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Abstract 

Background:  Epilepsy was defined as an abnormal brain network model disease in the latest definition. From a 
microscopic perspective, it is also particularly important to observe the Mutual Information (MI) of the whole brain 
network based on different lead positions.

Methods:  In this study, we selected EEG data from representative temporal lobe and frontal lobe epilepsy patients. 
Based on Phase Space Reconstruction and the calculation of MI indicator, we used Complex Network technology 
to construct a dynamic brain network function model of epilepsy seizure. At the same time, about the analysis of 
our network, we described the index changes and propagation paths of epilepsy discharge in different periods, and 
spatially monitors the seizure change process based on the analysis of the parameter characteristics of the complex 
network.

Results:  Our model portrayed the functional synergy between the various regions of the brain and the state transi-
tion during the seizure process. We also characterized the EEG synchronous propagation path and core nodes during 
seizures. The results shown the full node change path and the distribution of important indicators during the seizure 
process, which makes the state change of the seizure process more clearly.

Conclusion:  In this study, we have demonstrated that synchronization-based brain networks change with time and 
space. The EEG synchronous propagation path and core nodes during epileptic seizures can provide a reference for 
finding the focus area.

Keywords:  Epilepsy, Brain Network, Mutual Information, Complex Network

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Deep learning can autonomously learn information 
from epilepsy EEG signals, and macroscopically clas-
sify and give advance warning of different periods sei-
zure progress from the time dimension [1–3]. Moreover, 
the spatial network connected by the brain leads con-
tains important information. Epilepsy was defined as 
an abnormal brain network model disease in the latest 
definition [4–6]. From a microscopic perspective, it is 
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also particularly important to observe MI of the whole 
brain network based on different lead positions. About 
the brain network model, the major research points are 
on the propagation of EEG signals in the brain network 
model and the information interaction between brain 
different regions and periods, which is helpful to gain a 
deeper understanding of the whole process mechanism 
of the seizure brain network [7].

Brain discharge activity has the characteristics of 
transmission [8]. There will be some synchronization 
correlation between different signals. Brain network is 
a complex network with connections during static and 
dynamic brain activities. And its connection patterns 
are closely related to behavioral awareness [9]. EEG can 
record the different brain regions’time series signals, 
which can reflect the activity and coordination between 
the brain regions. Furthermore, the relationship between 
brain regions can be analyzed through the brain network. 
The theory of MI can be used to reveal the inherent hid-
den relationships between synchronization signals [10]. 
However, most of them are based on the original signal, 
without considering the phase space reconstruction of 
the data. On the basis of synchronization, complex net-
work technologies are often used to build brain network 
models. Yet now, most studies only selected two periods 
for researching, and did not involve more studies on the 
transition state of epilepsy in more different periods.

In our study, we selected EEG data from the represent-
ative temporal and frontal lobe epilepsy patients based 
on strict data selection criteria. Based on the phase space 
reconstruction and the calculation of mutual informa-
tion indicators, complex network technology was used 
to construct a dynamic brain network function model of 
epilepsy seizure. At the same time, the parameter char-
acteristics of the complex network were analyzed to 
describe the index changes and propagation paths of epi-
lepsy discharge in different periods. And the seizure  pro-
cess is monitored spatially.

Related work
Advances in research on brain network of seizures
Deep learning can perform automatic feature extrac-
tion for epilepsy EEG and macroscopic examination of 
the seizure onset period from the time dimension [11, 
12]. Moreover, the recognition of pre-ictal is identified 
to achieve the early seizure warning. In another aspect, 
the spatial network connected by the brain leads contains 
important information [2, 13]. From a microscopic per-
spective, it is also particularly important to observe MI 
of the whole brain network based on different lead posi-
tions. Studies in the past few years shown that The Net-
work Connected Epilepsy Center (the concept of brain 
network) which means more complex ”epilepsy network”, 

have already replaced the classic, simple single ”epilepsy” 
concept [14]. In the concept of ”epilepsy network”, Syn-
chronized activities of ”nodes” with increased excitability 
(or decreased inhibition) were involved in the occurrence 
of pathological epilepsy. Any effect on ”nodes” of the epi-
lepsy brain will affect the activity of other parts of the 
brain through the brain network.

Understanding the interrelationships between dif-
ferent brain regions and different nodes may help us to 
have a more complete understanding on the ongoing 
brain information interaction. Furthermore, it helps to 
explore the mechanism of brain seizures. In view of the 
EEG acquisition method, the polar lead serves as a basic 
node to record the information of various parts of the 
brain. At the same time, the lead transmitted to other 
brain regions/nodes and affected the activities of other 
brain regions/nodes [15]. The calculation of the degree 
of synchronization effect is called synchronization meas-
urement, including linear and nonlinear methods [16]. 
The linear methods are to calculate the direct correlation 
of the two variables from the time domain or frequency 
domain linear methods [17]. Non-linear methods are 
such as information transfer complexity, non-linear indi-
cators, etc [18]. The calculation of mutual information 
according to the time window is generally used for short-
term synchronization [10]. And the non-linear indicator 
can support the synchronization calculation of a longer 
time window [19]. Different measurement formulas cap-
tured different signal synchronization situations. The 
node propagation will have different impacts by different 
distance. the nodes in the ipsilateral brain area propagate 
fast and the nodes in the heteromeral brain area propa-
gate slowly. That is the reason of the problem of synchro-
nization delay of network nodes.

On the basis of synchronous indicators, Graph The-
ory technology is used to construct the functional net-
work topology [20]. A large number of experiments 
have shown that its network topology changed with the 
continuous progress of the attack, with regularity in the 
irregularity. Preliminary researches show that in 70% 
of patients, their brains are accompanied by a process 
of synchronous information enhancing and weakening 
during different seizure periods. Literature [14] showed 
that the intracranial EEG signals of 8 epileptic patients 
revealed that the network was moving in a more orderly 
direction: Such as a higher clustering coefficient during 
the seizure and a shorter path length. However, the net-
work is random and disordered during the inter-seizure 
period. Hao [21] showed that the aggregation degree 
of the core nodes during ictal period was significantly 
higher than interictal period, but the path length of the 
information transmission did not change significantly. 
Literature [22] used directed network outflow density 
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indicator to describe the early characteristics of epileptic 
areas before seizure. The information flow always came 
from the same side, and are independent of the onset 
side area. However, most studies only select two or three 
periods for researching, and do not involve more stud-
ies on the transition state of epilepsy in more different 
periods [14, 23–25]. To sum up, although there are so 
many studies on epilepsy monitor, it has not yet entered 
clinical application. The problem of epilepsy monitor is 
attributed to the study of spatiotemporal monitoring in 
different periods. And the key to accurate identification 
is to determine the pre-onset stage in combination with 
nonlinear dynamic changes. Traditional seizure detec-
tion and prediction are mostly based on small sample 
machine learning methods [26]. There is no pre-research 
on long-term large-scale data. Based on the diversity of 
clinical epilepsy types and actual needs, our study will 
select specific epilepsy patients’ data to carry out system-
atic long-term seizure monitoring research and synchro-
nize brain network function changes in different periods. 
We hope to promote the researches on seizure prediction 
and detection tasks and brain network Changes.

Complex network and brain network
Brain network
In the real world, there are a variety of auxiliary network 
applications, such as social network, protein network, 
interpersonal network and transportation networks [7]. 
Complex Network method is an important tool for con-
structing a network, measuring network indicators, and 
understanding the information transmission paths in 
the network [27, 28]. The essence of Complex Networks 
comes from a branch of mathematics – Graph Theory. 
Complex Network forms a network model by reducing 
them to a set of nodes and abstract connections [29]. It 
provides an excellent tool for studying all aspects of the 
brain network. The Complex Network was described 
mathematically based on graph theory technology, and 
was estimated by probability theory and statistics and 
dynamic system theory.

Brain network is an important embodiment of the 
application of complex network technology in brain 
studies [30]. The nodes are defined as EEG channels, 
and the edge is a direct embodiment of the elements of 
the node association matrix. Graph Theory can be used 
to identify key nodes and subnetworks. Researches on 
brain network can be divided into structural brain net-
work and functional brain network [31]. Structural brain 
network placed emphasis on neuroanatomy. Functional 
network focused on the interaction of EEG signals. In our 

research, we mainly focus on the construction of func-
tional network.

Parameter features of complex networks
The complex network of brain built by EEG data pay 
close attention to brain network activity indicators and 
information interaction at different periods [32]. In the 
complex network model, there are corresponding char-
acteristics measurement indicators for different net-
work nodes and edges. The most basic and commonly 
used indicators are clustering coefficient, path length, 
degree and degree distribution 

(1)	 clustering coefficient and average clustering coeffi-
cient Clustering coefficient is often used to measure 
part of the connectivity within the network. It can 
be expressed as the aggregation level of a certain 
node and its neighbors. As a general rule, we look 
at the entire model level globally. That’s why we can 
use average clustering coefficient as a measurement 
indicator to represent the measurement of global 
connectivity of the entire graph.

(2)	 average path length The path describes how fast the 
information flows. Path length refers to the num-
ber of steps that a network node to reach another 
node. Intuitively, in the network, when the average 
path length is short, it is easy to go from one point 
to another random point. The average path length 
is mainly used to determine whether the network 
model exhibits small-world network attributes.

(3)	 degree and degree distribution The degree of nodes 
and the distribution of nodes can reflect the relative 
importance of the nodes, intuitively, the number of 
edges connected between a certain node and other 
nodes. In our study, the above three indicators were 
selected as indicators to measure network synchro-
nization.

Materials and methods
Data
Data selection criteria
In order to ensure the construction of the brain net-
work and avoid the generation of artifacts as much as 
possible, our data were selected in strict accordance 
with the following criteria: 

1)	 Must be patients with focal epilepsy;
2)	 Have obvious seizures and EEG signals;
3)	 Each patient’s long-term EEG must include at least 2 

or more seizures.
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Data details and preprocessing
Based on our data selection criteria, we selected two 
epilepsy patients. They are patients with temporal lobe 
epilepsy (Temporal Lobe Epilepsy, TLE) and patients 
with frontal lobe epilepsy (Frontal Lobe Epilepsy, FLE). 
And We used their data to build a brain network model 
for comparison. The specific information of the data is 
shown in Table 1. The calculation data mainly adopted 
the entire process of each seizure selection including 
inter-seizure period, pre-seizure period, and seizure 
period. At the same time, it was compared with the 
EEG signals during sleep. Each episode was divided 
into 2 to 6 segments, each segment is 20s long. And the 
same length data segments were used to calculate the 
degree of synchronization.

Methods
Research framework
Figure 1 shows the overall framework of this study. First, 
we selected the EEG data of representative temporal lobe 
and frontal lobe epilepsy patients according to the data 

selection criteria. For the multi-channel time series EEG 
data, we calculated the synchronization index based on 
Phase Space Reconstruction and MI. After that, we used 
the uniform MI of all channels as the threshold and used 
complex network technology to build a dynamic brain 
network function model of seizure. Finally, the analysis 
of our network was based on the analysis of parameter 
characteristics of complex network. Our model described 
the index changes and propagation paths of epilepsy dis-
charge in different periods. We spatially monitor the evo-
lution of seizure.

Synchronization calculation
There are four kinds of synchronization measures [33–
35]: such as correlation calculation, phase calculation, 
information-based synchronization index and Granger 
causality measurement. In this article, we adopted the 
most commonly method of mutual information. Here, 
the original EEG data was not used to directly obtain the 
mutual information. Considering that neuroelectric sig-
nals are two-dimensional displays of nonlinear systems, 

Table 1  Experimental data specific information

Patient Gender Ages Leads State Monitor time Seizures Seizure time

TLE Female 28 22 W→SP 24H 5 824s

FLE Male 39 22 W→SP 24H 4 895s

Fig. 1  Research framework of brain network system
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we used the multi-dimensional nonlinear system recon-
structed by phase space to perform the calculation. The 
mathematical principle is as following:

For the X leads’collected EEG signals, a scat-
ter plot is drawn between every two leads. And 
to obtain the maximum value of mutual informa-
tion in different regions gridded every two leads. 
We set the collected EEG signal Xk ,i to M channels 
(k = 1, · · · ,M) , N time points (i = 1, · · · ,N ) , and 
use phase space to reconstruct an embedded vector 
Xk ,i = (xk ,i, xk ,i+l , xk ,i+2l , · · · , xk ,i+(m−1)l) , Where l is the 
amount of delay and m is the number of dimensions.

The vector set can be expressed as:

These vectors have a certain probability of being scat-
tered in the phase space. The result of lead a by phase 
space to reconstructed is [s1, s2, · · · , sn] , The correspond-
ing probability is scattered as [ps(s1), ps(s2), · · · , ps(sn)] ; 
The result of lead b by phase space to reconstructed is 
[q1, q2, · · · , qn] , The corresponding probability is scat-
tered as 

[

pq(q1), pq(q2), · · · , pq(qn)
]

 . The information 
entropy of lead a and lead b can be obtained from Shan-
non entropy formula:

Then the joint entropy of the two leads can be obtained 
from The joint Shannon entropy formula:

In the end, bring the previous three formulas into Shan-
non’s formula to get the amount of information between 
the two channels:

Brain network model
Construction of brain network

First, the phase space reconstruction of nonlinear 
dynamics was used to recalculate the original EEG sig-
nal to a multi-dimensional nonlinear system. Then we 
calculated the mutual information between the leads 
based on the mutual information entropy to obtain the 
lead synchronization indicator. After that, we binarized 

(1)







x1 x2 · · · xm
. . .

...
xn−m+1 xn−m+2 · · · xn







(2)H(S) =−

∑

i

ps(si) log2 ps(si)

(3)H(Q) =−

∑

j

pq(qj) log2 pq(qj)

(4)H(S,Q) =−

∑

j,i

pqs(qj , si)log2pqs(qj , si)

(5)MI(S,Q) =H(S)+H(Q)−H(S,Q)

the indicator to reduce the influence of weakly corre-
lated leads (There will be a certain correlation between 
leads). Whether two nodes have edges depended on the 
size of the synchronization between the two channels. 
When the amount of MI is greater than the threshold, 
there is a connected edge, otherwise no. In this way we 
get 0-1 binary unauthorized network. If the relationship 
strength between nodes with connected edges is given to 
the connected edge weight, in that way, we got weighted 
network. There are many ways to choose the threshold 
without a standard conclusion. In this study, the uniform 
mutual information of all channels was selected as the 
threshold to complete the construction of the network 
model.

Statistical Analysis We use complex network meas-
urement indicators to analyze the brain network and to 
analyze the characteristic changes in different seizure 
periods. At the same time, statistical testing was per-
formed. If the data has a normal distribution and homo-
geneous variance, then an analysis of variance (ANOVA) 
model was used for statistics to test different eigenvalues 
for synchronization; otherwise, a non-parametric test 
was used. The analysis was performed using SPSS soft-
ware (version 18) and the inspection level was set to 0.05.

Results and discussion
Comparison of different periods under the synchronization 
index
For patient with temporal lobe, Table  2 shown the sta-
tistical characteristics of mutual information indicator. 
Patient with TLE had the highest EEG mutual informa-
tion during ictal period. It meant that the network had 
the highest synchronization during this period. Moreo-
ver, the EEG of conscious period had the lowest syn-
chronization. The mutual information between the sleep 
period and the interictal period was relatively uniform, 
and the synchronization during the preictal period was 
slightly lower than ictal period. From the perspective of 
difference coefficient of variation, the difference of ictal 
seizure was large, but the awake period was small.

For patient with frontal lobe epilepsy, the mutual infor-
mation indicators in Table  2 shown the highest EEG 

Table 2  The synchronization index of different periods

EEG Average MI Coefficient of Variation

TLE FLE TLE FLE

AWAKE 0.926±0.132 1.007±0.066 7.549±2.619 7.960±1.647

SLEEP 1.062±0.062 1.000±0.143 9.201±2.273 9.472±2.108

ICTAL 1.072±0.119 1.071±0.176 8.431±2.206 10.283±1.744

INTERICTAL 1.062±0.062 1.010±0.143 10.201±2.273 9.472±2.002

PREICTAL 1.032±0.119 1.021±0.176 7.980±1.045 8.534±0.653
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synchronization during ictal, followed by pre-ictal. The 
mutual information indexes of sleep period, interictal 
period and awake period were relatively uniform. From 
the coefficient of variation, it was found that the seizure 
period is the most unbalanced and the sober period was 
the most consistent. Table 3 shown the statistical test of 
mutual information indicators in different periods. the 
ictal, preictal and interictal were less than 0.5, which 
meant that the mutual information entropy value can 
distinguish the main indexes of interictal period, preictal 
period and onset period.

Pathway of synchronous discharge
Our brain network only shown 20 pairs of channels with 
the largest mutual information. In order to facilitate 
calculation, the number sequence was used in Table  4 
instead of the corresponding lead name. Electrode place-
ment as shown in Fig.  2. Apart from the 19 identified 
leads in the figure, it also included reference electrodes 
m1 and m2, and an additional electrode Afz.

Figure  3 shown that the changes of brain network 
in the whole process seizure in patients with TLE. 
The seizure process was divided into 5 periods, each 
period shown a 20s brain network. The red nodes in 
the figure were marked with number, and the numbers 
corresponded to the leads. The connection between 
node and node meant a propagation relationship. The 
vertical axis and the horizontal axis represented the 
range of data connection, which has no practical sig-
nificance here. Our focus was on the network model. 
The network shown that the seizure period started 
from the left temple. Epilepsy seizure started from the 
left temporal region of the left temple. And continu-
ous spikes can be seen through the left middle tempo-
ral region (T3) and the left posterior temporal region 
(T3 and T5) of the left middle temple and the back 
temple. During ictal, the network was first activated in 
the left hindbrain area, then was symmetrically active 
throughout the brain, and finally remained active in 

the right forebrain area. This was similar to the clini-
cal diagnosis. The main network path of patient with 
temporal lobe epilepsy: (F3− F4 − F8)− (C3− O2)−

P3− (T3− P3)− F7− T5.
Figure  4 shown that the changes of brain network in 

the whole process seizure in patients with FLE based on 
mutual information entropy. The seizure process was 
divided into 5 periods, each period shown a 20s brain 
network. The red nodes in the figure were marked with 
number, and the numbers corresponded to the leads. The 
connection between node and node meant a propaga-
tion relationship. The vertical axis and the horizontal axis 
represented the range of data connection, which has no 
practical significance here. Our focus was on the network 

Table 3  Statistical testing of  mutual information 
indicators in different periods

Asterisk means that there is a relationship between the two in the table

EEG Average MI Coefficient 
of Variation

TLE FLE TLE FLE

SP vs AW P< 0.05∗ P> 0.05 P< 0.05∗ P< 0.05∗

SP vs PRE P< 0.05∗ P< 0.05∗ P> 0.05 P< 0.05∗

PRE vs ICTAL P< 0.05∗ P< 0.05∗ P< 0.05∗ P< 0.05∗

INTER vs ICTAL P< 0.05∗ P< 0.05∗ P> 0.05 P< 0.05∗

PRE vs INTER P> 0.05 P< 0.05∗ P< 0.05∗ P< 0.05∗

K-W test P< 0.05∗ P< 0.05∗ − P< 0.05∗

Fig. 2  10/20 system electrode placement

Table 4  The corresponding Lead names

Number Leads Number Leads

1 m1 12 Cz

2 F7 13 Pz

3 T3 14 Fp2

4 T5 15 F4

5 Fp1 16 C4

6 F3 17 P4

7 C3 18 O2

8 P3 19 m2

9 O1 20 F8

10 Afz 21 T4

11 Fz 22 T6
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model. The complex activities of spike and slow wave 
during the seizure period were mainly in the right ante-
rior zone (F4 and Fp2), and occasionally in the left ante-
rior zone (F3 and Fp1). This involved the entire channels. 
Some seizure shifted to the anterior-dominated slow 
activity, involving the right anterior temporal region (F8) 
and occipital region (O2). Using the network diagram, we 
can conclude that the network in the prefrontal area dur-
ing seizure was active. Moreover, the left and right frontal 
areas were alternately active, followed by the right poste-
rior occipital area. The main network path of patient with 
frontal lobe epilepsy: (P4 \ O1 \ T4 \ T5)− (F7 \ T3)−

F4 − F7− Fz − (Fp1 \ Fp2 \ F4)− (Fp1 \ F3).

Core nodes of brain network
As mentioned before, the construction of the brain net-
work mainly depended on whether a numerical relation-
ship was established between the leads. When there is a 
relationship, we defined that as 1, otherwise 0. The degree 
was defined as the number of each lead received from 
other leads. Degree evaluated the activity of the nodes 
or leads. We calculated the total number of degrees 
obtained during the five different periods of the entire 
episode, and the results are shown in Fig. 5. The lead with 
the highest node degree is the most active during the 
entire episode. Combined with the patients’clinical diag-
nosis reports, we found that patient with temporal lobe 

Fig. 3  Changes of brain network during seizure in temporal lobe epilepsy
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epilepsy were more active in T5, O1, T4, F3, and F7, and 
patient with frontal lobe epilepsy were more active in F4, 
F3, C4, and C3. The degree distributions of the patients’ 
different nodes were very close to the clinical neuron dis-
charge frequent area.

Brain network topology indexes
Here, Fig.  6 shown that the average degree distribution 
of the two patients were calculated from the inter-seizure 
period to the post-seizure period. When the interictal 
transitioned to the ictal, the degree distribution of the 
entire neural network shown an initial downward trend. 
During the epileptic seizure, the low-level degree distri-
bution of the brain network shown a slight increase, and 
then decline. From the analysis of the degree of network 

information interaction, information interaction was 
related to degree distribution. The more edges the nodes 
connected to, the more active the information interaction 
were. As time progressed, the seizure also followed.

As can be seen from Fig. 7, patient with temporal lobe 
and patient with frontal lobe have a stable information 
transmission path during interictal. In the early stage of 
seizure, due to the attack was about to arrive, with the 
excess abnormal discharge, the average path of propa-
gation became shorter. Due to the spread of the brain 
discharge, the average path to the ictal reached the mini-
mum. Later in the seizure, the seizure gradually ended, 
the brain resumed normal discharge, and its average path 
gradually increased.

Fig. 4  Changes of brain network during seizure in frontal lobe epilepsy
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For the clustering coefficient, Fig.  8 described the 
degree of aggregation of the entire network. The 
higher the value meant the higher the concentration of 

network nodes. From the beginning of the interictal, 
the network was highly aggregated and modularized. 
Some times before ictal period, the clustering coeffi-
cient gradually decreased. Considering that excessive 
brain discharge caused a more fragmented network, the 
aggregation coefficient decreased. The brain network 
showed a decentralized trend during the Entire seizure 
process. Until later stage of the attack, the brain dis-
charge returned to normal and resumed aggregation.

The above network degree distribution and average 
clustering coefficient shown that both patients with 
temporal lobe and frontal lobe had similar trends dur-
ing the state transition. In Clinical practice, from inter-
ictal to the middle and late period of seizure, the nerve 
electrical activity would have a process from continu-
ing to strengthen to stable. This was consistent with 
changes in the distribution of brain network features. 
For the path length of discharge propagation, in theory, 
due to the focal attack, its path distribution fluctuates 
was less, which was also verified from the average path 
distribution of patients with the temporal lobe and 
frontal lobe.

Conclusions
In our study, we selected EEG data from representative 
temporal lobe and frontal lobe epilepsy patients. Based 
on Phase Space Reconstruction and the calculation of 

Fig. 5  Distribution of core nodes in epilepsy leads

Fig. 6  The degree distribution of the whole process of seizure based on the brain network model: Picture on the left was temporal whole brain 
average degree distribution, picture on the right was frontal lobe whole brain average degree distribution

Fig. 7  The average path distribution of the whole process of seizures based on brain network model: Picture on the left was temporal whole brain 
average path distribution, picture on the right was frontal lobe whole brain average path distribution
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MI indicator, we used Complex Network technology to 
construct a dynamic brain network function model of 
epilepsy seizure. At the same time, about the analysis of 
our network, we described the index changes and prop-
agation paths of epilepsy discharge in different periods, 
and spatially monitors the seizure change process based 
on the analysis of the parameter characteristics of the 
complex network.

Judge from the results, we have demonstrated that 
brain network based on synchronization changed with 
time and space. EEG synchronous propagation path 
and core nodes during epileptic seizure can provide 
a reference for searching for the focal area. Especially 
mutual information indicators provided quantitative 
information on the degree of information interaction, 
which can be consistent with clinical manifestations. 
EEG signals reflected the discharge of neurons in the 
brain. The degree of synchronization of EEG signals 
between the channels represented the strength of infor-
mation exchange. Therefore, our study can be used as 
one of the methods to explore the changes of brain net-
work in patients with epilepsy.
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