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Abstract 

Background: With a motivation of quality assurance, machine learning techniques were trained to classify Norwe-
gian radiology reports of paediatric CT examinations according to their description of abnormal findings.

Methods: 13.506 reports from CT-scans of children, 1000 reports from CT scan of adults and 1000 reports from X-ray 
examination of adults were classified as positive or negative by a radiologist, according to the presence of abnormal 
findings. Inter-rater reliability was evaluated by comparison with a clinician’s classifications of 500 reports. Test–retest 
reliability of the radiologist was performed on the same 500 reports. A convolutional neural network model (CNN), a 
bidirectional recurrent neural network model (bi-LSTM) and a support vector machine model (SVM) were trained on 
a random selection of the children’s data set. Models were evaluated on the remaining CT-children reports and the 
adult data sets.

Results: Test–retest reliability: Cohen’s Kappa = 0.86 and F1 = 0.919. Inter-rater reliability: Kappa = 0.80 and 
F1 = 0.885. Model performances on the Children-CT data were as follows. CNN: (AUC = 0.981, F1 = 0.930), bi-LSTM: 
(AUC = 0.978, F1 = 0.927), SVM: (AUC = 0.975, F1 = 0.912). On the adult data sets, the models had AUC around 0.95 and 
F1 around 0.91.

Conclusions: The models performed close to perfectly on its defined domain, and also performed convincingly on 
reports pertaining to a different patient group and a different modality. The models were deemed suitable for clas-
sifying radiology reports for future quality assurance purposes, where the fraction of the examinations with abnormal 
findings for different sub-groups of patients is a parameter of interest.
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Key points

� Neural models have been trained to classify Norwe-
gian radiology reports from CT-scans of children, 
with high accuracy.

� �e models performed well also on radiology reports 
from a di�erent patient population (adults) and a dif-
ferent modality (X-ray images).

� �e developed models are robust with respect to dif-
ferent contexts, and may be used in quality assurance 
processes.
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Background
Quality assurance (QA) of hospital radiology is an impor-
tant field, and QA of routines for CT-scanning is of par-
ticular interest because it accounts for nearly 70% of the 
radiation exposure from diagnostic radiological proce-
dures over-all [1]. Several large epidemiological studies 
performed world-wide in the past decade have identi-
fied increased risks of central nervous system tumours 
and other types of cancer related to diagnostic radiation 
exposure in childhood and adolescence [2–5]. Therefore, 
criteria for applying CT scans should be monitored in 
order to limit potentially harmful exposure. A basic QA 
parameter is the fraction of the examinations that pro-
duces positive findings for a given sub-group of patients, 
which may be a tool to indicate areas for review. In par-
ticular, it is interesting to identify possible subsets of 
patients that may have a rate of findings that might be 
too low to warrant the radiation risk, but also sub-groups 
where the rate is so high that it might indicate that the 
criteria used are too restrictive [6, 7].

The present article describes the development of a tool 
that can be used to estimate the fraction of positive find-
ings in a set of radiology examinations for a hospital in 
Norway. The classification task is more complex than 
one might imagine, since the hospital’s written radiology 
reports are unstructured (or semi-structured), and lack a 
binary conclusion of positive findings. We examine the 
use of different machine learning (ML) techniques for the 
given natural language processing (NLP) task. Accord-
ing to the “AI Index” [8], which seeks to monitor the 
progress in artificial intelligence (AI) in a balanced way, 
ML with end-to-end training is currently the most suc-
cessful approach for virtually all standardized NLP test 
problems. This refers to methodologies where the human 
experts only provide annotated or categorized text exam-
ples, as opposed to the inclusion of human knowledge 
engineering in the way of formalized syntax rules, ontol-
ogies or knowledge graphs. The present project follows 
this trend and uses end-to-end training with no human 
input except an expert’s labelling of positive and negative 
examples.

Within the field of clinical NLP  [9], radiology reports 
have provided data for a number of systems perform-
ing tasks such as coding of findings [10], suggestions for 
repeat examinations [11] and detection of nosocomial 
infections [12]. The system presented in [13] automated 
the coding of radiology reports using the SNOMED CT 
reference terminology. Chapman et  al. [14] present a 
document-level classification of CT pulmonary angi-
ography reports using a standard Naive Bayes classifier. 
Whereas deep neural networks have been extensively 
employed to process medical images, there are still only 
a few studies that employ neural network architectures 

to process textual radiology reports. A recent study [15] 
makes use of a convolutional neural network to extract 
pulmonary embolism findings from thoracic computed 
tomography (CT) reports. Another study [16] employs 
a recurrent neural network to distinguish between frac-
tures and non-fractures in a set of orthopaedic surgeon-
classified reports.

The studies referred above were performed on English 
clinical text, and smaller languages are to a large extent 
under-studied within the field of clinical NLP, although 
this is slowly changing [17]. The present work provides 
the first published results for radiological text written 
in the Norwegian language. In addition to large differ-
ences in vocabulary, Norwegian also differs from English 
in having three genders for nouns and more inflection 
forms in general, as well as arbitrarily long compound 
words, much like German. This tends to produce a higher 
number of low-frequency tokens. Although Norwegian is 
placed in the German language family, it also has gram-
matical similarities with English, however, such as the 
tendency to end sentences with a preposition (although 
sometimes frowned upon in both languages), which is 
never seen in German. Our study is unique also in the 
use of an unselected sample of all CT-examinations of 
children in a general hospital over a substantial period of 
time, with the task of identifying reports that document 
any kind of abnormal findings across different medical 
specialties.

Methods
The radiology reports under study are from Akershus 
University Hospital, which is located just outside Oslo. 
It serves a population of around 600.000 people and has 
close to 1000 beds. The primary data set consisted of all 
written reports from CT-scans of children (< 20  years) 
in the time period 2006–2017, for a total of 13.506. In 
addition, 1000 randomly chosen reports from CT-scans 
of adults and 1000 randomly chosen reports from chest 
x-ray of adults from the same hospital were included in 
order to test the models’ external validity.

The radiologist in the project (PH) labelled each report 
as negative or positive, according to his judgement 
regarding the presence of any description of abnormal 
findings, and we define this as the reference standard 
(RS). For all three data sets, abnormality was defined 
as any deviation from normal physiology, regardless 
of the clinical implications or the purpose of the given 
examination. The reports were semi-structured in the 
sense that most of them contained the token “R:” fol-
lowed by summary (Children-CT: 85%, Adult-CT: 87%, 
Adult-X-ray: 47%). However, the summary seldom gave 
a binary conclusion that could be used for classification 
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and frequently omitted details of abnormal findings 
that would be significant enough to trigger a positive 
classification.

In order to evaluate the reliability of the RS, a hospital 
clinician (PB) labelled a random sample of 500 children-
CT reports. Prior to this, he discussed a different random 
sample of 100 children-CT reports with the radiologist, 
in order to align their evaluations. A clinician was cho-
sen because he represents the users of the reports, and 
the agreement between those who write the reports and 
those who read them was deemed particularly important. 
In addition, the radiologist also re-labelled the same 500 
reports after a period of three months as an intra-rater 
reliability test. The reliability tests were performed with 
Cohen’s kappa index. Statistical significance tests were 
performed with bootstrap, using 10.000 resampled data 
sets generated by random sampling with replacement 
[18].

Prior to any analysis, a test set consisting of 10% of the 
CT-Children reports was sampled at random, and stored 
together with the CT-Adults and X-ray Adults data 
sets. These data sets were not accessed until all model 
selection and training was finished, in order to guaran-
tee unbiased performance estimates. The different ML 
algorithms had access to the remaining 90% of the CT-
Children data, called the development data set. In order 
to eliminate overfitting, the development data set was 
split further into a training set (80%) and a validation set 
(20%), where the former was used to train a given model 
with a given setting of hyper-parameters, and the latter 
was used to evaluate the performance of the resulting 
model. This made it possible to search for hyper-param-
eters that give good performance on unseen data, thus 
avoiding overfitting. When suitable hyper-parameters 
had been determined, these were used to train the model 
on the full development data set. The models that were 
developed had different sets of hyper-parameters, and no 
formalized optimization method was used in the search. 
Rather, the researchers used their modelling experience 
and tested a broad selection of hyper-parameter configu-
rations in an ad-hoc manner. The final models were eval-
uated on the held-out Test set, the CT-Adult set and the 
X-ray Adults set. Hence, all the performance estimates 
were created on data that were not a part of the model 
development or training. Figure 1 illustrates the various 
parts of the data set, where the development data set is 
the union of “Training” and “Validation”. The 500 reports 
used for reliability testing were sampled uniformly from 
the entire children-CT data set.

The chosen performance measures were AUC (area 
under the receiver-operator-characteristic curve) and 
F1-score. The AUC can be defined for models that give 
a numerical output and classify cases by comparing the 

output to a threshold, so that one can trade sensitivity 
for specificity by adjusting the threshold. The AUC has a 
convenient graphical representation that illustrates how 
the model’s sensitivity can be traded for its specificity. It 
can also be defined as the probability that a random posi-
tive case has a higher model score than a random nega-
tive one. The F1-score is commonly used in the ML and 
NLP communities. There are several alternatives to the 
F1 measure, including Cohen’s Kappa, which can all be 
computed from the confusion matrix in terms of True or 
False Positives (TP/FP) and True or False Negatives (TN/
FN), as shown in Table 1. For completeness we report the 
TP/FP/FN/TN figures as well.

The F1 score is defined as the harmonic mean of 
the model’s positive predictive value (precision) TP/
(TP + FP) and specificity (recall) TP/(TP + FN), and is 
given by the expression 2*TP/(2*TP + FP + FN) [19].

Although the main purpose of the clinician’s labelling 
(and the radiologist’s re-labelling) of the 500 children-CT 
reports was reliability testing, these were also evaluated 
by the F1-score. These scores were interpreted as refer-
ence values for human performance, against which the 
ML models were compared.

The radiology reports were extracted from the hos-
pital’s EPR system DIPS and pre-processed using the 
UDPipe package, with the Norwegian model trained 
on the Norwegian UD treebank [20]. While this pack-
age supports more advanced pre-processing like syntax 
parsing, which could potentially be useful, the present 
application used only tokenization and sentence segmen-
tation. Token in this context are essentially words (case 

Fig. 1 Data sets

Table 1 The confusion matrix

Actually positive Actually negative

Classified as positive True positives (TP) False positives (FP)

Classified as negative False negatives (FN) True negatives (TN)
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insensitive) and punctuation marks that are not a part of 
standard abbreviations.

Although radiology reports to a varying degree men-
tion body parts that were examined and found normal, 
the focus is on descriptions of abnormal findings. One 
would therefore expect to see an association between the 
report length and classification status. As a point of refer-
ence we therefore tested a trivial model that predicts the 
classification from the number of tokens in the report, 
only.

Our first nontrivial model was a support vector 
machine (SVM) over a bag-of-words representation of 
the texts. The model structure was linear, and term fre-
quency–inverse document frequency (TFIDF) was used, 
which is a standard method for scaling the impact of 
words according to their frequency within and between 
documents [20]. No limit was set to the number of tokens 
in the selected configuration. SVM is arguably the most 
widely used non-neural ML method, which sometimes 
performs comparably to NN methods [21].

Subsequently, a bidirectional recurrent neural network 
(RNN) model of type long short-term model (LSTM) 
was developed [22]. LSTMs have a wide-spread use in 
NLP, mostly for sequence labeling tasks but also for text 
classification tasks such as the current task [23]. Sim-
ple feed-forward neural networks require that the input 
length has to be fixed, which often is not the case with 
sequential data. An LSTM model solves this by process-
ing one input symbol at a time, and including the model’s 
own output from the previous step as additional input. 
In this way, the model has the ability to maintain infor-
mation about previous symbols that have been read, and 
can be trained to produce a final output that summarizes 
the entire document (positive or negative, in the present 
application). The present application uses a configura-
tion that combines an LSTM model that reads forward 
with one that reads backward, hence the label “bidirec-
tional”. Vector representations of the input words were 
used, and these were randomly initialized and tuned dur-
ing training. Different settings for hyper-parameters were 
explored, and the final model used 32 hidden units and 
word vectors of dimension 30. The token set was limited 
to the 10.000 most common ones. During training a 50% 
dropout rate was used.

A convolutional neural network (CNN) model was 
also developed, which solves the variable input length 
problem in a different way. It uses a kernel, in the form 
of a “sliding window” that is trained to identify features 
in short sub-strings of the input. The kernel output fea-
tures are fed into a computational layer that filters out the 
maximum value for each feature (so-called “max pool-
ing”). These are propagated through a hidden layer of 
neurons, which is connected to a single output node.

After hyper-parameter tuning, a model with a kernel 
width of 5, with 64 features and 10 hidden nodes was 
chosen, and the token set size was set to 5.000. Since Kim 
[24], CNNs have been widely used in NLP for text clas-
sification tasks, like sentiment analysis.

In order to illustrate the different models’ data require-
ments, we evaluated their F1-performances on the chil-
dren-CT test set after training on sub-samples of varying 
size from the training data set. We also evaluated the 
F1-performances as a function of the number of tokens 
included for the models.

Results
We first give some descriptive statistics of the Children 
CT patients: 45% of the patients were female, while their 
age distribution is shown in Fig. 2. Rounded to full per-
centages, 26% were referred from the Emergency depart-
ment, 24% from Paediatrics, 16% from Orthopaedics, 
11% from Surgery, 6% from Internal medicine, 9% from 
external sources and 9% from other units, including Psy-
chiatry. 68% were emergency cases.

All reports were written in Norwegian and the num-
ber of tokens per report varied from 3 to 402. The Chil-
dren-CT, Adult-CT and Adult-X-ray data sets had an 
average of 61, 87 and 31 tokens per report, respectively. 
The development part of the Children-CT data set had a 
vocabulary of 22.033 unique tokens. This vocabulary cov-
ered 98% of the tokens in the test set reports, 95% of the 
tokens in the Adult-CT reports and 95% of the tokens in 
Adult-X-ray reports. (The cover of the respective vocabu-
laries is lower, but this is irrelevant since tokens that are 
not seen during training are indistinguishable for the 
model.)

In the CT-children data set 45% of the reports were 
classified as positive. In the CT-adults data set 71% were 
positive and in the X-ray adult data set 66% were posi-
tive. There was a substantial uncertain area of reports 
that to a varying degree suggest possible findings without 
drawing firm conclusions, and in these cases professional 

Fig. 2 Age distribution of the CT children scan
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judgement can go either way. An example of this is the 
following short report, translated from Norwegian: “No 
enlarged intra-abdominal glands. The liver seems some-
what large, but the spleen is not enlarged. Unremarkable 
pancreas. No free intra-abdominal fluid.” It is not imme-
diately clear whether a liver that seems somewhat large 
represents an actual abnormality or not. Note also the 
typical abbreviated syntax with missing predicate verbs.

Table  2 gives the results of the human classifiers on 
the 500 random reports with Kappa-score, F1, precision 
(P = TP/(TP + FP)), recall (R = TP/(TP + FN) and the ele-
ments of the confusion matrix. Although the confidence 
intervals overlap substantially, the differences between 
the radiologist’s and clinician’s Kappa and F1-scores are 
statistically significant (p-values 0.019 and 0.014). This is 
because their misclassifications are strongly correlated.

The performances of the different ML models on the 
children-CT test set are given in Table 3. The F1-scores 
of the Bi-LSTM and CNN models are statistically sig-
nificantly higher than the SVM F1-score (p-values 0.0142 
and 0.0188). For comparison, the trivial model based only 
on word counts had an F1-score of 0.77 and an AUC of 
0.86.

Figure  3 shows the ROC-curve for the CNN clas-
sifier, where the area under the curve is 98.1% of the 
perfect performance, indicated by the rectangle. The 
ROC-curves for bi-LSTM and SVM are visually similar.

Tables  4 and 5 give the ML models’ performances on 
the adult-CT and adult-X-ray data sets, respectively.

Figure  4 shows the analyses of the models’ sensitivity 
to the size of the vocabulary, using logarithmic X-axes. 
With a vocabulary of size 10, the strongest predictor for 
a negative classification for the SVM model was the word 
“ingen” (meaning “no”), while the strongest predictor for 
a positive classification was the word “med” (meaning 
“with”), closely followed by two other prepositions: “på” 
(meaning “on”) and “av” (meaning “of”).

Figure 5 shows the analyses of the models’ sensitivity to 
the size of the training set, using logarithmic X-axes.

Discussion
Our main finding is that all three models perform very 
well on the test data set, with AUC scores around 0.98 
and F1-scores around 0.92. The F1-scores are clustered 
around the radiologist’s score, which may in practice rep-
resent an upper limit to the possible performance on this 
task. Although a report’s word count is associated with 
its classifications, this correlation was not strong enough 
to give reliable classifications by itself.

The study relied on the labelling effort of a single radi-
ologist, which is a potential weakness. However, the relia-
bility tests showed convincing results, with an inter-rater 
Cohen’s kappa level of 0.80 and a test–retest Cohen’s 
kappa of 0.86. A total of 15.506 reports were labelled, 
which is a very high number, and it is unavoidable that 
a human will make a few random errors. More impor-
tantly, there is a substantial uncertain area of reports 
that to a varying degree suggest possible findings without 

Table 2 Reliability results

Tester Kappa (CI) F1 (CI) P R TP/FP/FN/TN

Radioligist (re-test) 0.86 (0.82–0.91) 0.92 (0.90–0.94) 0.88 0.96 193/26/8/273

Clinician 0.80 (0.75–0.86) 0.89 (0.86–0.91) 0.86 0.92 184/31/8/17/268

Table 3 Model classification results on the Children-CT test set

Model Kappa (CI) F1 (CI) P R TP/FP/FN/TN

SVM 0.975 (0.967–0.983) 0.911 (0.894–0.929) 0.909 0.914 561/56/53/681

Bi-RNN 0.978 (0.970–0.986) 0.927 (0.913–0.941) 0.927 0.951 584/62/30/675

CNN 0.981 (0.974–0.988) 0.930 (0.917–0.944) 0.918 0.943 579/52/35/17/685

Fig. 3 ROC-curve for the CNN classifier
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drawing firm conclusions, and in these cases professional 
judgement can go either way.

The neural models performed slightly better than SVM 
with higher F1-scores, which was statistically signifi-
cant. The difference was mainly in the models’ specific-
ity (recall). Over-all, the reports are written in a relatively 
simple (even over-simplified) syntax with few negations, 
which is probably beneficial for SVM relative to the neu-
ral models and may explain the small differences.

All three models showed robust performance as a func-
tion of vocabulary size, with reasonable performance for 
10 tokens, adequate performance with 100 and close to 
maximum performance with 1000. It was unsurprising 
that the word for “no” was the strongest negative predic-
tor in the smallest SVM model, but more of a surprise 

that the strongest positive ones were prepositions. The 
reason may be that descriptions of specific locations in 
the body were used mostly in the context of abnormal 
findings.

The analysis of training set sizes showed that the SVM 
model was relatively robust, while the performance of 
the neural models deteriorated quickly for training sets 
with fewer than 1000 reports. It is a well-known fact that 
neural models tend to require more data, but the pre-
sent analysis is likely to overestimate this effect since the 
hyper-parameters were adjusted to the full data set.

The models were trained on a large and unselected 
material of CT-scan reports, spanning a wide range of 
medical specialities. Therefore, the models could not 
rely on simple disease-specific cues, and our goal was 

Table 4 Model classification results on the adut-CT data set

Model AUC (CI) F1 (CI) P R TP/FP/FN/TN

SVM 0.948 (0.934–0.962) 0.896 (0.877–0.915) 0.954 0.844 601/29/111/259

Bi-RNN 0.948 (0.934–0.962) 0.913 (0.895–0.930) 0.947 0.881 627/35/85/253

CNN 0.957 (0.944–0.970) 0.917 (0.900–0.934) 0.945 0.890 634/37/78/251

Table 5 Model classification results on the adut X-ray data set

Model AUC (CI) F1 (CI) P R TP/FP/FN/TN

SVM 0.957 (0.944–0.969) 0.914 (0.897–0.932) 0.936 0.893 586/40/70/304

Bi-RNN 0.967 (0.956–0.978) 0.924 (0.907–0.941) 0.959 0.892 585/25/71/319

CNN 0.966 (0.955–0.977) 0.908 (0.890–0.926) 0.962 0.860 564/22/92/323

Fig. 4 The F1-scores of the models for different vocabulary sizes Fig. 5 The F1-scores of the models for training set sizes
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to create robust models that could generalize the con-
cept of abnormal findings. This was confirmed, since 
the models performed well on the external validation 
data sets, with F1-score around 0.91 and AUC around 
0.95. From a scientific point of view, it is very satisfy-
ing that these models can perform adequately outside 
of their original scope. For CT images of children and 
adults, the distribution of the underlying diseases will 
necessarily be different. One might therefore expect 
that a model trained from children reports could 
experience problems with reports that describe find-
ings relating to diseases like heart attack or stroke that 
mostly affect the elderly. The favourable performance 
therefore indicates that the models do in fact capture 
a generic concept of abnormality. This conclusion is 
strengthened further by the fact that the models work 
well even on X-ray reports of adults, which are different 
in terms of modality as well as patient group. The goal 
of the study was to develop models that may be used 
for subsequent QA, and a robust performance is key for 
such applications.

The study of Chapman et  al. [14] uses a syntax rule 
based text processing algorithm for identifying features in 
clinical report documents. Although not directly compa-
rable to the present one, their most similar task appears 
to be disease classification, for which they reported an 
F1-score similar to ours (0.90). The present study has 
more similarities with that of Chen et al. [15], who also 
trained a CNN to classify radiology reports as positive or 
negative. They reported an AUC of 0.97 and an F1-score 
of 0.938, which are virtually identical to our results, so 
our study successfully replicates their results in a differ-
ent setting. The languages are different, and an applica-
tion of this kind to a Scandinavian language is novel. The 
other study used a larger set of radiology reports, but 
had fewer labelled training examples, so for the most rel-
evant parameters the present study is larger. There are 
also methodological differences, as Chen et al. compared 
their CNN model to a pre-existing rule-based classifier, 
while we compared SVM, bi-LSTM and CNN models. 
The most important contribution of our study may be the 
successful validation of our models on radiology reports 
relating to a different population (adults versus children) 
and a different image modality (X-ray versus CT).

As there are major differences between the clinical 
importance of a positive or negative finding between dif-
ferent patient groups, it is not possible to define a spe-
cific level or range that is generally appropriate. However, 
knowledge of the current practice is essential in any QA 
work, and the rate of positive findings in a specific sub-
group is a basic parameter of interest. We believe that 
our model may be applied in QA not only in our own 
hospital, but also others.

Conclusion
Our study shows that SVM, CNN and bi-LSTM models 
can be trained to classify Norwegian radiology reports 
from CT-scans of children. While the neural models 
CNN and bi-LSTM perform slightly better, even SVM 
was sufficient for close to perfect performance. All the 
three models performed well also on CT-reports for 
adults and X-ray reports for adults. This shows that the 
models are robust with respect to different contexts 
and may be used in quality assurance processes.

Until the present, neural network language modelling 
has been a cutting-edge technology reserved for spe-
cialists in the field, but this is changing rapidly as the 
technology is maturing. In the near future, we expect 
applications like the present one to be as commonplace 
as today’s use of linear or logistic regression for quanti-
tative analysis.

Our study also indicates that NLP tools can be used 
to chart our practice with a precision sufficient to ini-
tiate valuable discussions in our continuous effort to 
maintain good quality.

Abbreviations
AI: Artificial intelligence; AUC : Area under the receiver operator characteristic 
curve; bi-LSTM: Bidirectional long short-term memory; bi-RNN: Bidirectional 
recurrent neural network; CNN: Convolutional neural network; CT: Computed 
tomography; HER: Electronic health record; ML: Machine learning; NLP: Natural 
language processing; RNN: Recurrent neural network; ROC: Receiver operator 
characteristic; SVM: Vector machine.

Acknowledgements
Not Applicable.

Authors’ contributions
FD participated in programming the models, evaluating them, interpreting 
results and drafting the manuscript. TR participated in programming the 
models and reading, revising the manuscript. PH participated in defining the 
study, evaluating radiology reports, interpreting results and reading, revising 
the manuscript. PB participated in evaluating radiology reports, interpreting 
results and revising the manuscript. HH participated in extracting radiology 
reports and revising the manuscript. TG participated in extracting radiology 
reports and revising the manuscript. ØN participated in revising the manu-
script. LØ participated in model development and revising the manuscript. All 
authors read and approved the manuscript.

Funding
This work was funded by the Norwegian Research Council (NRC), specifi-
cally as part of the BigMed project (bigmed.no), Project Number 259055, an 
IKTPLUSS Lighthouse project. The NRC has no involvement in any research 
activity beyond providing funding, and has no role in the study design, data 
collection, analyses, or interpretation.

Availability of data and materials
Under Norwegian privacy law, the radiology texts cannot be made available 
because re-identification cannot be ruled out.

Declaration

Ethics approval and consent to participate
The study was approved as a quality assurance project by the hospital’s 
Privacy Ombudsman (Approval number 2016_113). Under Norwegian law 



Page 8 of 8Dahl et al. BMC Med Inform Decis Mak           (2021) 21:84 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

(Helsepersonelloven §26), this approval gives exemption from consent by the 
participants.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Health Services Research Unit, Akershus University Hospital, Lørenskog, 
Norway. 2 Institute for Clinical Medicine, Campus Ahus, University of Oslo, Oslo, 
Norway. 3 Department of Linguistics, University of North Texas, Denton, TX, 
USA. 4 Division of Diagnostics and Technology, Akershus University Hospital, 
Lørenskog, Norway. 5 Department of Cardiology, Oslo University Hospital Rik-
shospitalet, Oslo, Norway. 6 Data and Analytics, Akershus University Hospital, 
Lørenskog, Norway. 7 Department of Computer Science, Norwegian University 
of Science and Technology, Trondheim, Norway. 8 Department of Informatics, 
University of Oslo, Oslo, Norway. 

Received: 3 June 2020   Accepted: 21 February 2021

References
 1. Oatway WB, Jones AL, Holmes S, Watson S, Cabianca T. Ionising Radiation 

Exposure of the UK Population: 2010 Review. Public Health of England. 
2010.

 2. Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680,000 people 
exposed to computed tomography scans in childhood or adolescence: 
data linkage study of 11 million Australians. BMJ. (Clinical research ed.), 
2013; 346.

 3. Huang WY, Muo CH, Lin CY, et al. Paediatric head CT scan and subsequent 
risk of malignancy and benign brain tumour: a nation-wide population-
based cohort study. Br J Cancer. 2014;110(9):2354–60.

 4. Meulepas JM, Ronckers CM, Smets AMJB, et al. Radiation exposure from 
pediatric CT scans and subsequent cancer risk in the Netherlands. J Natl 
Cancer Inst. 2018;111(3):256–63.

 5. Lumbreras B, Salinas JM, Gonzalez-Alvarez I. Cumulative exposure to 
ionising radiation from diagnostic imaging tests: a 12-year follow-up 
population-based analysis in Spain. BMJ Open. 2019;18;9(9).

 6. Frush K. Why and when to use CT in children: perspective of a pediatric 
emergency medicine physician. Pediatr Radiol. 2014;44(Suppl 3):409–13.

 7. Muhm M, Danko T, Henzler T, Luiz T, Winkler H, Ruffing T. Pediatric trauma 
care with computed tomography–criteria for CT scanning. Emerg Radiol. 
2015;22(6):613–21.

 8. Perrault R, Shoham Y, Brynjolfsson E, et al. “The AI Index 2019 Annual 
Report”, AI Index Steering Committee, Human-Centered AI Institute, 
Stanford University, Stanford, CA, December 2019

 9. Demner-Fushman D, Chapman WW, McDonald CJ. What can natural 
language processing do for clinical decision support? J Biomed Inform. 
2009;42(5):760–72.

 10. Friedman C, Alderson PO, Austin JHM, Cimino JJ, Johnson SB. A general 
natural-language text processor for clinical radiology. J Am Med Inform 
Assoc. 1994;1(2):161–74.

 11. Dang PA, Kalra MK, Blake MA, Schultz TJ, Halpern EF, Dreyer KJ. Extraction 
of recommendation features in radiology with natural language process-
ing: exploratory study. Am J Roentgenol. 2008;191(2):313–20.

 12. Fiszman M, Chapman WW, Aronsky D, Scott Evans R, Haug PJ. Automatic 
detection of acute bacterial pneumonia from chest x-ray reports. J Am 
Med Inform Assoc. 2000;7(6):593–604.

 13. Elkin PL, Froehling D, Wahner-Roedler D, et al. NLP-based identification 
of pneumonia cases from free-text radiological reports. AMIA Annual 
Symposium proceedings, 2008; 172–176.

 14. Chapman BE, Lee S, Kang HP, Chapman WW. Document-level classifica-
tion of CT pulmonary angiography reports based on an extension of the 
ConText algorithm. J Biomed Inform. 2011;44(5):728–37.

 15. Chen MC, Ball RL, Yang L, et al. Deep learning to classify radiology free-
text reports. Radiology. 2018;286(3):845–52.

 16. Lee C, Kim Y, Kim YS, Jang J. Automatic disease annotation from radiology 
reports using artificial intelligence implemented by a recurrent neural 
network. Am J Roentgenol. 2019; 212: 734–40.

 17. Névéol A, Dalianis H, Velupillai S, Savova G, Zweigenbaum P. Clinical natu-
ral language processing in languages other than english: opportunities 
and challenges. J Biomed Semant. 2018;9(1):12.

 18. Efron B, Tibshirani R. An introduction to the bootstrap. New York: Chap-
man & Hall; 1993.

 19. Van Rijsbergen CJ. Information Retrieval (2nd ed.). Butterworth-Heine-
mann. 1979.

 20. Øvrelid L, Hohle P. Universal Dependencies for Norwegian. Proceedings 
of the Tenth International Conference on Language Resources and Evalu-
ation (LREC 2016). European Language Resources Association. 2016; 1579 
– 1585.

 21. Menger V, Scheepers F, Spruit M. Comparing deep learning and classical 
machine learning approaches for predicting inpatient violence incidents 
from clinical text. Appl Sci. 2018;8:981.

 22. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 
1997;9(8):1735–80.

 23. Zhou P, Qi Z, Zheng S, Xu J, Bao H, Xu B. Text classification improved by 
integrating bidirectional LSTM with two-dimensional max pooling. arXiv 
preprint 1611.06639, 2016.

 24. Kim Y. Convolutional neural networks for sentence classification. arXiv 
preprint 1408.5882, 2014.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


