the index and search 
to achieve the best outcomes. Hence, the accurate and com-
prehensive usage of the MeSH has a significant impact on 
the results of information retrieval. In this manuscript, we 
utilize the MeSH database (meshb.nlm.nih.gov/MeSHon-
Demand) to find expansion terms or new words and their 
broader terms. The MeSH on Demand is utilized to expand 
query terms and obtain additional terms if possible.

Table 2 shows Topic 2017-1 as an example, and Table 3 
presents the results of the extended words.

Age expansion
The variable age included in the demographic field is 
expanded to the terms or new words proposed by Kast-
ner et  al. [24]. We have readjusted the age division and 
assumed that those over 18 should be adults. Table 4 pre-
sents our expansion model that is based on variable age.

The proposed model
We first utilize the MeSH on Demand to find MeSH 
terms and additional terms that can be used in the 
retrieval of abstracts for any given query. Then, we 

construct a “wordlist” including chemical words, key-
words, and MeSH headings that utilizes query expan-
sion, thereby finding documents that are more related 
to query expansion. This is to increase the relevance 
score of documents. In the next step, we performed the 
co-word analysis utilizing either each separate resource, 
such as abstract, keywords, chemical words, or MeSh 
headings, or all sources at a time to find co-occurrence 
of selected words, such as disease and gene, in our case. 
While the first step deals with computing the score of 
abstracts based on a query and its morpheme, the second 
step deals with calculating the score of expansion words. 
Then, the score of the co-word is calculated. Hence, as 
long as the number of documents is reduced based on 
the “word list”, the score of the co-word tend to increase. 
In the last step, we compute the composite score consist-
ing of three scores of abstract, expanded words, and co-
word. Afterward, Cuckoo Search [28], an evolutionary 
optimization method, is applied to optimize the param-
eters of the proposed retrieval model.

The abstract scoring model
The BM25 [8] is a classical information retrieval model 
that is based on analyzing a query Q to find a morpheme 
qi . For each search result d , it calculates the correlation 
between each morpheme qi and d , and finally gives a 
weight to the sum of the correlation score of qi concern-
ing d to obtain a correlation score between Q and d . The 
general formula of the BM25 can be expressed by:

Table 2  The retrieval topic description of the TREC Precision Medicine

Year Disease Gene Demographic characteristics Other

2017–1 Liposarcoma CDK4 Amplification 38-year-old male GERD

2018–1 Melanoma BRAF (V600E) 64-year-old male None

2019–1 Melanoma BRAF (E586K) 64-year-old female None

Table 3  The expanded MeSH of  2017 TREC Precision 
Medicine retrieval task 1

Search word Expanded word

Liposarcoma Myxoid

CDK4 Amplification Cyclin-Dependent Kinase 4

Proto-Onkogene Proteins c-mdm2

38-year-old Middle Aged

Adult

Male Human

Table 4  The expanded age of the TREC Precision Medicine

Term Range

Fetus Fetus

Newborn Birth to 1 month

Infant > 1 month to < 24 months

Preschool 2 years to < 6 years

Child 6 years to < 13 years

Adolescent 13 years to < 19 years

Young 19 years to < 35 years

Middle age 35 years to < 60 years

Aged 60 years to < 80 years

Aged 80 ≥ 80 years

Adult ≥ 18 years
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where Wi is a weight determining the relevance of a word 
to a document.

The Inverse Document Frequency (IDF) is defined as:

where D represents the total number of corpus docu-
ments, and card({j|i ∈ di}) represents the number of doc-
uments containing morpheme qi . According to (2), the 
more qi contained in a document, the lower the weight 
of qi for a given set of documents. In other words, when 
several documents contain qi , the discrimination of qi is 
not so robust that the importance of utilizing qi to judge 
relevance is so weak.

The relevance score R(qi, d) of morpheme qi docu-
menting d is defined as:

where parameter K  is:

where, k1 , k2 , and b are adjustment factors that are usu-
ally set according to experience, fi is the frequency of qi 
in d , qfi is the frequency of qi in query, dl is the length of 
document d , and avgdl is the average length of all docu-
ments. In most cases, qi appears only once in the query, 
i.e., qfi = 1. Hence, (3) can be rewritten as:

As seen from the definition, the role of parameter b is 
to tune the impact of the document length on the rele-
vance. The larger the b is, the greater the impact of the 
document length on the relevance score will be, and vice 
versa. Similarly, the longer the relative length of the doc-
ument is, the larger the K  , and hence the smaller the rel-
evance score will be. In the end, the correlation score of 
the abstract of the document d can be expressed as:

(1)Score(Q, d) =

n
∑

i

Wi × R(qi, d)

(2)IDF(qi) = log
D

card({qi|i ∈ di})

(3)R(qi, d) =
fi × (k1 + 1)

fi + K
×

qfi × (k2 + 1)

qfi + k2

(4)K = k1 ×

(

1− b1 + b1 ×
dl

avgdl

)

(5)R(qi, d) =
fi × (k1 + 1)

fi + K

(6)

Scoreabstract(Q, d) =

n
∑

i

IDF(qi)

×
fi × (k1 + 1)

fi + k1 ×
(

1− b1 + b1 ×
dl

avgdl

)

The expanded word score
As seen in Table  1, most biomedical articles have both 
abstracts and titles. The number of biomedical articles 
containing chemical words, MeSH headings, and key-
words varies widely. Specifically, there exist 13,113,093 
articles containing chemical words, 2,438,717,151 articles 
containing MeSH headings, and 4,005,446 articles con-
taining keywords. As the literature suggests, direct utili-
zation of the BM25 leads to failure when dealing with a 
large selection of documents [50]. In this subsection, we 
propose an improved BM25 algorithm to compute the 
scores of expanded words. We combine chemical words, 
MeSH headings, and keywords into a list called ‘Word 
List’. The length of the “Word List” in the document is 
defined by:

where dcl is the length of chemical words in document d , 
dml is the length of MeSH headings in document d , and 
dkl is the length of keywords in document d.

The IDF value of the expanded word appearing in the 
“Word List” of document d can be given by:

where N  represents the number of documents in which 
dwl > 0, and n(qi) represents the number of documents 
containing the extended morpheme qi . The frequency 
value of the term of the word list is defined by:

where n represents the number of expanded words 
in query Q , and qi represents the morpheme of each 
expanded word in query Q . The score of an expanded 
word in document d is defined by:

where k2 and b1 are the adjustment factors that are usu-
ally set according to experience, and avgdwl represents 
the average length of all word lists.

The co‑word score
The co-word analysis utilizes the co-occurrence of lexi-
cal pairs or noun phrases in an article set to determine the 
relationship between topics in the discipline represented by 
the article set. In this manuscript, the co-word analysis is 
introduced into the article scoring model for the case when 

(7)dwl = dcl + dml + dkl

(8)IDFword(qi, d) = log
N − n(qi)+ 0.5

n(qi)+ 0.5

(9)tfword(Q, d) =

n
∑

i

IDFword(qi, d)

(10)

Scoreword(Q, d)

=
tfword(Q, d)× (k3 + 1)

tfword(Q, d)+ k3 ×
(

1− b2 + b2 ×
dwl

avgdwl

)
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a disease and a gene co-occur across in an abstract, Chemi-
cal List, MeSH heading, and Keyword List (as presented 
in Fig.  2) or co-occur within any abstract, Chemical List, 
MeSH heading, or Keyword List (as presented in Fig. 3).

We utilize the IDF value as the co-word score to distin-
guish the importance of a gene, which can be formulated 
as:

where N  represents the number of documents, and n
(

gi
)

 
represents the number of documents containing gene 
morpheme gi.

Finally, the Co-Word score is defined by:

(11)IDFgene
(

gi, d
)

= log
N − n

(

gi
)

+ 0.5

n
(

gi
)

+ 0.5

where n is the number of genes with co-word having a 
disease in query Q , and gi is the morpheme of each gene 
in query Q.

Retrieval model
We utilize the composite score as the final score for doc-
ument d under query Q , which can be formulated as:

(12)Scoreco-word(Q, d) =

n
∑

i

IDFword
(

gi, d
)

(13)

Scorecomposite(Q, d) = Scoreabstract(Q, d)

+ Scoreword(Q, d)

+ α × Scoreco-word(Q, d)

Fig. 2  The cross co-word of abstract, chemical list, MeSH heading, and keyword list

Fig. 3  The co-word of abstract, Chemical List, Me-SH heading, and Keyword List
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Figure 4 depicts the architecture of the biomedical arti-
cle retrieval system.

Parameter optimization
The proposed method has six parameters: k1 , k2 , k3 , b1 , b2 , 
and α , and the choice of parameters can affect the results 
of information retrieval. Various algorithms, e.g., the 
Genetic Algorithm (GA) [25], Simulated Annealing (SA) 
Algorithm [26], and Ant Colony (AC) Algorithm [27], 
have been implemented to optimize the function in use, 
i.e., the objective function. With the continuous effort in 
developing better algorithms, several new Swarm Intelli-
gence Optimization (SIO) Algorithms have emerged dur-
ing recent years, such as Cuckoo Search (CS) [28], Glow 
Worm Swarm Optimization (GWSO) [29], and Particle 
Swarm Optimization (PSO) [30]. Among them, SIO has 
been widely utilized.

Cuckoo Search Algorithm
CS is a SIO proposed by Yang et al. [28] in 2009. Guer-
rero et  al. [31] claimed that CS outperformed GA in 
terms of efficiency. Some of the idealized rules utilized by 
CS can be given as:

(1)	 Each cuckoo lays only one egg every time and 
selects a parasitic nest to randomly hatch its egg.

(2)	 The best parasitic nest will be handed down to the 
next generation.

(3)	 The number of available parasitic nests is fixed and 
the detection probability of parasitic nest’ master is 
Pa ∈ (0, 1).

The cuckoo finds the nest and updates the position 
according to the above-given rules. The position update 
formula is:

where T  is the step size ( T > 0 ), ⊕ is the point-to-point 
multiplication operator, Levy(�) is the search path follow-
ing the Levy distribution [32, 33]. The pseudo-code of the 
algorithm [28] is presented as follows:

(14)X
(t+1)
i = X

(t)
i + T ⊕ Levy(�)

Fig. 4  Architecture of the system retrieving biomedical articles
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ranking in information retrieval. Let ϑ denote the rel-
evance grade, and gain(ϑ) denote the gain associated 
with ϑ . Also, assume that g1, g2, ...gz are the gain values 
associated with the Z documents retrieved by a system 
in response to query q , such that gi = gain(ϑ) if the rel-
evance grade of the document in rank i is ϑ . Hence, the 
nDCG value for this system can be calculated as:

and DCGI denotes the DCG value for an ideal ranked list 
for query q.

We define the average nDCG as follows:

(17)

nDCG =
DCG

DCGI
, where DCG =

Z
∑

i=1

gi

log(i + 1)

(18)AvgnDCG =

∑n
t=1 nDCG(t)

n

Objective function
Precision is calculated as:

where RR and RN  refer to relevant and irrelevant docu-
ments retrieved, respectively.

Then,P@10 is defined as the Precision when 
RR+ RN = 10 . Hence, the average P@10 can be formu-
lated as:

where P@10(t) represents the P@10 value of the t th 
topic among n topics.

The Normalized Discounted Cumulative Gain (nDCG) 
is a commonly utilized index to assess the quality of 

(15)Precision =
RR

(RR+ RN )

(16)AvgP@10 =

∑n
t=1 P@10(t)

n
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where nDCG(t) represents the nDCG value of the t th 
topic among n topics.

Algorithm flow
Since k2 has a fixed value ( k2 = 1 ), we utilize k1 , k3,b1,b2 , 
and α as input parameters. Firstly, the algorithm gener-
ates the initial population and either set the maximum 
number of iterations or stop the criterion. If the number 
of iterations reaches the maximum number or the stop 
criterion is met, the algorithm ends and returns the opti-
mal solution. Otherwise, the algorithm performs a series 

of operations to optimize the objective function. This 
manuscript defines AvgP@10 + AvgnDCG as the objective 
function and employs the dataset of the 2017 Precision 
Medicine as the training dataset to optimize the param-
eters. Figure  5 presents the flowchart of the proposed 
algorithm.

Experimental results and comparison
Dataset
The data used in this work were sourced from medi-
cal articles published in 2017, 2018, and 2019 TREC 

Fig. 5  Flowchart of the proposed algorithm
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Precision Medicine, which can be found on http://www.
trec-cds.org/2017.html, http://www.trec-cds.org/2018.
html, and http://www.trec-cds.org/2019.html, respec-
tively. Each article was formatted using the XML 2017. 
The assessment results of the articles were obtained from 
(https​://trec.nist.gov/data/precm​ed/qrels​-final​-abstr​acts.
txt), (https​://trec.nist.gov/data/precm​ed/qrels​-trece​val-
abstr​acts-2018-v2.txt), and (https​://trec.nist.gov/data/
precm​ed/qrels​-trece​val-abstr​acts.2019.txt).

Due to the semi-structured nature of the XML format, 
we used MongoDB as the database for document stor-
age and Python as the programming language. All the 
code can be found on the corresponding author’s GitHub 
(https​://githu​b.com/Bruce​-V/CS-BM25).

Parameter setting
Table  5 presents the parameter values used in the pro-
posed algorithm.

Experimental results
In Table  6, “Normal” refers to the values of empirical 
parameters, where CS represents the parameters trained 
using the 2017 dataset consisting of 1000 documents 
with the highest scores as a result of the selected retrieval 
model.

When the data of three years are compared, the opti-
mized parameters are better than the empirical parame-
ters. For an information retrieval system, the users desire 
related documents to appear earlier; hence, infNDCG 
and P@10 are two important indicators in assessing the 
performance of the information retrieval process. The 
parameters that are optimized using both NDCG and 
P@10 would increase the weights of the word list. The 
word list includes extended information about age, gen-
der, and genes, which is crucial for distinguishing the rel-
evant literature from the irrelevant ones. In conclusion, 
different parameters can be utilized to meet the needs of 
various users.

In Figs. 6, 7, and 8, RR represents the relevance in co-
word documents, while RN  represents all relevance 

Table 5  The parameter settings of  the  Cuckoo Search 
Algorithm

Parameter Description Value

n Population number 40

T Step size 1

Max_Generation Max Generation 500

k1_boundary Boundary of k1 (0,100)

k3_boundary Boundary of k3 (0,100)

b1_boundary Boundary of b1 (0,1)

b2_boundary Boundary of b2 (0,1)

α_boundary Boundary of α (0,5)

Table 6  The results of the Cuckoo Search Algorithm

Name k1 k3 b1 b2 α

“Normal” 1.2 1.2 0.75 0.75 1

CS 3.5 91.3 0.84 1 4

Fig. 6  2017 TREC Precision Medicine relevance in co-word biomedical articles

http://www.trec-cds.org/2017.html
http://www.trec-cds.org/2017.html
http://www.trec-cds.org/2018.html
http://www.trec-cds.org/2018.html
http://www.trec-cds.org/2019.html
https://trec.nist.gov/data/precmed/qrels-final-abstracts.txt
https://trec.nist.gov/data/precmed/qrels-final-abstracts.txt
https://trec.nist.gov/data/precmed/qrels-treceval-abstracts-2018-v2.txt
https://trec.nist.gov/data/precmed/qrels-treceval-abstracts-2018-v2.txt
https://trec.nist.gov/data/precmed/qrels-treceval-abstracts.2019.txt
https://trec.nist.gov/data/precmed/qrels-treceval-abstracts.2019.txt
https://github.com/Bruce-V/CS-BM25
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except for RR . It is shown that many relevant documents 
contain both a disease and a gene. As a result, we define 
the rate of average relevant document coverage as:

(19)Avgcov =

∑n
1
relevance in co−word

relevance

n

The average coverage rate of 30 topics in 2017 is 52.9%, 
which is 74.13% for 50 topics in 2018, and 54.4% for 40 
topics in 2019. These outcomes reveal that the co-word 
analysis has a better impact on the retrieval of relevant 
documents, which greatly reduces the scope of the 
search.

Fig. 7  2018 TREC Precision Medicine relevance in co-word biomedical articles

Fig. 8  2019 TREC Precision Medicine relevance in co-word biomedical articles
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When information retrieval is a concern, NR , RR , NN  , 
and RN  respectively represent the relevant documents 
that are not retrieved, the irrelevant documents that are 
not retrieved, the relevant documents that are retrieved, 
and the irrelevant documents that are retrieved. Here, 
Precision is defined as formula (15).

Recall is defined as:

and F1-score is defined as:

(20)Recall =
RR

(RR+ NR)

Fig. 9  Comparison of 2017 TREC Precision Medicine indicators

Fig. 10  Comparison of 2018 TREC Precision Medicine indicators
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(21)F1−score = 2×
Precision× Recall

Precision+ Recall

As seen in Figs. 9, 10, and 11, the optimized parameters 
are better than the empirical parameters for both P@10 
and infNDCG. Since we utilize the 2017 Precision Medi-
cine dataset as the training set, the optimization effect is 
the most obvious on this dataset. When the test data in 
2018 and 2019 are a concern, both P@10 and infNDCG 
have improved, but R-predicted has declined. This hap-
pens since the adopted objective function has improved 
the ranking of the most relevant documents. Precision 
and Recall are inversely proportional to each other when 
the retrieval system is a concern. However, in our case 
examining the retrieval of biomedical articles, we are 
more concerned about the precision rate to alleviate the 
doctors’ decision-making.

Fig. 11  Comparison of 2019 TREC Precision Medicine indicators

Table 7  Experimental comparison of  methods published 
in 2017 TREC Precision Medicine

Methods InfNDCG R-Prec P@10

MayoNLPTeam [34] 0.2864 0.1698 0.3931

UCAS [35] 0.3271 0.2227 0.4276

Cbnu [36] 0.3218 0.2287 0.4614

Udel-Fang [37] 0.3879 0.2503 0.5067

Prna-Mit [38] 0.4070 0.2620 0.5300

UKNLP [39] 0.3852 0.2518 0.5533

Proposed method 0.4850 0.2924 0.6100

Table 8  Experimental comparison of  methods published 
in 2018 TREC Precision Medicine

Methods InfNDCG R-Prec P@10

Brown [40] 0.4000 0.2350 0.4980

Klick-Labs [41] 0.4432 0.2870 0.5400

UCAS [42] 0.5580 0.3654 0.5980

UTDHLTRI [43] 0.4797 0.2870 0.6160

Proposed Method 0.5055 0.3579 0.6220

Table 9  Experimental comparison of  methods published 
in 2019 TREC Precision Medicine

Methods InfNDCG R-Prec P@10

Brown [44] 0.4052 0.2527 0.4625

ECNU-ICA [45] 0.4432 0.2870 0.5400

Ims-Unipd [46] 0.4750 0.3000 0.5450

Poznan [47] 0.4800 0.3100 0.5500

Cincy-MedIR [48] 0.4801 0.3111 0.5675

CSIR-Omed [49] 0.4766 0.3165 0.5825

Proposed method 0.5172 0.3105 0.5875
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Experimental comparison
Considering the results of the models taken from 2017, 
2018, and 2019 TREC Precision Medicine, three indica-
tors called infNDCG, R-predicted, and P@10 are selected 
for comparison, and the experimental results are pre-
sented in Tables 7, 8, and 9.

We use three years of the TREC datasets to verify our 
experimental results. The selected methods either uti-
lize the BM25 algorithm or its improved version. The 
experiments using the 2017 dataset showed a significant 
improvement in our proposed method for all indica-
tors. For the 2018 dataset, our method performed bet-
ter than similar algorithms for P@10, ranked second for 
infNDCG. The same result was observed for the 2019 
dataset.

Conclusion
This manuscript proposes a BM25-based method incor-
porating co-word analysis to retrieve biomedical arti-
cles. We improved the BM25 algorithm and used it to 
compute the score of expanded words by combining 
the co-word score with the gene appearance weight. 
Then, we utilized the Cuckoo Search Algorithm to opti-
mize parameters on the evaluation function of both 
P@10 and nDCG. Optimization results suggested that 
increasing the score weight of the “word list” could effec-
tively improve the ranking of the related documents. 
The manuscript also discusses the influence of different 
parameters on the retrieval algorithm and presents the 
parameters to meet different retrieval needs in the future. 
Although the proposed algorithm in this manuscript is 
based on the improved version of BM25, it highlights the 
general rules for improving the parameters of the BM25 
algorithm, which were verified through numerous experi-
ments. Since the query expansion used in this manuscript 
is simple, our future research will focus on adopting more 
linked data to investigate utilizing the topic data.

Abbreviations
TREC: Text Retrieval Conference; CDS: Clinical Decision Support; IR: Information 
Retrieval; SVM: Support Vector Machines; UMLS: Unified Medical Language 
System; NDCG: Normalized Discounted Cumulative Gain; GA: Genetic 
Algorithm; SA: Simulated Annealing; AC: Ant Colony; SIO: Swarm Intelligence 
Optimization; CS: Cuckoo Search; GWSO: Glow Worm Swarm Optimization; 
PSO: Particle Swarm Optimization.

Acknowledgements
Not applicable.

Authors’ contributions
This article has been independently completed by ZZ. The author read and 
approved the final manuscript.

Funding
No funding was obtained for this study.

Availability of data and materials
The data used in this work were sourced from medical articles published in 
2017, 2018, and 2019 TREC Precision Medicine, which can be found on http://
www.trec-cds.org/2017.html, http://www.trec-cds.org/2018.html, and http://
www.trec-cds.org/2019.html, respectively. Each article was formatted using 
the XML 2017. The assessment results of the articles were obtained from (https​
://trec.nist.gov/data/precm​ed/qrels​-final​-abstr​acts.txt), (https​://trec.nist.gov/
data/precm​ed/qrels​-trece​val-abstr​acts-2018-v2.txt), and (https​://trec.nist.gov/
data/precm​ed/qrels​-trece​val-abstr​acts.2019.txt). All the code can be found on 
the corresponding author’s GitHub (https​://githu​b.com/Bruce​-V/CS-BM25).

Ethics approval and consent to participate
On behalf of, and having obtained permission from all authors, I declare that: 
the material has not been published in whole or in part elsewhere; the paper 
is not currently being considered for publication elsewhere; all authors have 
been actively involved in substantial work leading to the submitted version, 
and will hold themselves jointly and individually responsible for its content; 
all relevant ethical safeguards have been met concerning patient or subject 
protection, or animal experimentation. I testify to the accuracy of the above 
on behalf of all authors. The datasets in this manuscript are public datasets 
and do not require any administrative permissions.

Consent for publication
This article uses publicly available datasets.

Competing interests
All authors declare that: (i) no support, financial or otherwise, has been 
received from any organization that may have an interest in the submitted 
work; and (ii) there are no other relationships or activities that could appear to 
have influenced the submitted work.

Author details
1 School of Information Management, Nanjing University, Nanjing 210023, 
China. 2 Jiangsu Key Laboratory of Data Engineering and Knowledge Service, 
Nanjing 210023, China. 

Received: 3 August 2020   Accepted: 23 February 2021

References
	1.	 Simpson MS, Voorhees EM, Hersh W. Overview of the TREC 2014 clinical 

decision support track. In: Proceedings of Text Retrieval Conference 
(TREC); 2014.

	2.	 Roberts K, Simpson MS, Voorhees EM, Hersh WR. Overview of the TREC 
2015 clinical decision support track. In: Proceedings of Text Retrieval 
Conference (TREC); (2015).

	3.	 Roberts K, Demner-Fushman D, Voorhees EM, Hersh WR. Overview of the 
TREC 2016 clinical decision support track. In: Proceedings of Text Retrieval 
Conference (TREC); 2016.

	4.	 Roberts K, Demner-Fushman D, Voorhees EM, Hersh WR, Bedrick S, Lazar 
AJ, Pant S. Overview of the TREC 2017 precision medicine track. In: Pro-
ceedings of Text Retrieval Conference (TREC); 2017.

	5.	 Roberts K, Demner-Fushman D, Voorhees EM, Hersh WR, Bedrick S, Lazar 
SJ. Overview of the TREC 2018 precision medicine track. In: Proceedings 
of Text Retrieval Conference (TREC); 2018.

	6.	 Roberts K, Demner-Fushman D, Voorhees EM, Hersh WR, Bedrick S, Lazar 
SJ. Overview of the TREC 2019 precision medicine track. In: Proceedings 
of Text Retrieval Conference (TREC); 2019.

	7.	 Collins FS, Varmus H. A new initiative on precision medicine. N Engl J 
Med. 2015;372(9):793–5.

	8.	 Robertson SE, Walker S, Hancock-Beaulieu M, Gatford M, Payne A. Okapi 
at TREC-4. In: TREC, 1995.

	9.	 Gey FC. Inferring probability of relevance using the method of logistic 
regression. In: SIGIR’94. London: Springer; 1994. p. 222–31.

	10.	 Joachims T. Optimizing search engines using clickthrough data. In: 
Proceedings of the eighth ACM SIGKDD international conference on 
knowledge discovery and data mining. ACM; 2002. p. 133–42

http://www.trec-cds.org/2017.html
http://www.trec-cds.org/2017.html
http://www.trec-cds.org/2018.html
http://www.trec-cds.org/2019.html
http://www.trec-cds.org/2019.html
https://trec.nist.gov/data/precmed/qrels-final-abstracts.txt
https://trec.nist.gov/data/precmed/qrels-final-abstracts.txt
https://trec.nist.gov/data/precmed/qrels-treceval-abstracts-2018-v2.txt
https://trec.nist.gov/data/precmed/qrels-treceval-abstracts-2018-v2.txt
https://trec.nist.gov/data/precmed/qrels-treceval-abstracts.2019.txt
https://trec.nist.gov/data/precmed/qrels-treceval-abstracts.2019.txt
https://github.com/Bruce-V/CS-BM25


Page 15 of 15Zhang ﻿BMC Med Inform Decis Mak           (2021) 21:81 	

	11.	 Freund Y, Layer R, Schapire RE. An efficient boosting algorithm for com-
bining preferences. J Mach Learn Res. 2003;4(9):933–69.

	12.	 Cao Z, Qin T, Liu TY. Learning to rank: from pairwise approach to listwise 
approach. In: Proceedings of the 24th international conference on 
machine learning. ACM; 2007. p. 129–36.

	13.	 Xu J, Li H. Adarank: a boosting algorithm for information retrieval. In: 
Proceedings of the 30th Annual International ACM SIGIR Conference on 
Research and Development in Information Retrieval. ACM; 2007. p. 391–8.

	14.	 Burges CJC. From ranknet to lambdarank to lambdamart: an overview. 
Learning. 2010;11:523–81, 81.

	15.	 Singh J, Prasad M, Prasad OK. A novel fuzzy logic model for pseudo-
relevance feedback-based query expansion. Int J Fuzzy Syst. 
2016;18(6):980–9.

	16.	 Keikha A, Ensan F, Bagheri E. Query expansion using pseudo relevance 
feedback on Wikipedia. J Intell Inf Syst. 2018;50(3):455–78.

	17.	 Almasri M, Berrut C, Chevallet JP. A comparison of deep learning-based 
query expansion with pseudo-relevance feedback and mutual informa-
tion. In: Proceedings of European conference on information retrieval 
padua. ECIR Press; 2016. p. 709–715.

	18.	 Singh J, Sharan A. A new fuzzy logic-based query expansion model for 
effificient information retrieval using relevance feedback approach. 
Neural Comput Appl. 2017;28:2557–80.

	19.	 Cui H, Wen JR, Nie JY. Probabilistic query expansion using query logs. In: 
Proceedings of the 11th international conference on World Wide Web. 
ACM; 2002. p. 325–332.

	20.	 Aronson AR, Rindflesch TC. Query expansion using the UMLS Meta 
Thesaurus. In: Proceedings of the AMIA annual fall symposium. American 
Medical Informatics Association; 1997. p. 485.

	21.	 Aronson AR. Effective mapping of biomedical text to the UMLS Meta-
Thesaurus: the MetaMap program. In: Proceedings of the AMIA sympo-
sium. American Medical Informatics Association; 2001. p. 17.

	22.	 Li S, Sun Y, Soergel D. Automatic decision support for clinical diagnostic 
literature using link analysis in a weighted keyword network. J Med Syst. 
2018;42:27.

	23.	 Balaneshinkordan S, Kotov A. Bayesian approach to incorporating dif-
ferent types of biomedical knowledge bases into information retrieval 
systems for clinical decision support in precision medicine. J Biomed 
Inform. 2019;98:103238.

	24.	 Kastner M, Wilczynski NL, Walker-Dilks C, Ann MK, Haynes B. Age-specific 
search strategies for MedLine. J Med Internet Res. 2006;8(4):1–10.

	25.	 Holland JH. Adaptation in natural and artificial systems. Ann Arbor, 
Michigan

	26.	 Kirkpatrick S, Gelatt CD Jr, Vecchi MP. Optimization by simulated anneal-
ing. Science. 1983;220(4598):671–80.

	27.	 Dorigo M, Gambardella LM. A study of some properties of Ant-Q. In: 
Proceedings of the 44th international conference on parallel problem 
solving from nature; 1996. p. 656–665.

	28.	 Yang XS, Deb S. Cuckoo search via levy flights. In: World congress on 
nature & biologically inspired computing; 2009. p. 210–214.

	29.	 Krishnand KN, Ghose D. Detection of multiple source locations using a 
glowworm metaphor with applications to collective robotics. In: Pro-
ceedings of IEEE swarm intelligence symposium; 2005. p. 84–91.

	30.	 Kenney J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE 
conference on neural networks; 1995.

	31.	 Guerrero M, Castillo O, Valdez M. Cuckoo Search via Lévy flights and a 
comparison with genetic algorithms. In: Castillo O, Melin P, editors. Fuzzy 
logic augmentation of nature-inspired optimization metaheuristics, vol. 
574. Cham: Springer; 2015. pp. 91–103.

	32.	 Pavlyukevich I. Levy flights, non-local search, and simulated annealing. 
Comput Phys. 2007;226:1830–44.

	33.	 Pavlyukevich I. Cooling down Levy flights. J Phys A Math Theor. 
2007;40:12299–313.

	34.	 Wang Y, Komandur-Elayavilli R, Rastegar-Mojarad M. Leveraging both 
structured and unstructured data for Precision Information Retrieval. In: 
Proceedings of Text Retrieval Conference (TREC); 2017.

	35.	 Li C, He B, Sun Y. UCAS at TREC-2017 Precision Medicine Track. In: Pro-
ceedings of Text Retrieval Conference (TREC); 2017.

	36.	 Jo S-H, Lee K-S. CBNU at TREC 2017 Precision Medicine Track. In: Proceed-
ings of Text Retrieval Conference (TREC); 2017.

	37.	 Wang Y, Fang H. Combining term-based and concept-based representa-
tion for clinical retrieval. In: Proceedings of Text Retrieval Conference 
(TREC); 2017.

	38.	 Ling Y, Hasan SA, Filannino M. A hybrid approach to Precision Medicine-
related biomedical article retrieval and clinical trial matching. In: Proceed-
ings of Text Retrieval Conference (TREC); 2017.

	39.	 Noh J., Kavuluru R., Team UKNLP at TREC 2017 Precision Medicine Track: A 
Knowledge-Based IR System with Tuned Query-Time Boosting.Proceed-
ings of Text Retrieval Conference (TREC), 2017.

	40.	 Baruah P, Dulepet R. Kyle Qian. Brown University at TREC Precision Medi-
cine 2018. In: Proceedings of Text Retrieval Conference (TREC); 2018.

	41.	 Nishani L, Kolla M., Baruah G., Klick Labs at TREC 2018 Precision Medicine 
track. In: Proceedings of Text Retrieval Conference (TREC); 2018.

	42.	 Zheng Z, Li C, He B. UCAS at TREC-2018 Precision Medicine Track. In: 
Proceedings of Text Retrieval Conference (TREC); 2018.

	43.	 Taylor S.J., Goodwin T.R., Harabagiu S.B, UTD HLTRI at TREC 2018:Precision 
Medicine Track.Proceedings of Text Retrieval Conference (TREC), 2018.

	44.	 Jo S-H, Lee K-S. CBNU at TREC 2019 Precision Medicine Track. In: Proceed-
ings of Text Retrieval Conference (TREC); 2019.

	45.	 Zheng Q, Li Y, Hu J. ECNU-ICA team at TREC 2019 Precision Medicine 
Track. In: Proceedings of Text Retrieval Conference (TREC); 2019.

	46.	 Di Nunzio GM, Marchesin S, Agosti M. Exploring how to combine query 
reformulations for Precision Medicine. In: Proceedings of Text Retrieval 
Conference (TREC); 2019.

	47.	 Cieslewicz A, Dutkiewicz J, Jedrzejek CL. Poznan contribution to TREC-PM 
2019. In: Proceedings of text retrieval conference (TREC); 2019.

	48.	 Wu DTY, Su W-C. Retrieving scientific abstracts using venue-and concept-
based approaches: CincyMedIR at TREC 2019 Precision Medicine Track. In: 
Proceedings of Text Retrieval Conference (TREC); 2019.

	49.	 Rybinski M, Karimi S, Paris C. CSIRO at 2019 TREC Precision Medicine Track. 
In: Proceedings of Text Retrieval Conference (TREC); 2019.

	50.	 Trotman A. Choosing document structure weights. Inf Process Manag. 
2005;41:243–64.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	An improved BM25 algorithm for clinical decision support in Precision Medicine based on co-word analysis and Cuckoo Search
	Abstract 
	Background: 
	Method: 
	Results: 
	Conclusion: 

	Background
	Preleminaries
	Experimental data
	Data structure
	Data distribution
	Query expansion
	Age expansion

	The proposed model
	The abstract scoring model
	The expanded word score
	The co-word score
	Retrieval model

	Parameter optimization
	Cuckoo Search Algorithm
	Objective function
	Algorithm flow
	Experimental results and comparison
	Dataset
	Parameter setting
	Experimental results
	Experimental comparison


	Conclusion
	Acknowledgements
	References


