
Wang et al. BMC Med Inform Decis Mak  2021, 21(Suppl 2):58 
https://doi.org/10.1186/s12911-021-01432-x

RESEARCH

Study on the semi‑supervised 
learning‑based patient similarity 
from heterogeneous electronic medical records
Ni Wang1,2, Yanqun Huang1,2, Honglei Liu1,2, Zhiqiang Zhang1,2, Lan Wei3, Xiaolu Fei3 and Hui Chen1,2* 

From International Conference on Health Big Data and Artificial Intelligence 2020 Guangzhou, China. 
29 October - 1 November 2020

Abstract 

Background:  A new learning-based patient similarity measurement was proposed to measure patients’ similarity for 
heterogeneous electronic medical records (EMRs) data.

Methods:  We first calculated feature-level similarities according to the features’ attributes. A domain expert provided 
patient similarity scores of 30 randomly selected patients. These similarity scores and feature-level similarities for 30 
patients comprised the labeled sample set, which was used for the semi-supervised learning algorithm to learn the 
patient-level similarities for all patients. Then we used the k-nearest neighbor (kNN) classifier to predict four liver con-
ditions. The predictive performances were compared in four different situations. We also compared the performances 
between personalized kNN models and other machine learning models. We assessed the predictive performances by 
the area under the receiver operating characteristic curve (AUC), F1-score, and cross-entropy (CE) loss.

Results:  As the size of the random training samples increased, the kNN models using the learned patient similarity 
to select near neighbors consistently outperformed those using the Euclidean distance to select near neighbors (all 
P values < 0.001). The kNN models using the learned patient similarity to identify the top k nearest neighbors from 
the random training samples also had a higher best-performance (AUC: 0.95 vs. 0.89, F1-score: 0.84 vs. 0.67, and CE 
loss: 1.22 vs. 1.82) than those using the Euclidean distance. As the size of the similar training samples increased, which 
composed the most similar samples determined by the learned patient similarity, the performance of kNN models 
using the simple Euclidean distance to select the near neighbors degraded gradually. When exchanging the role of 
the Euclidean distance, and the learned patient similarity in selecting the near neighbors and similar training samples, 
the performance of the kNN models gradually increased. These two kinds of kNN models had the same best-perfor-
mance of AUC 0.95, F1-score 0.84, and CE loss 1.22. Among the four reference models, the highest AUC and F1-score 
were 0.94 and 0.80, separately, which were both lower than those for the simple and similarity-based kNN models.

Conclusions:  This learning-based method opened an opportunity for similarity measurement based on heterogene-
ous EMR data and supported the secondary use of EMR data.
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Background
In recent years, the sharp increment in electronic medi-
cal records (EMRs) adoption has facilitated the move 
toward personalized medicine [1–3]. The wide use of 
EMR opened opportunities in making a personalized 
decision for a given patient [4]. Especially, EMR data for 
the similar patients in conjunction with machine learning 
algorithms was applied to build individualized models to 
predict the risk for a potential disease [5–7] or to identify 
the risk factors [8, 9] and the disease subgroups [10, 11], 
showing an improved performance in these tasks.

EMR data is usually heterogeneous, making it more dif-
ficult than common homogeneous data to measure the 
patient similarity for further use. Many non-numeric fea-
tures, such as diseases and procedures, that are important 
and informative in assisting medical clinicians in making 
a diagnostic decision. Additionally, symptoms and signs 
are also useful that are often recorded in a free-text form. 
Generally, these features cannot be input into some simi-
larity- or distance-based machine learning models with 
numeric features due to the difficulty in computing a uni-
form similarity or distance for features with different data 
types. For example, the widely used Euclidean distance 
was effective in measuring the distance among continu-
ous variables but not among discrete variables. Moreo-
ver, traditional distance measurements did not consider 
some hierarchical code systems’ ontological distance. To 
address these problems, some researchers calculated fea-
ture similarities respectively and then integrated them 
into a single value with weighted sum [5] or geometric 
mean [3, 12]. However, the parameters used and their 
settings in integrating feature similarities into a single 
patient similarity may depend more on subjective judg-
ment and lack conviction.

In this study, we proposed a new learning-based 
method to obtain patient similarity after the direct 
computation. We first calculated feature-level similari-
ties by using different similarity measurements for dif-
ferent types of features. They were then input into a 
semi-supervised learning (SSL) algorithm to learn the 
patient-level similarities. The proposed patient similarity 
was validated by selecting similar samples to predict the 
status of liver diseases. Liver diseases were usually multi-
factorial complex with high global incidence [11] and had 
affected over one-fifth of the population in China [13]. 
The non-alcohol fatty liver disease (NAFLD) had been 
identified as an emerging health problem worldwide [14], 
and liver hemangiomas were the most common benign 

liver tumors occurring in people of all ages [15, 16]. Also, 
China had the 9th highest rate and the largest number of 
liver cancer patients in the world [17]. Thus, there is an 
urgent need to help clinicians make a proper diagnos-
tic decision for a patient of these liver diseases. Conse-
quently, the proposed patient similarity was applied in 
predictive models for three common liver diseases (liver 
cancer, hemangioma, and NAFLD), attempting to assist 
the clinicians in diagnosis.

To the best of our knowledge, it is the first time that the 
patient similarity was learned through an SSL algorithm 
using the calculated feature similarities. This method can 
be easily implemented in other tasks and is likely to be 
an important step in facilitating personalized medicine 
based on heterogeneous EMR data.

Related work
Patient similarity has become a hot topic in recent years, 
with many researchers using patient similarity as a tool 
to enable precision medicine. For heterogeneous EMR 
data, two strategies were usually adopted when evaluat-
ing patient similarity. All features were standardized in 
advance for a static distance metric [18] in the first strat-
egy. Lee et  al. [19] used the cosine similarity metric to 
identify similar patients for the downstream 30-day mor-
tality prediction based on the MIMIC-II database. All 
predictor variables were presented as a numeric vector to 
yield the cosine-based similarity metric. David et al.  [20] 
utilized the Euclidean distance-based metric to select 
similar patients for anomaly detection and characteriza-
tion on the basis of numeric laboratory data. Li et al.  [10] 
assembled different types of variables into a numeric data 
matrix, with a one-hot representation for non-numeric 
ICD-9-CM codes. The cosine distance metric was then 
used to construct a patient-patient network for further 
disease subtype identification. Gu et  al.  [21] adopted a 
weighted Euclidean distance to evaluate similarity for 
both continuous and discrete variables. These studies 
either merely considered numeric variables [20, 21] or 
standardized all variables in advance for further patient 
similarity measurement [10, 19]. This strategy might 
result in feature information loss during standardization 
[18] and did not utilize all EMR data features.

Therefore, many researchers chose the second strat-
egy to evaluate patient similarity for heterogeneous 
EMR data. A list of feature similarities was calculated for 
each data type separately. Wang et  al.  [5] built predic-
tive models for diabetes’ risk prediction based on EMR 
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data. Feature similarities were firstly evaluated accord-
ing to variables’ attributes. The weighted sum of feature 
similarities was calculated to form a single patient simi-
larity score, in which the weights were allocated by trial 
and error. Gottlieb et  al.  [3, 12] assessed feature simi-
larities and integrated them into a single similarity score 
with a weighted geometric sum. Huang et  al.  [22] also 
calculated feature similarities separately and compared 
all the possible combinations of three types of disease 
code, three laboratory test sets, and three weight allo-
cation schemes. Zheng et  al.  [23] used the supervised 
XGBoost algorithm to learn patient similarities. Pair-
wise similarities for symptoms, lab tests, and prelimi-
nary diagnoses were measured to serve as inputs of the 
XGBoost model, and those for discharge diagnoses as the 
output. For a new patient, the calculated feature similari-
ties with all patients were given to the trained XGBoost 
model to predict the patient similarities for downstream 
discharge diagnoses prediction. In these studies, weights 
were allocated subjectively, leading to a lack of conviction 
to some degree. Besides, the supervised label and learn-
ing effect of the XGBoost-based method might vary with 
the similarity assessment method adopted for discharge 
diagnoses.

We proposed a semi-supervised learning method to 
cover all available EMR data features, automatically 
weight each feature similarity, and save time and labor 
costs for labeling simultaneously.

Methods
Overview
In this study, the proposed learning-based method 
included two successive steps: calculating the feature 
similarity directly and learning the patient similarity in 
a semi-supervised way. The labeled sample set, a tiny 
size of computed feature similarities and corresponding 
patient similarity scores obtained from a clinical expert, 
was firstly used to learn the optimal distance measure-
ment. We then dynamically expanded the labeled sample 
set with a snowballing process. Figure 1 showed an over-
view of the whole study. Similar patients determined by 
the resulting similarity were finally used for identifying 
the prevalence of three liver diseases.

Feature similarity calculation
In our study, EMR data consisted of four parts, demo-
graphical information, laboratory tests, comorbidity 
conditions, and free-text radiology reports. Similarities 
for the structured and unstructured, continuous and cat-
egorical features were estimated separately according to 
their attributes.

Feature similarity for comorbidity condition
A patient’s comorbidity conditions referred to a group 
of simultaneous diseases, which were identified by the 
International Classification of Diseases, tenth revision 
(ICD-10) codes [24]. An ICD-10 code began with a letter 
followed by five digits, arranging in a tree-like hierarchi-
cal manner [5], which was simplified into a leading let-
ter and three following digits [5, 22] in the present study. 
Taking the hierarchical ontology of the ICD-10 code sys-
tem into account, we measured the similarity between 
two ICD-10 codes by the information content (IC). IC 
was judged by the degree to which the two codes shared 
information. Two ICD-10 codes were more similar if they 
had a higher IC, meaning that they shared more informa-
tion. The IC index for two ICD-10 codes ICD1 and ICD2 
was defined as following [25]:

where NCA represented the nearest common ancestor 
of two codes ICD1 and ICD2, and p(NCA) was the prob-
ability of encountering the NCA in the study corpus. 
The corpus consisted of all the possible ICD-10 code 
fragments derived from ICD-10 codes appearing in any 
patient’s record in this study. An ICD-10 code fragment 
might be the leading letter alone or the leading letter plus 
the sequential one, two, or three digits of an ICD-10 code 
(Fig. 2a). Obviously, in the study corpus, the probability 
of encountering an ICD-10 code fragment that contained 
a leading letter K alone was not less than that of encoun-
tering K2. The larger the probability, the smaller the IC 
value. This result coincided with an intuitive insight that 
two patients were more similar if they both had the same 
rare disease than they both had a common flu. The IC 
value of two ICD-10 codes without NCA (i.e., with differ-
ent leading letters) was defined as 0 because of no sharing 
information.

Let X = {ICD1, ICD2, . . . , ICDm} denote the comor-
bidity conditions for patient i with m comorbidities and 
Y = {ICD1, ICD2, . . . , ICDn} for patient j with n comor-
bidities. The feature similarity for the comorbidity con-
dition between the two patients was defined as the 
following:

where ICDa ∈ X and ICDb ∈ Y  . Figure 2 shows an exam-
ple of calculating the feature similarity for the comorbid-
ity condition.

Feature similarity for text feature
Free-text radiological reports on abdominal computed 
tomography (CT) stored in the EMR system were initially 

(1)IC(ICD1, ICD2) = IC(NCA) = −log(p(NCA))

(2)
1

mn

m
∑

a=1

n
∑

b=1

IC(ICDa, ICDb)
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unstructured. Text features were recorded as words or 
phrases. Therefore, the radiological reports were first 
structured by a natural language processing (NLP) 
method using the term frequency-inverse document fre-
quency (TF-IDF) score [26] to extract the important text 
features for the disease diagnosis. We selected r phrases 
with the highest TF-IDF scores as the most important 
and representative ones, and thus the diagnostically use-
ful r text features for the subsequent study. Each text 

feature was organized as a binary variable. If a specific 
phrase existed within a patient’s radiological report, the 
patient was considered to have the corresponding text 
feature, and the value for this feature variable was set to 
1, and 0 otherwise (Fig. 3). After the radiological report 
structuration, each patient had an r-dimension 0–1 vec-
tor of text features.

Among all the extracted text features, retroperito-
neal lymph node enlargement, lower density than the 

Fig. 1  The workflow of the whole study
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Fig. 2  Calculation of the feature similarity for the comorbidity condition. The example patients have comorbidity conditions 
{K269, K293, K598, K621} and {K269, K293, K598, K621} (in shadow), respectively. a The pre-built study corpus. K, K2, K26, and K269 and E, E1, E11, 
and E116 are the qualified ICD-10 code fragments from K269 and E116, respectively; b identification of the nearest common ancestor (NCA). K29 
is the NCA for K295 and K293, K2 for K295 and K269, and K for the rest six pairs of ICD-10 code; c Calculation of the comorbidity condition similarity 
using information content

Fig. 3  The structuration process of radiology reports
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spleen’s, absence of abnormal density, uniform density 
of liver parenchyma, and arterial phase were consid-
ered to be the most important features according to 
radiologists’ advice. They were then treated as inde-
pendent binary features when calculating the feature 
similarity, while the rest were organized into a binary 
set of text features from the radiological reports. Fea-
ture similarity for the binary independent text features 
between patients i and j was defined as:

The feature similarity for the text feature sets for 
patients i and j was defined as:

Feature similarity for laboratory tests
We used the classification and regression trees technol-
ogy to interpolate the missing values of laboratory tests, 
which could handle both discrete and continuous input 
(using the rpart function in the rpart package of R 3.5.1 
software (https​://cran.r-proje​ct.org/)). All the laboratory 
test items were binarized into 0 standing for normal or 
1 for abnormal regarding the respective normal ranges. 
Then the feature similarity for two laboratory tests was 
defined as the Jaccard distance-based similarity between 
the two laboratory test sets.

Feature similarity for demographic information
Demographic characteristics included the patient’s 
age, sex, drug allergy history, and the source of hospital 
admission. We defined the feature similarity for ages as 
[5]:

The similarity for binary features, including sex, drug 
allergy history, and source of hospital admission between 
patients i and j was defined as 1 if the two patients had 
the same information and 0 otherwise [Eq. (3)].

In total, four demographic features, namely, age, sex, 
drug allergy history, and the source of hospital admission, 
five text features specific to the predictive task, and three 
feature sets, i.e., comorbidity conditions, laboratory tests, 
and common text features from radiological reports, 
were involved in the calculation for the feature-level 

(3)Similarity for binary features
(

i, j
)

=

{

1, if patients i and j had the same information
0, otherwise

(4)Similarity for feature sets
(

i, j
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=
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∣Seti ∩ Setj
∣

∣

∣

∣Seti ∪ Setj
∣

∣

(5)Similarity for ages
(

i, j
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Agei, Agej

)
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(

Agei, Agej

)

similarity. A resulting 12-dimension similarity vector was 
generated for each pair of patients.

Semi‑supervised patient similarity learning
In this study, we randomly selected a tiny fraction of the 
overall patients. An experienced domain medical expert 
provided a similarity score ranging from 0 to 1 for each of 
possible pairs among these patients. We also calculated 
the weighted sum of feature similarities as the patient 

similarity for each patient pair. The weights were deter-
mined through trial and error. The expert could adjust 
his score with reference to the calculated patient similar-
ity. A patient pair with both the feature similarity vector 
(calculated in section Feature similarity calculation) and 
the patient similarity score (assigned by the expert) was 
considered as a labeled sample. Thus the labeled sample 
set consisted of all labeled samples, and the patient pairs 
without any known similarity score comprised the unla-
beled sample set.

Further, a continuous label was transformed into a new 
categorical label “constraint.” Constraint values of must-
link, general-link, and cannot-link were given to patient 
pairs with higher, median, and lower similarity scores, 
respectively. The cutoff points of similarity scores were 
set to the upper and lower tertiles. Patient pairs with the 
same constraint belonged to the same class. We used 
both continuous and categorical labels in the semi-super-
vised similarity learning.

Based on the labeled sample set, our goal was to 
learn a Mahalanobis distance between a patient pair. 
For a patient pair of xi and xj , the Mahalanobis distance 
dm

(

xi, xj
)

 was defined as

where C ∈ Rd×d (d = 12 as described in section Feature 
similarity for demographic information) was a positive 
semi-definite covariance matrix. The learning aimed 
to get the optimal C, which could minimize the within-
class squared distances and maximize the between-class 
squared distances among all patient pairs on the labeled 
sample set, simultaneously. We firstly constructed a goal 
function with the ratio of the with-class squared dis-
tances and the between-class squared distances, then 
transformed the learning problem into a trace quotient 
minimization problem with matrix decomposition. 
Finally, we solved this trace quotient minimization prob-
lem with the decomposed Newtown’s method [27]. The 

(6)dm
(

xi, xj
)

=

√

(

xi − xj
)T

C
(

xi − xj
)

https://cran.r-project.org/
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optimization of matrix C on the labeled sample set was a 
supervised learning process. See supplementary materi-
als for more details and descriptions about the learning 
process.

Once the matrix C was fixed, it was used to calculate 
the Mahalanobis distances [Eq.  (6)] between the labeled 
and unlabeled samples. A small batch of unlabeled sam-
ples obtained similarity labels from their nearest labeled 
neighbors measured by Mahalanobis distances, and 
became members of the labeled sample set. Then the 
dynamically expanded labeled sample set was used for 
providing near neighbors for the next batch of unlabeled 
samples. The process was repeated until all unlabeled 
samples got a similarity label. We set the batch size to 
1153 (about 0.15% samples of all the unlabeled samples) 
in each round based on trial and error.

Building predictive models
Building and assessing a similarity- or distance-based 
classifier was considered feasible and suitable for validat-
ing the effectiveness of the proposed similarity. In this 
study, a kNN model was employed for a multi-class clas-
sification task. By trial and error, the optimal k was set 
to 10 with which the corresponding kNN model built on 
the whole training samples showed the best predictive 
performance in the application scenario. When applying 
this model, we had many choices concerning the compo-
sition and size of the training samples and the similarity 
measurement used in determining near neighbors, which 
might all cause differences in the predictive performance. 
We used a leave-one-out method to evaluate the per-
formances of the predictive models. In each validation 
round, one patient in overall patients was used as a test 
sample and the rest patients comprised the training sam-
ple pool. The training samples for an kNN classifier were 
M% (M ranging from 2 to 100) samples selected from this 
training sample pool. The training samples might be ran-
domly selected from the pool or selected with the learned 
similarity or Euclidean distance to help rule out some 
irrelevant samples. The proposed similarity and Euclid-
ean distance were also used to determine near neighbors. 
We evaluated and compared the proposed patient simi-
larity with respects of i) the selection of the training sam-
ples from the training sample pool; ii) the determination 
of the k nearest neighbors; and iii) the usage of patient 
similarity. For the first two, we had four combinations as 
follows.

R + L combination: the training samples were ran-
domly selected from the training sample pool, and 
the top k nearest neighbors were identified with the 
learned patient similarity;

R + E combination: the training samples were ran-
domly selected from the training sample pool, and 
the top k nearest neighbors were identified with 
Euclidean distance;
L + E combination: the training samples were the 
most similar samples determined by the learned 
similarity, and the top k nearest neighbors were 
identified with Euclidean distance;
E + L combination: the training samples were the 
most similar samples determined by Euclidean dis-
tance, and the top k nearest neighbors were identified 
with the learned similarity;

As a typical type of non-numeric variables, comor-
bidity conditions were not suitable for calculating the 
Euclidean distance-based similarity directly. Thus, we 
selected 26 popular comorbidities with an occurrence 
greater than 5% among all patients, each being treated 
as a binary variable. Finally, in the Euclidean distance-
related predictive models (combinations R + E, L + E, 
and E + L), an input sample had 131 features: 44 fea-
tures were the most important and representative 
phrases extracted from the radiological reports as the 
text features; 57 features were regular laboratory test 
items such as blood tests and urine tests; 26 features 
were comorbidity variables such as diabetes mellitus 
with and without complications, and essential hyper-
tension; and the rest four features were demographic 
variables. The predicted label for an index patient was 
assigned as the label of the majority of his k nearest 
neighbors.

Besides, we compared the performances between 
personalized kNN models and other state-of-the-art 
machine learning models without using patient similarity 
as references, including decision trees, Naïve Bayes clas-
sifier, random forest, and AdaBoost classifier integrating 
weak decision trees. The leave-one-out validation on the 
whole training sample pool was also used.

The performance metric included the micro-averaged 
area under the receiver operating characteristic curve 
(AUC), F1-score, and cross-entropy (CE) loss [28]. We 
used the cubic polynomial fitting to the changing trends 
of the three metrics, respectively.

Data set
EMR data used in this study were derived from inpatients 
discharged from a tertiary hospital in Beijing, China 
between 2014 and 2016. Individual hospitalizations 
were de-identified and maintained as unique records, 
including age at admission, sex, drug allergy history, 
source of hospital admissions, up to 11 comorbidities at 
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discharge, laboratory tests, and radiology reports during 
hospitalization.

Because only radiology reports of CT examination 
were available at present, 6749 patients who underwent 
liver CT scans were enrolled in this study. Liver cancer, 
hemangioma, and NAFLD were determined accord-
ing to the radiological impression section in a radiologi-
cal report and were further confirmed by ICD-10 codes 
in the comorbidity fields of a patient’s record. ICD-10 
codes for liver cancer, hemangioma, and NAFLD were 
C22 (malignant neoplasm of liver and intrahepatic bile 
ducts) and C78.7 (secondary malignant neoplasm of liver 
and intrahepatic bile duct), D18.0 (hemangioma, any 
site), and K76.0 (nonalcoholic fatty liver disease), respec-
tively. Following the above criteria, we finally identified 
153, 178, and 403 patients diagnosed with liver cancer, 
hemangioma, and NAFLD correspondingly. Together 
with 449 patients with a normal liver diagnosis, records 
of these 1183 patients comprised the study dataset. 
Finally, we excluded the ICD-10 codes of C22, C78.7, 
D18.0, and K76.0 that were used to identify the target 
diseases from the comorbidity conditions for computing 
the feature similarity. Table  1 gives some details of the 
study population.

Results
Patient similarity
We randomly selected 30 patients out of the 1183 study 
patients to construct the labeled set with 435 samples 
(patient pairs). The rest 698,718 (= 1183 * (1183–1)/2–
435) samples comprised the unlabeled sample set. 
Among the 30 patients, four patients were with liver 
cancer, five with hemangioma, ten with NAFLD, and 
11 with a normal liver diagnosis, retaining the same 
disease constituent ratio for the labeled set as that 
for the whole study population. There were statisti-
cally differences in similarity scores (mean ± standard 
deviation: 0.77 ± 0.082, 0.54 ± 0.043, and 0.37 ± 0.074, 
respectively; one-way analysis  of  variance, all P val-
ues < 0.001 after the Bonferroni adjustment) among the 
patient pairs with the constraints of must-link, general-
link, and cannot-link. See supplementary materials for 
some examples of patient pairs with different similarity 
scores (Additional file 1: Table S1).

We obtained patient similarities for all the patient 
pairs among the overall 1183 patients after the semi-
supervised learning. Figure 4 is a visualized example of 
the learned patient similarities between four randomly 
selected patients (each with one of the four liver condi-
tions) and the rest.

Table 1  Some basic characteristics of  patients with  liver cancer, hemangioma, non-alcohol fatty liver, and  normal liver 
diagnosis

Characteristic Liver cancer (n = 153) Hemangioma 
(n = 178)

Non-alcohol fatty liver 
(n = 403)

Normal (n = 449)

Demographic information

 Age, year, mean ± standard deviation 66.6 ± 0.93 57.2 ± 0.85 51.4 ± 0.68 51.8 ± 0.63

 Male gender, n (%) 101 (66.0) 85 (47.8) 233 (57.8) 228 (50.8)

 Drug allergy history, n (%) 13 (8.5) 23 (12.9) 80 (19.9) 58 (12.9)

 Outpatient admission, n (%) 130 (85.0) 164 (92.1) 321 (79.7) 407 (90.6)

Comorbidity condition, n (%)

 Coronary heart disease 13 (8.5) 10 (5.6) 27 (6.7) 31 (6.9)

 Diabetes mellitus without complication 28 (18.3) 18 (10.1) 90 (22.3) 57 (12.7)

 Diabetes mellitus with complication 7 (4.6) 8 (4.5) 44 (10.9) 21 (4.7)

 Essential hypertension 61 (39.9) 61 (34.3) 169 (41.9) 116 (25.8)

 Disorders of lipid metabolism 3 (2.0) 21 (11.8) 135 (33.5) 71 (15.8)

 Other gastrointestinal disorders 23 (15.0) 31 (17.4) 61 (15.1) 67 (14.9)

Laboratory test, n (%)

 Abnormal urine leukocytes 13 (8.5) 17 (9.6) 37 (9.2) 34 (7.6)

 Abnormal urine bilirubin 4 (2.6) 2 (1.1) 8 (2.0) 9 (2.0)

 Abnormal urobilinogen 9 (5.9) 3 (1.7) 12 (3.0) 17 (3.8)

 Abnormal urine glucose 9 (5.9) 14 (7.9) 56 (13.9) 42 (9.4)

 Abnormal urine occult blood 20 (13.1) 18 (10.1) 25 (6.2) 37 (8.2)

 Abnormal ketone 12 (7.8) 16 (9.0) 38 (9.4) 31 (6.9)
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Disease prediction
As the size of training samples used for building kNN 
models increased from 2% (about 23 patients) to 100% 
(1182 patients) of the whole study samples, the predictive 
performance of the L + E combination degraded gradu-
ally from the initial values of 0.95 and 0.84 to the values of 
0.89 and 0.67 in terms of AUC and F1-score, respectively, 
while the CE loss increased from 1.21 to 1.82. Contrary 
to the predictive performance of the L + E combination, 

those of the E + L, R + L, and R + E combinations gradu-
ally increased from 0.92 and 0.74, 0.83 and 0.60, and 0.75 
and 0.49 to 0.95 and 0.84, 0.95 and 0.84, and 0.89 and 
0.67 in terms of AUC and F1-score, separately, while the 
CE loss decreased from 1.68, 2.03, and 2.54 to 1.22, 1.22, 
and 1.82, separately (Fig. 5).

There were significantly higher performances of models 
based on the learned patient similarity (i.e., L + E combi-
nation, E + L combination, and R + L combination) than 

Fig. 4  Illustration of the learned patient similarity. Four index patients (the central dots) are surrounded by all other patients, where the more similar 
a patient is with the index patient, the closer the respective dot is to the central dot. Dots in blue, orange, green, and purple represent patients with 
liver cancer, hemangioma, NAFLD, and normal condition, respectively. The figure was generated by using Gephi 0.9.2 (https​://gephi​.org/). NAFLD, 
non-alcohol fatty liver disease

https://gephi.org/
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those based on the directly calculated patient similarity 
(i.e., R + E combination) (Kruskal Wallis Tests, P val-
ues < 0.001 for all performance indexes). When using no 
more than 7% (about 82 patients) of the whole training 

samples, the L + E combination outperformed the E + L 
combination. Based on all training samples, the perfor-
mance of the L + E combination and R + E combination 
showed the same performance of AUC 0.89, F1-score 
0.67, and CE loss 1.82. Simultaneously, the E + L com-
bination and R + L combination showed the same per-
formance of AUC 0.95, F1-score 0.84, and CE loss 1.22, 
respectively.

Among the four reference models, the highest AUC 
and F1-score were 0.94 and 0.80, separately, which were 
both lower than those for the simple and similarity-based 
kNN models (Table 2).

Discussion
In personalized medicine, using machine learning algo-
rithms and patient similarity based on real-world EMR 
data had significant facilitation in various scenarios such 
as disease prediction [5–7] and risk factors identification 
[8, 9]. However, EMR data usually had mixed data types, 
structured and unstructured, and continuous and cat-
egorical, making it a challenge to measure the similarity 
among patients. Under this situation, the learning-based 
patient similarity measurement was proposed and evalu-
ated in this study.

When computing the feature-level similarity for two 
patients, we employed different similarity measurements 
according to the features’ attributes (data types). Besides 
the relative ratio for continuous feature (age) and Jac-
card similarity index for binary features (binarized labo-
ratory test results, text features, and other demographic 
characteristics), IC measure was applied to the computa-
tion of the feature similarity for the ICD-10 code-based 
comorbidity conditions. As a coded and hierarchical fea-
ture, ICD-10 code could be considered either as a general 
multi-categorical variable thus using the Jaccard distance 
to measure their similarities [11, 22, 29], or as a tree-like 
variable thus using a path-based measurement to esti-
mate their similarities with the full use of the hierarchical 
information [25]. Among the path-based measurements, 
the edge-counting approach had been used in many pre-
vious studies [3, 5, 30]. Two patients diagnosed with liver 
cancer of different ICD-10 codes (C22.0 and C22.9, for 
example) had the same similarity as those diagnosed with 
influenza of different ICD-10 codes (J11.1 and J11.2, for 
example), both having the same edge count 3. However, 
the former patient pair should be considered more simi-
lar than the latter because liver cancer was less common 
in the general population than the flu. As an alternative 
path-based measurement, IC had the advantage of deal-
ing with this problem. It was a probabilistic model [25] 
and had been applied to the gene ontology terms [31, 32] 
and semantic context [33–35]. To our best knowledge, it 

Fig. 5  Performance of k-nearest neighbor models in terms of a 
area under the receiver operating characteristic curve, b F1-score, 
and c cross-entropy loss. The horizontal axes represent the sizes of 
the training samples in percentage. R + L combination and R + E 
combination, the kNN models that the nearest neighbor out of the 
randomly selected training samples was determined by the learned 
similarity and the Euclidean distance, respectively; L + E combination, 
the kNN model that the nearest neighbor out of the similar training 
samples based on the learned similarity was determined by the 
Euclidean distance; E + L combination, the kNN model that the 
nearest neighbor out of the similar training samples based on the 
Euclidean distance was determined by the learned similarity
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was the first time to use the corpus-based IC measure-
ment to measure the similarity for the comorbidity con-
ditions based on ICD-10 codes.

Except for the out-of-the-box patient features, text 
features that were extracted from free-text radiological 
reports were also involved in the calculation of the fea-
ture-level similarity in the current study. We firstly used 
an NLP method to extract features. All features had the 
same contribution to the Jaccard distance-based simi-
larity, no matter how important they were to the target 
disease. However, the situation was not the same in radi-
ological practice. Thus, the extracted features were then 
structured into one binary feature vector and five inde-
pendent binary features at the radiologist’s suggestion 
to highlight the role they played on the similarity calcu-
lation. This was a simple but successful attempt to add 
structured text features into the similarity calculation.

Another critical factor in getting a high-quality 
patient-level similarity was the way to consolidate the 
feature-level similarities. Instead of a linear or logarith-
mic combination of the individual feature similarities 
[3, 5, 12], we proposed a semi-supervised learning pro-
cess in our study. For learning tasks, sufficient super-
vised information was crucial and desired, whereas 
annotation of EMRs required sophisticated medical 
professionals, which was very time-consuming and 
expensive [36]. Thus, the SSL algorithm based on a 
small amount of supervised information was used by 
numerous researchers in the ticket classification prob-
lem [37], the image segmentation problem [38], and 
the phenotype stratification problem [39] and so on. In 
this study, the SSL algorithm was adopted with a tiny 
labeled fraction of the overall patients to balance the 
learning performance and label-requested difficulties.

Previous studies have proved that similarity-based 
predictive models outperformed those without sam-
ple selection according to patient similarity [5, 8, 22]. 
In this study, even though we only labeled 2.5% of the 
study population for the semi-supervised learning, 
the learned patient similarity still played a significant 
role in improving the similarity-based kNN models’ 

predictive performances. The personalized kNN mod-
els outperformed other state-of-the-art machine learn-
ing models without using patient similarity, which 
demonstrated the effectiveness and superiority of the 
proposed patient similarity measurement. Because the 
kNN classification method used the k nearest neighbors 
to vote for the output label, the way to determine the 
nearest neighbor surely did matter. The  kNN models 
using the learned patient similarity to determine near 
neighbors consistently outperformed those using the 
Euclidean distance to determine near neighbors. This 
indicated that using the proposed similarity could find 
out more similar patients than using the widely used 
similarity measurement, the Euclidean distance. Fur-
thermore, even if the simple Euclidean distance was 
used to determine near neighbors, the learned patient 
similarity could still improve the predictive perfor-
mance by helping select the similar training samples 
from which the k nearest neighbors were selected. 
However, the performance of this kind of kNN model 
degraded gradually against the size of the training sam-
ples, coinciding with the previous studies’ conclusion 
that adding more dissimilar samples would disturb 
the prediction [5, 8]. The decreasing trend also indi-
cated that as the size of the training samples increased, 
more dissimilar and irrelevant samples would be added, 
leading to the Euclidean distance’s weakened ability to 
retrieve the most similar sample. On the contrary, pre-
dictive performances increased gradually when near 
neighbors determined with the learned patient similar-
ity was selected from similar training samples identified 
with the Euclidean distance, showing the strength of 
the learned patient similarity in selecting near neigh-
bors even from more dissimilar samples. In short, the 
proposed learning-based method successfully dealt 
with the problem when measuring the similarity of 
patients stored in heterogeneous EMRs.

This study had a few limitations. First, the determi-
nation of patient features for computing similarities 
depended partially on domain knowledge and aimed 
at a specific predictive task. There still need an effort 

Table 2  Comparison of predictive performance between similarity-based models with other machine learning models

Area under the receiver operating characteristic 
curve

F1-score Cross-
entropy loss

Naive bayes 0.92 0.80 3.60

Decision tree 0.91 0.73 0.72

Random forest 0.94 0.78 0.75

AdaBoost 0.86 0.70 1.16

R + E/L + E combination 0.89 0.67 1.84

R + L/E + L combination 0.95 0.84 1.23
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to generalize the proposed patient similarity to other 
application scenario and design an adaptive feature 
selection. Second, only one expert was asked to score 
the patient similarities in this study. Though the human 
expert could give scores with the assistance of the cal-
culated patient similarity, this scoring mechanism 
might exist labeling bias. Finally, considering the labor 
cost, we only labeled 30 randomly selected patients 
(generating 435 patient pairs) manually. To obtain 
similarity labels for hundreds and thousands of patient 
couples efficiently and effectively, we will further inte-
grate active learning into the proposed semi-supervised 
learning method.

Conclusions
In this study, we proposed a semi-supervised learn-
ing method to obtain patient similarity using het-
erogeneous EMR data. It has proved that the similar 
samples identified with the proposed similarity meas-
urement would be helpful to improve the performance 
of the similarity-based predictive models. The proposed 
method is expected to be used in other heterogeneous 
EMR data for machine learning tasks that originated 
from clinical practice.

Supplementary Information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1291​1-021-01432​-x.

Additional file 1. Details of the semi-supervised learning method and 
examples of the labeled samples.

Abbreviations
AUC​: Area under the receiver operating characteristic curve; CE: Cross-entropy; 
CT: Computed tomography; EMR: Electronic medical record; IC: Information 
content; ICD-10: International Classification of Diseases, the tenth revision; 
kNN: K-nearest neighbor; NAFLD: Non-alcohol fatty liver disease; NCA: Nearest 
common ancestor; NLP: Nature language processing; SSL: Semi-supervised 
learning; TF-IDF: Term frequency-inverse document frequency.

Acknowledgements
We are grateful to Dr. Jun Liu (Beijing Youyi Hospital, Capital Medical University, 
Beijing, China) and Dr. Dan Liu (Beijing Youan Hospital, Capital Medical Univer-
sity, Beijing, China) for their clinical advice on our study.

About this supplement
This article has been published as part of BMC Medical Informatics and Deci-
sion Making Volume 21, Supplement 2 2021: Health Big Data and Artificial 
Intelligence. The full contents of the supplement are available at https​://
bmcme​dinfo​rmdec​ismak​.biome​dcent​ral.com/artic​les/suppl​ement​s/volum​
e-21-suppl​ement​-2.

Authors’ contributions
HC: Conceptualization, Methodology, Writing—Review & Editing. NW: Data 
curation, Software, Writing- Original draft preparation. YH: Visualization, Inves-
tigation. HL: Data curation, Visualization. ZZ: Data curation, Validation.: LW: 
Investigation. XF: Investigation. All authors have reviewed and approved the 
final version of the manuscript for publication.

Funding
This work was supported by the National Natural Science Foundation of China 
(grant numbers 81971707 and 81701792).

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Data was anonymized when pre-processing and no patient identifiable data 
was reported in this study. According to the hospital’s institutional policy, 
approval from our Institutional Review Board was not requested due to the 
retrospective nature of the study. All data collection was passive and did not 
have an impact on patient safety.

Consent for publication
All authors approved the manuscript for publication.

Competing interests
Authors declare that they have no competing interests.

Author details
1 School of Biomedical Engineering, Capital Medical University, No.10, Xitou-
tiao, You An Men, Fengtai District, Beijing 100069, People’s Republic of China. 
2 Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical 
Application, Capital Medical University, Beijing 100069, People’s Republic 
of China. 3 Information Center, Xuanwu Hospital, Capital Medical University, 
Beijing 100053, People’s Republic of China. 

Received: 21 January 2021   Accepted: 9 February 2021
Published: 30 July 2021

References
	1.	 Sharafoddini A, Dubin JA, Lee J. Patient similarity in prediction models 

based on health data: a scoping review. JMIR Med Inform. 2017;5(1):e7.
	2.	 Parimbelli E, Marini S, Sacchi L, et al. Patient similarity for precision medi-

cine: a systematic review. J Biomed Inform. 2018;83:87–96.
	3.	 Gottlieb A, Stein GY, Ruppin E, et al. A method for inferring medical diag-

noses from patient similarities. BMC Med. 2013;11(1):194.
	4.	 Wu J, Roy J, F. SW, . Prediction modeling using EHR data_challenges, 

strategies, and a comparison of machine learning approaches. Med Care. 
2010;48(6 Suppl):S106.

	5.	 Wang N, Huang Y, Liu H, et al. Measurement and application of patient 
similarity in personalized predictive modeling based on electronic medi-
cal records. Biomed Eng Online. 2019;18(1):98.

	6.	 Henriques J, Carvalho P, Paredes S, et al. Prediction of heart failure decom-
pensation events by trend analysis of telemonitoring data. IEEE J Biomed 
Health Inform. 2015;19(5):1757–69.

	7.	 Guttag J, Syed Z. Unsupervised similarity-based risk stratification for 
cardiovascular events using long-term time-series data. J Mach Learn Res. 
2011;12:999–1024.

	8.	 Ng K, Sun J, Hu J, et al. Personalized Predictive Modeling and Risk Factor 
Identification using Patient Similarity. AMIA Summits Transl Sci Proc. 
2015;2015:132–6.

	9.	 Wang X, Wang F, Wang J, et al. Exploring patient risk groups with incom-
plete knowledge. In: 2013 IEEE international conference on data mining 
(ICDM). IEEE; 2013. p. 1223–1228.

	10.	 Li L, Cheng WY, Glicksberg BS, et al. Identification of type 2 diabetes sub-
groups through topological analysis of patient similarity. Sci Transl Med. 
2015;7(311):311ra174.

	11.	 Shu Z, Liu W, Wu H, et al. Symptom-based network classification identifies 
distinct clinical subgroups of liver diseases with common molecular 
pathways. Comput Methods Progr Biomed. 2018;174:41–50.

	12.	 Gottlieb A, Stein GY, Ruppin E, et al. PREDICT: a method for inferring novel 
drug indications with application to personalized medicine. Mol Syst Biol. 
2011;7(1):496.

	13.	 Xiao J, Wang F, Wong N-K, et al. Global liver disease burdens and research 
trends: analysis from a Chinese perspective. J Hepatol. 2019;71(1):212–21.

https://doi.org/10.1186/s12911-021-01432-x
https://doi.org/10.1186/s12911-021-01432-x
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-21-supplement-2
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-21-supplement-2
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-21-supplement-2


Page 13 of 13Wang et al. BMC Med Inform Decis Mak  2021, 21(Suppl 2):58	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	14.	 Adibi A, Maleki S, Adibi P, et al. Prevalence of nonalcoholic fatty liver 
disease and its related metabolic risk factors in Isfahan. Iran Adv Biomed 
Res. 2017;6:47.

	15.	 Zhang W, Huang ZY, Ke CS, et al. Surgical treatment of giant liver heman-
gioma larger than 10 cm: a single center’s experience with 86 patients. 
Medicine (Baltimore). 2015;94(34):e1420.

	16.	 Hoekstra LT, Bieze M, Erdogan D, et al. Management of giant liver heman-
giomas: an update. Expert Rev Gastroenterol Hepatol. 2013;7(3):263–8.

	17.	 Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLO-
BOCAN estimates of incidence and mortality worldwide for 36 cancers in 
185 countries. CA Cancer J Clin. 2018;68(6):394–424.

	18.	 Dai L, Zhu H, et al. Patient similarity: methods and applications. 2020. 
https​://arxiv​.org/abs/2012.01976​. Accessed 5 Dec 2020.

	19.	 Lee J, Maslove DM, Dubin JA. Personalized mortality prediction driven 
by electronic medical data and a patient similarity metric. PLoS ONE. 
2015;10(5):e0127428.

	20.	 David G, Bernstein L, Coifman RR. Generating evidence based interpre-
tation of hematology screens via anomaly characterization. Open Clin 
Chem J. 2011;4(1):10–6.

	21.	 Gu D, Liang C, Zhao H. A case-based reasoning system based on 
weighted heterogeneous value distance metric for breast cancer diagno-
sis. Artif Intell Med. 2017;77:31–47.

	22.	 Huang Y, Wang N, Liu H, et al. Study on patient similarity measurement 
based on electronic medical records. Stud Health Technol Inform. 
2019;264:1484–5.

	23.	 Jia Z, Zeng X, Duan H, et al. A patient-similarity-based model for diagnos-
tic prediction. Int J Med Inform. 2020;135:104073.

	24.	 ICD-10 Version. 2019. https​://icd.who.int/brows​e10/2019/en#/. Accessed 
20 Aug 2020.

	25.	 Popescu M, Xu D. Data mining in biomedicine using ontologies. Artech 
House. 2009.

	26.	 Salton G, McGill MJ. Introduction to modern information retrieval. New 
York: McGraw-Hill Inc; 1983.

	27.	 Jia Y, Nie F, Zhang C. Trace ratio problem revisited. IEEE Trans Neural 
Networks. 2009;20(4):729–35.

	28.	 Bishop CM. Pattern recognition and machine learning (information sci-
ence and statistics). New York: Springer; 2006.

	29.	 Girardi D, Wartner S, Halmerbauer G, et al. Using concept hierar-
chies to improve calculation of patient similarity. J Biomed Inform. 
2016;63(C):66–73.

	30.	 Popescu M, Khalilia M. Improving disease prediction using ICD-9 onto-
logical features. IEEE Int Conf Fuzzy Syst. 2011;56(10):1805–9.

	31.	 Mazandu GK, Mulder NJ. DaGO-Fun: tool for Gene Ontology-based func-
tional analysis using term information content measures. BMC Bioinform. 
2013;14(1):284–284.

	32.	 Milano M, Agapito G, Guzzi PH, et al. An experimental study of informa-
tion content measurement of gene ontology terms. Int J Mach Learn 
Cybern. 2016;9(supp 1):427–39.

	33.	 Sánchez D, Batet M. Semantic similarity estimation in the biomedical 
domain: An ontology-based information-theoretic perspective. J Biomed 
Inform. 2011;44(5):749–59.

	34.	 Kamoun K, Yahia SB. Stability assess based on enhanced information 
content similarity measure for ontology enrichment. In: International 
conference on model and data engineering. 2014.

	35.	 Milne D, Witten IH. An open-source toolkit for mining Wikipedia. Artif 
Intell. 2013;194:222–39.

	36.	 Wang F. Adaptive semi-supervised recursive tree partitioning: The ART 
towards large scale patient indexing in personalized healthcare. J Biomed 
Inform. 2015;55:41–54.

	37.	 Wang F, Sun J, Li T, et al. Two heads better than one: metric + active 
learning and its applications for IT service classification. In: ICDM 2009, 
proceedings of the 2009 ninth IEEE international conference on data 
mining. 2009. p. 1022–1027.

	38.	 Bai W, Oktay O, Sinclair M, et al. Semi-supervised learning for network-
based cardiac MR image segmentation. In: Descoteaux M, Maier-Hein L, 
Franz A, et al., editors. Medical image computing and computer-assisted 
intervention—MICCAI 2017. Cham: Springer; 2017. p. 253–60.

	39.	 Beaulieu-Jones BK, Greene CS. Semi-supervised learning of the 
electronic health record for phenotype stratification. J Biomed Inform. 
2016;64:168–78.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://arxiv.org/abs/2012.01976
https://icd.who.int/browse10/2019/en#/

	Study on the semi-supervised learning-based patient similarity from heterogeneous electronic medical records
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Related work

	Methods
	Overview
	Feature similarity calculation
	Feature similarity for comorbidity condition
	Feature similarity for text feature
	Feature similarity for laboratory tests
	Feature similarity for demographic information

	Semi-supervised patient similarity learning
	Building predictive models
	Data set

	Results
	Patient similarity
	Disease prediction

	Discussion
	Conclusions
	Acknowledgements
	References


