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Abstract 

Background:  Epilepsy is one of the diseases of the nervous system, which has a large population in the world. Tra-
ditional diagnosis methods mostly depended on the professional neurologists’ reading of the electroencephalogram 
(EEG), which was time-consuming, inefficient, and subjective. In recent years, automatic epilepsy diagnosis of EEG by 
deep learning had attracted more and more attention. But the potential of deep neural networks in seizure detection 
had not been fully developed.

Methods:  In this article, we used a one-dimensional convolutional neural network (1-D CNN) to replace the residual 
network architecture’s traditional convolutional neural network (CNN). Moreover, we combined the Independent 
recurrent neural network (indRNN) and CNN to form a new residual network architecture-independent convolu-
tional recurrent neural network (RCNN). Our model can achieve an automatic diagnosis of epilepsy EEG. Firstly, the 
important features of EEG were learned by using the residual network architecture of 1-D CNN. Then the relationship 
between the sequences were learned by using the recurrent neural network. Finally, the model outputted the clas-
sification results.

Results:  On the small sample data sets of Bonn University, our method was superior to the baseline methods and 
achieved 100% classification accuracy, 100% classification specificity. For the noisy real-world data, our method also 
exhibited powerful performance.

Conclusion:  The model we proposed can quickly and accurately identify the different periods of EEG in an ideal con-
dition and the real-world condition. The model can provide automatic detection capabilities for clinical epilepsy EEG 
detection. We hoped to provide a positive significance for the prediction of epileptic seizures EEG.
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Background
Epilepsy is a chronic brain dysfunction syndrome. 
Nearly 65 million people in the world are suffering from 
epilepsy, which accounts for about 1% of the world’s 
population [1]. The causes of epilepsy were various, 
and the course of the disease would repeat for a long 
time. So that, epilepsy not only seriously endangered 
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the health of patients but also brought great mental 
pressures [2, 3]. The development of EEG provided a 
non-invasive, low-cost, and effective technology that 
can be used in clinical trials to detect cerebral cortex 
brain activity and related diseases [4–6]. A large num-
ber of studies have shown that epilepsy EEG was signif-
icantly different from normal EEG. The brain activities 
of patients with epilepsy usually included the interictal 
and the ictal period [7]. When brain activities change 
from one state to another, the EEG signal will change 
obviously. Therefore, EEG is an important basis for the 
clinical diagnosis of epilepsy.

The professional neurologists’reading of EEG is the 
main method to determine epilepsy [8]. However, it is 
complex and time-consuming to observe and detect 
long-range EEG signals by people. The heavy workload 
can easily cause fatigue of medical personnel and lead to 
inaccurate manual detection. Moreover, we often make 
a judgment only through professional experience. So, 
an automatic detection and classification model of EEG 
become more and more urgent and important.

In recent years, some significant progress has been 
made in the diagnosis of epileptic diseases and the detec-
tion of seizures based on Electroencephalogram (EEG). 
Nonlinear dynamics, machine learning, deep learning 
and other technologies have also been applied to the 
research of epileptic diseases, and good results have been 
achieved. The recurrent neural network(RNN) [9] and 
the CNN [10] are the research hotpots in recent years. 
The former focuses on the context of time series, and the 
latter focuses more on EEG feature extraction. Unlike 
traditional small-dose calculation research, deep neural 
networks are focused more on big data research. How-
ever, there are still some problems that cannot be solved 
at this stage.

The main contributions of our work are as follows: a 
new neural network architecture, which was the recur-
rent convolution neural network(RCNN), was proposed 
by combining the advantages of the recurrent neural net-
works and the convolutional neural networks. This new 
architecture used the one-dimensional convolutional 
neural network to extract the features of the original 
EEG, then used the independent recurrent neural net-
work to learn the relationship between time series, and 
finally realized the automatic diagnosis of epileptic EEG 
by classification function. We used the Bonn University 
data sets and our private data sets for training and test-
ing. In order to avoid the individual specificity in the 
epilepsy diagnosis algorithm, we ensured that the data 
sets used in the experiment were from different individu-
als, and compared with the relevant frontier research. 
Our method had generally achieved good results. In 
the binary classification task, even 100% of results are 
obtained in accuracy and specificity. These results indi-
cated that the new architecture we proposed can effec-
tively realize the automatic detection of epilepsy EEG.

Related work
Models of convolutional neural network
Convolutional neural network (CNN) is a type of feed-
forward neural network that includes convolution opera-
tions and has a deep structure. The characteristics of it 
are local perception and parameter sharing, which is 
one of the hottest research points in the field of image 
processing [11]. A complete CNN contains a convolu-
tion layer, a down-sampling layer, and a fully connected 
layer [12], as shown in Fig.  1. The convolution layer 
can enhance certain features of the original EEG signal 
through convolution operations and reduce the impact of 
noise; The downsampled layer, which is often referred to 

Fig. 1  Schematic diagram of convolutional neural network structure
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as the pooling operation, can reduce the amount of data 
processing while retaining useful Information; the fully 
connected layer gets the image features extracted by the 
neural network. And the full connection layer outputs 
the final result through the function “softmax” in Fig. 1.

Figure  2 shows a common frame diagram of epilepsy 
prediction system based on convolutional neural net-
work. The key of the system lies in the reconstruction of 
the original EEG data, that is, the reconstruction of the 
input image. In the existing methods, one-dimensional, 
two-dimensional and three-dimensional EEG are recon-
structed according to the dimension of convolution 
operation [13–17]. The latest seizure prediction studies 
which use CNN in recent years, use convolution features 
of different dimensions to build models. Convolutional 
neural network often uses reconstructed image process-
ing in the prediction of seizures. With the changes of 
EEG data dimension, important information may be lost. 
The existence of the pooling layer will also lead to the 
loss of many very valuable information. And it will also 
ignore the relationship between the whole and the part. 

Therefore, the research based on convolution model need 
to be improved.

Models of recurrent neural network
Recurrent neural networks (RNN) have achieved great 
success and are widely used in the field of time series 
analysis [18], for example, the natural language process-
ing. The recurrent neural network includes an input layer, 
a hidden layer and an output layer. Figure 3 shows a com-
plete recurrent neural network structure. Among them, 
x is the input data; s is the memory of the sample at time 
t, that is, the hidden layer; o is the output sample, and U 
and V are the weight of the input and output samples. 
Different from the traditional feedforward feedback neu-
ral network, RNN introduces a directional loop, as shown 
in the right part of Fig. 3. The output of time t is related 
to the previous time as well as the current time. RNN 
can deal with the problem of correlation between inputs, 
especially the EEG time series analysis.

Different from the EEG analysis of convolutional neu-
ral network, the original EEG data does not need to 

Fig. 2  10/20 system electrode placement

Fig. 3  Schematic diagram of recurrent neural network structure
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be reconstructed, and RNN can directly process EEG 
sequence, which ensures the maximum information 
retention of EEG. CNN has obvious advantages, but 
there are still shortcomings, and the situation of RNN is 
similar. Because the parameters of each recurrent layer 
network are shared, as the depth of the layer increases, 
the RNN will have the problem of gradient explosion or 
gradient disappearance. In order to solve these problems, 
some variant RNNs, such as GRU [19], LSTM [20], bi-
LSTM [21] and many more are used in the study of sei-
zure prediction [22–24].

Models of recurrent convolution neural network
We listed the researches of CNN and RNN in epileptic 
seizure. CNN has better spatial information capturing 
ability, while RNN is better at analyzing the relationship 
between time series. We know that EEG collected from 
the clinic is not only the cumulative of time, but also 
the interaction between different leads. And the spatial 
relationships between brain network nodes are equally 
important. Considering the different advantages of CNN 
and RNN, a new architecture idea is applied to EEG anal-
ysis. Figure 4 shows a CNN and RNN recurrent convolu-
tional neural network seizure detection system. The basic 
idea is that under the movement of a fixed time sliding 
window, the CNN network learns the spatial features 

between the sequences and extracts them. And the net-
work inputs them into the recurrent neural network 
according to the time sequence. Finally, the classification 
results are given through the time relationship between 
RNN learning sequences.

The research based on this new architecture has not 
been carried out sufficiently. Ahmedt David et  al. [25] 
proposed a simple end-to-end architecture based on con-
volution and recurrent neural networks, which extracted 
spatiotemporal representations from 119 epileptic sei-
zure databases of 28 patients. Subsequently, the cosine 
similarity distance between the test representation and 
the library of five abnormal seizures separated from the 
test data set was used to identify seizure tests with abnor-
mal patterns that did not conform to known behaviors. 
The motion features extracted based on clinical image 
data were used for seizure detection to provide more pos-
sibilities for the diagnosis of epilepsy diseases. Although 
this framework did not use EEG data, it was possible for 
multimodal research to predict seizures based on EEG 
and Surveillance Video.

Meysam et al. [26] proposed a seizure detection model 
of convolution and long-short-term memory recurrent 
neural network based on clinical detection of EEG. This 
model can input the convolution features of the multi-
channel EEG data of the reconstructed two-dimensional 

Fig. 4  Framework diagram of epileptic seizure prediction using Recurrent Convolutional Network
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pictures into the relationships between the learning 
sequences in the LSTM, and finally output the classifica-
tion results. XY Wei et al. [27] proposed a similar study, 
but the difference was the image reconstruction. In this 
paper, the team converted the EEG time series into two-
dimensional EEG, and then fused multi-channel into 
three-dimensional structure. A feasible method, long-
term recursive convolutional network (LRCN), was pro-
posed to implement an end-to-end automatic prediction 
model for seizures.

Convolutional network blocks are used to automatically 
extract depth features from data. The LRCN combined 
the LSTM neural network block to distinguish different 
image sequences and identified the front segment from 
the streaming data. The model was tested with inde-
pendent data and provided a higher sensitivity of seizure 
prediction and a low false prediction rate of 0.04 FP/h 
than the method manually designed in previous studies 
and a single deep neural network. This reconstruction 
of the external structure was an important point of our 
researches, but some teams considered the combination 
of two networks within the neural network. The team 
of Li Feifei [28] proposed an E3D-LSTM network with 
strong memory. 3D convolution was used instead of 2D 
convolution as the basic calculation operation of LSTM 
network, and a self-attention mechanism was added to 
enable the network to take into account both long-term 
and short-term information dependence and local spati-
otemporal feature extraction. This provided new ideas for 
video prediction, motion classification and other related 
issues, and was a very enlightening work.

Materials and methods
Data
Public dataset
The public data set used in this experiment is from the 
EEG data set of the University of Berne [29]. This data 
set has been preprocessed into EEG under ideal con-
ditions and is widely used. The database contains five 
groups, each group of 100 time series, each time series 
length is 23.6 s. Groups A and B are from the resting state 
of healthy volunteers, Groups C, D, and E all come from 
patients’ EEG. The difference is that the time of epilep-
tic seizure is recorded in Group E, while there is no sei-
zure in the other two groups during the whole recording 
period.

Private dataset
The private data set for this experiment came from the 
Department of Neurology at the First Affiliated Hospi-
tal of Xinjiang Medical University and the First Affili-
ated Hospital of Sun Yat-Sen University from 2013 to 
2016. There were 15 patients with epilepsy (5 males and 
10 females, aged 6–51 years). Scalp electrodes are placed 
according to the international 10–20 system. The sam-
pling frequency is 500 Hz. The total duration of available 
EEG recordings is approximately 540  h. The onset and 
offset time intervals are manually annotated by clinical 
experts after visual inspection, for a total of 168 episodes. 
According to the requirements of experimental design 
and the definition of stages, EEG is classified into interic-
tal period, preictal period, and ictal period. The informa-
tion about the EEG data set is shown in Table 1.

Table 1  Experimental data specific information

PS: F, female; M, male; SPS, simple partial; CPS, complex partial, IT, ictal time

ID Sex Age Type Time Number of seizures IT

1 F 36 SPS 48 10 654 s

2 F 22 SPS, CPS 48 12 274 s

3 F 36 CPS 48 14 1386 s

4 F 40 SPS 24 6 302 s

5 M 6 SPS 48 21 453 s

6 F 16 SPS, CPS 24 7 329 s

7 F 16 SPS, CPS 24 8 254 s

8 F 28 CPS 24 5 400 s

9 F 31 SPS 24 9 423 s

10 M 51 SPS 72 30 1064 s

11 M 20 SPS, CPS 48 19 4072 s

12 M 46 SPS 24 6 208 s

13 F 15 CPS 48 8 137 s

14 F 28 SPS 24 5 824 s

15 M 39 SPS, CPS 24 4 895 s
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Definitions of different periods
The seizure process is divided into four states, includ-
ing interictal, preictal, ictal, postictal [30–32], as shown 
in Fig.  5. Clinical experts have marked the starting and 
ending points of seizures in the data. In order to predict 
future seizures, the key of the epileptic seizure prediction 
system is to separate preictal from the interictal period.

Preictal is defined as the data segment before the ictal 
(or seizure) cycle, which can be clearly identified from 
the EEG signal. However, different studies have differ-
ent definitions of the length of preictal, ranging from 10 
to 60 min [33]. In addition, each patient data contains at 
least two seizures in this study, but the interval between 
the two seizures can be long or short. Through the work 
of different studies, the best pre-onset period is now 
defined as 30 min before the onset. For seizures less than 
30 min from the previous seizure, we think they are only 
one seizure.

Interictal is defined as the part of the signal that is nei-
ther ictal nor preictal. In our experiment, the data of at 
least 1 h after seizure and at least 40  min after seizure 
were defined as the interictal period through literature 
review. In this paper, the data of 30  min in the 35  min 
before each attack is used as the pre-onset data to main-
tain the balance of the positive and negative samples in 
the data sample set.

Methods
System framework of RCNN
In this study, the residual network architecture was com-
bined with the recurrent neural network, and 1-D CNN 
was used to replace the two-dimensional convolution 
(2-D CNN) operation in the residual structure. The pur-
pose of this was to establish a spatiotemporal deep learn-
ing model for epileptic seizure detection. 1-DCNN was 

used to automatically extract signal features from the 
original EEG, and the indRNN neural network was used 
to distinguish different categories based on the extracted 
features. The construction process of the epilepsy EEG 
automatic detection model in this paper is shown in 
Fig.  6. The model ran on a high-performance computer 
with Python 3.

In this study, the indRNN network was combined with 
the previously proposed convolutional neural network to 
create a spatiotemporal deep learning model for seizure 
detection. The traditional convolutional neural network 
processed the input data by convolution and pooling 
operations, and then inputted into the fully connected 
layer to output the results.

The input layer of our model was connected with a 
complete residual convolution neural network. The 
unreconstructed EEG signal was inputted into the con-
volutional neural network to output a transformed 
fixed-length feature vector. Multiple consecutive out-
puts formed a feature sequence, which is then input to 
indRNN. indRNN mapped the input to the hidden layer, 
updated the hidden layer, and finally outputted the pre-
dicted distribution result at time step t, and used soft-
max to determine the category. In this process, indRNN 
learned the changes of abstract features of EEG, and the 
output results determined the current EEG segment 
through the classification function, and then made a 
judgment.

Independent residual network architecture
Independent residual network architecture shown in the 
Table 2.

Residual network CNN can extract the features of 
low/mid/high-level. The more layers of the network, the 
richer the features of different levels can be extracted 

Fig. 5  Distribution of core nodes in epilepsy leads
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[34]. Moreover, the deeper the network is, the more 
abstract the features are and the more semantic informa-
tion they have. If the layers behind the deep network are 
identity maps, then the model degenerates into a shallow 
network. After years of development, residual network 

has great advantages for deep-seated network learning. 
The residual architecture [35] used in this experiment 
is a convolutional network of three residual blocks, as 
shown in the Fig.  7 is the structure diagram of the first 
residual block, the stitching of the second residual block 
is the same as the first, the third as shown on the right, it 
is slightly different.

Independent recurrent neural network The recurrent 
neural network has been widely used in sequence learn-
ing problems such as action recognition, scene annota-
tion, language processing, and has achieved remarkable 
results. Compared with feed-forward networks such as 
CNN, RNN has a cyclic connection, in which the last 
hidden state is the input to the next state. The training 
of RNN is faced with the problems of gradient vanish-
ing and gradient explosion due to the multiplication 
of cyclic weight matrices. Therefore, it is actually dif-
ficult to construct and train deep LSTM or GRU based 
on RNN. Each neuron in IndRNN independently pro-
cesses a type of spatiotemporal model [22]. Traditionally, 
RNN is regarded as a multi-layer perceptron with shared 
parameters in time. Different from the traditional RNN, 
the IndRNN neural network was used in this paper pro-
vides a new perspective for the recurrent neural network, 
that is, the spatial patterns are aggregated independently 
over time. The correlation between different neurons can 
be used by stacking two or more layers. In this case, each 
neuron in the next layer processes the output of all neu-
rons in the previous layer which can solve the problems 
of gradient disappearance and gradient explosion.

Network configuration Our identification network was 
trained to global optimization by using “SGD” as the 
optimization function and “categorical_crossentropy” as 

Fig. 6  Different periods

Table 2  Independent residual network architecture

Layer Hidden layer Related parameters 
(filters, kernels, stride)

BLOCK1 Conv1D+BN+LeakyReLU 64 8 1

Conv1D+BN+LeakyReLU 64 5 2

Conv1D+BN 64 3 1

Conv1D+BN 64 1 1

Add – – –

LeakyReLU – – –

BLOCK2 Conv1D+BN+LeakyReLU 128 8 1

Conv1D+BN+LeakyReLU 128 5 2

Conv1D+BN 128 3 1

Conv1D+BN 128 1 1

Add – – –

LeakyReLU – – –

BLOCK3 Conv1D+BN+LeakyReLU 64 8 1

Conv1D+BN+LeakyReLU 64 5 2

Conv1D+BN 64 3 1

Add – – –

LeakyReLU – – –

GlobalAveragePooling1D – 2 –

indRNN+BN 128

indRNN+BN 128

Fully connected 256

Softmax n_class
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the loss function. Stochastic Gradient Descent (SGD) was 
used to train various machine learning and deep learn-
ing models because of its fast learning speed and online 
updating. 2-D CNN in the residual network was used to 
replace by 1-D CNN, which can directly process the orig-
inal EEG data without preprocessing the EEG dimension.

The parameters of the convolution unit were selected 
as: the length of convolution kernel was (8, 5, 3) and the 
number of convolution kernels was (64,  128,  128), the 
activation function was “LeakyReLU”. The convolution 
part was mainly to capture the short-term time corre-
lation of EEG data; the part of circulating unit network 
was mainly used to distinguish EEG categories. With the 
increase of network depth, the gradient disappearance 
and gradient explosion problems of the recurrent net-
work became more and more serious. In this experiment, 
the independent recurrent neural network was selected, 
and the number of neurons was set to 128. Finally, we 
used “Dense” to output the classification results, and 
selected the function “softmax” as the activation func-
tion. The batch size was set to 64, and the number of iter-
ations was set to 512. We compared the public data set 
with the private data set, and various noise levels in the 
experiment are fully considered.

Results and discussion
In this section, we mainly tested the epilepsy detec-
tion performance on public data sets with ideal condi-
tions and real data sets with clinical trials. The sensitivity 
(Sens), specificity (Spec) and classification accuracy (Acc) 

of evaluation indicators were evaluated. The details will 
be described in the following paragraph.

Experimental design
The difference between public data sets under ideal con-
ditions and clinical experimental data sets was artifacts 
and noise, which will affect the detection results. We first 
tested on public data sets, and then tested on real data 
sets for comparison.

Model training and testing
Epilepsy EEG classification research is the correct iden-
tification of EEG signal fragments, and the recognition 
of the epilepsy different periods which have already been 
defined. Figure 8 showed the training and testing of our 
experimental model. In this experiment, the open data-
set contained three different kinds of EEG, which are 
the healthy people group, the epilepsy patients with-
out seizure group and the epilepsy patients with seizure 
group. Therefore, according to the contrast principle, we 
designed two classification and three classification tasks 
to detect the performance of the algorithm. The experi-
mental design of the two-class task was the EEG recogni-
tion of the healthy people group and the epilepsy patient 
group; the experimental design of the three-class task 
was the healthy people group and the non-seizure group 
and the seizure group.

In addition to the public dataset, our experiments 
took into account noise and interference in the real 
world, and selected specific types of epilepsy patients 
with interictal, preictal and ictal EEG for testing. Real 

Fig. 7  Residual network diagram
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data has the characteristics of streaming data. So in our 
experiments, we formalized it as windowed stream-
ing data. Each 10s EEG segment was identified and 
the EEG category was output. Because this experiment 
does not involve the task of prediction, our EEG clas-
sification recognition only takes the time window, and 
discards the event classification task.

Ten folds cross-validation was used in this study. 
First, EEG signals were randomly divided into 10 equal 
parts. Nine out of ten EEG signals were used to train 
the neural network in this paper, and the remaining 
one-tenth were used to test the performance of the 
system. By moving the test and training data sets, the 
strategy was repeated ten times. The accuracy, sensitiv-
ity and specificity values reported in this paper are the 
average values obtained from ten evaluations.

Evaluation indicators
There are three most important and commonly used 
parameters to evaluate the performance of epileptic 
detection methods: sensitivity (Sen), specificity (Spe) 
and classification accuracy (Acc). Sen indicates the 
sensitivity of the recognition system, that is to say, it 
measures the ability of the classifier to capture EEG 
data. Spec indicates that the recognition system can 
correctly recognize the different periods EEG data, that 
is to say, it measures the classifier’s recognition abil-
ity for the different periods seizure. Acc indicates the 
recognition capability of the recognition system. In this 
article, sensitivity and specificity are equally important 
for the evaluation of our model. Sensitivity can reflect 
the missed diagnosis rate of our model, and specificity 
can reflect the misdiagnosis rate of our model. In our 
experiments, we did not pursue high specificity at the 
cost of sensitivity. On the contrary, we hope that we can 
find a balance between sensitivity and specificity. The 
specific formula is as follows:

Among them, TP is the number of correctly divided 
into positive examples, FN is the number of EEG that is 
wrongly divided into positive examples, TN is the num-
ber correctly divided into negative examples, and FP is 
the number of EEG that is wrongly divided into negative 
examples.

Detection of epilepsy under ideal conditions
We first checked the proposed deep learning method by 
using the EEG signal without artifacts and noise. After 
EEG preprocessing (data segmentation and shaping), 
EEG would be fed into our deep neural network model, 
and its ultimate goal was to effectively learn EEG features 
and classify correctly.

Two‑class detection task results
In the task of classification of epileptic EEG, the first cate-
gory was to distinguish the normal EEG of healthy people 
and the epileptic EEG of epileptic patients. In our public 
dataset, it belonged to the classification between datasets 
(A, B) and datasets (C, D, E). However, some scholars 
believe that the non-epileptic interictal EEG should also 
be regarded as normal EEG in clinical practice. In our 
experiment, we mainly identified non-epileptic active 
EEG (datasets A, B and C, D) and epileptic seizure active 
EEG (dataset E).

Considering that each dataset has 100 signals, there is a 
class imbalance problem in our classification task. Based 
on these considerations, on the one hand, we considered 

(1)Sen =
TP

TP + FN

(2)Spe =
TN

TN + FP

(3)Acc =
TP + TN

TP + FN + TN + FP

Fig. 8  Training and testing of the experimental model
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data expansion, on the other hand, we selected non-epi-
leptic EEG randomly in our experiment. In addition, in 
our evaluation indicators, we no longer simply relied on 
specificity, the sensitivity and accuracy were also our con-
cerns. The data in the Table  3 showed that the epilepsy 
EEG recognition model based on 1-DCNN and indRNN 
can effectively identify the disease. Regarding the iden-
tification experiment results of the two-class task, both 
Acc and Spec achieved 100%, which was the best perfor-
mance in the baseline algorithms.

Three‑class detection task results
Non-epileptic EEG can be divided into normal EEG and 
interictal EEG, so we have made a three-class classifica-
tion task. The three-class classification task was mainly 
to distinguish different brain electrical activities: normal, 
interictal and ictal. In addition to the automatic diagno-
sis of patients, the three-class model can also detect the 
symptoms of epilepsy patients. Such a model was more 
meaningful. Table 4 showed the results under our evalu-
ation indicators. As shown in the Table 4, our algorithm 
achieves the best results in terms of specificity, sensitivity 
and accuracy in the baseline algorithm.

Detection epilepsy under real conditions
There are noise and interference in the real world data, 
such as muscle activity, eye movement interference and 
environmental noise. The model’s performance in the 
real world can bring a real significance to clinical prac-
tice. Considering these, our experiment collected EEG 
data of 15 patients in a clinical environment, which 

were divided into interictal period, preictal period and 
ictal period according to the existing definition of epi-
lepsy stage.

Two‑class detection task results
For patients in the real world, it is more meaningful to 
predict the onset of seizures. The premise of accurately 
predicting seizures is the accurate recognition of EEG in 
the pre-seizure period. Different from the dichotomous 
experiment under the ideal condition, we no longer pay 
attention to non-epileptic activity EEG and seizure activ-
ity EEG. We are more concerned about the difference 
between preictal EEG and ictal EEG. We used 15 patients 
with pre-onset and onset EEG for the experiment and the 
results were shown in Table 5. Epilepsy was the manifes-
tation of the disease, the real-world data have interfer-
ence, the corresponding results have been reduced, but 
still in the baseline method is the best.

Three‑class detection task results
The definition of the epilepsy periods has been intro-
duced above, which are interictal, preictal and ictal. On 
the basis of the two-class classification model, the task 
of interictal EEG recognition was added. Recognition 
of preictal can provide a reference for seizure predic-
tion model, and recognition of the interictal period has 
a positive effect on reducing the false alarm rate of epi-
leptic seizure prediction. Table 6 showed the results of 
three classification experiments. Our method is still the 
best among the baseline methods.

Table 3  Two-class detection task results

Method Spec Sen Acc

LSTM 94.62 89.67 93.33

1DCNN 96.17 94.37 95.36

INDRNN 93.57 91.57 93.52

RESNET(1DCNN) 98.69 96.78 97.47

RCNN 100 97.50 100

Table 4  Three-class detection task results

Method Spec Sen Acc

LSTM 89.58 90.42 91.26

1DCNN 94.87 89.43 93.82

INDRNN 92.68 90.67 91.53

RESNET(1DCNN) 98.28 96.50 97.79

RCNN 100 98.48 100

Table 5  Two-class detection task results

Method Spec Sen Acc

LSTM 84.79 83.24 85.64

1DCNN 89.58 84,89 88.73

INDRNN 85.58 85.63 83.41

RESNET(1DCNN) 89.79 88.76 90.57

RCNN 91.42 86.58 90.74

Table 6  Three-class detection task results

Method Spec Sen Acc

LSTM 85.54 82.38 84.47

1DCNN 86.39 85.35 87.39

INDRNN 83.56 86.73 84.65

RESNET(1DCNN) 89.93 87.48 91.83

RCNN 90.61 85.42 92.11
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Comparison of research results of the same category
In addition to the comparison with the baseline method 
mentioned above, we also compared the results of similar 
studies in recent years, as shown in Table 7. For the pri-
vate data used in this experiment, the dataset in the same 
category study is already a variable, so it is not considered 
in this comparison. We have collected result from those 
studies based on the University of Bourne data set over 
the past five years, including two classifications and three 
classifications. From the evaluation index of the model, 
our research had achieved outstanding specificity, sensi-
tivity and accuracy. Only in the three classification prob-
lems, the sensitivity of our algorithm was lower than that 
of Behara et al. [36]

Conclusions
The professional neurologists’ reading of EEG is the main 
method to determine epilepsy. However, it is complex 
and time-consuming to observe and detect long-range 
EEG signals by people. Most of the current researches 
on EEG diagnosis of epilepsy use single-lead data, and 
the researches on multi-lead and full-lead data need 
to be further improved. In this paper, we propose the 
RCNN model to achieve the automatic diagnosis task of 
epilepsy EEG, and achieve the automatic labeling of dif-
ferent stages of epilepsy EEG.Our research describes a 
new method of automatic detection of epilepsy that can 
directly process the original EEG. In the framework of 
the traditional residual network, we used the one-dimen-
sional convolutional neural network to replace it, and 
combined independent convolution recurrent neural net-
work to form a new recurrent residual network to realize 
the automatic diagnosis of epileptic EEG. Firstly, we used 
the residual network architecture of the one-dimensional 
convolutional neural network to learn important features 
of EEG, and then the recurrent neural network was used 
to learn the relationship between sequences. Finally, the 
classification results were output. Our research dem-
onstrated the potential of deep learning in epilepsy 
detection and seizure prediction, and the possibility of 
combining convolutional neural networks with recurrent 
neural networks. It is hoped that this study can promote 

the further development of epileptic seizure prediction 
system.
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