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Coronary heart disease and mortality
following a breast cancer diagnosis
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Abstract

Background: Coronary heart disease (CHD) is a leading cause of morbidity and mortality for breast cancer
survivors, yet the joint effect of adverse cardiovascular health (CVH) and cardiotoxic cancer treatments on post-
treatment CHD and death has not been quantified.

Methods: We conducted statistical and machine learning approaches to evaluate 10-year risk of these outcomes
among 1934 women diagnosed with breast cancer during 2006 and 2007. Overall CVH scores were classified as
poor, intermediate, or ideal for 5 factors, smoking, body mass index, blood pressure, glucose/hemoglobin A1c, and
cholesterol from clinical data within 5 years prior to the breast cancer diagnosis. The receipt of potentially
cardiotoxic breast cancer treatments was indicated if the patient received anthracyclines or hormone therapies. We
modeled the outcomes of post-cancer diagnosis CHD and death, respectively.

Results: Results of these approaches indicated that the joint effect of poor CVH and receipt of cardiotoxic
treatments on CHD (75.9%) and death (39.5%) was significantly higher than their independent effects [poor CVH
(55.9%) and cardiotoxic treatments (43.6%) for CHD, and poor CVH (29.4%) and cardiotoxic treatments (35.8%) for
death].

Conclusions: Better CVH appears to be protective against the development of CHD even among women who had
received potentially cardiotoxic treatments. This study determined the extent to which attainment of ideal CVH is
important not only for CHD and mortality outcomes among women diagnosed with breast cancer.

Keywords: Cancer informatics, Machine learning, Precision medicine, Coronary heart disease, Death, Breast Cancer,
Cancer treatments, Interactions

Background
Coronary heart disease (CHD) is the leading cause of
death among all women [1], including breast cancer sur-
vivors [2–4]. Increased utilization of screening and treat-
ment has led to more than 3.5 million female breast
cancer survivors in the United States today [5, 6]. The
majority of these women are more likely to die of CHD

than cancer [2–4, 7, 8]. CHD is a serious issue, because
important risk factors, such as physical inactivity, un-
healthy diet, obesity, and smoking, are common to the
etiology of both CHD and breast cancer [1, 9–11].
Cardiovascular health (CVH), as defined recently by

the American Heart Association (AHA), has important
implications for the prevention of both CHD and cancer
[12, 13]. CVH factors are believed to operate in common
pathways to chronic disease. For example, adverse CVH
factors may be pro-inflammatory and also may be car-
cinogenic. To date, many community-based studies have
used the CVH metric to characterize the prevalence of
ideal CVH in population-based samples [14–19]. Our
previous work in the Women’s Health Initiative (WHI)
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found that a poorer ideal CVH score, comprising the
aforementioned factors plus blood pressure, cholesterol,
and glucose, was associated with a higher incidence of
cardiovascular disease, cancer, and breast cancer specif-
ically [20].
Our evaluation of California cancer registry data

highlighted the possible role of shared risk factors in the
development of both cancer and CHD, reporting that
cancer survivors tend to have multiple CHD risk factors,
and that survivorship care often does not address these
risk factors [21, 22]. Favorable levels of risk factors com-
mon to both CHD and cancer are associated with im-
proved CHD and cancer survival [23]. Yet, in addition to
the problem of shared risk factors, therapies used to
treat breast cancer are linked with cardiovascular injury,
thus increasing CHD susceptibility via the “multiple-hit”
hypothesis [24–33]. Breast cancer therapies that are po-
tentially cardiotoxic include chemotherapies, radiother-
apy, hormonal treatments, and monoclonal antibodies
[24].
To our knowledge, existing studies have not yet

assessed the joint effect (interaction) of predisposing car-
diovascular risk factors and cancer treatments among
breast cancer survivors. Subpopulations, such as breast
cancer survivors in poor CVH prior to their cancer diag-
nosis, may be particularly susceptible to the late effects
of chemotherapy, radiation, and other cancer treatments.
Thus, this analysis will build on our previous work in
the WHI which assessed the relationship between CVH
and incident CHD and cancer [20].
A better understanding of synergistic associations be-

tween poor CVH and breast cancer treatments on CHD
risk after breast cancer has the potential to guide CHD
and cancer treatment, as well as post-treatment cancer-
related follow-up care is warranted. Screening and treat-
ment of poor CVH at the time of cancer diagnosis and
treatment planning may improve morbidity and mortal-
ity from CHD among breast cancer survivors [4, 21, 34–
36]. Existing literature indicates that left-sided radiation,
in certain doses, has a synergistic effect with pre-existing
cardiac risk factors on the risk of ischemic heart disease
[17]. Our goal was to add to this literature by investigat-
ing the receipt of radiation alongside other types of can-
cer therapies on risk of CHD and mortality using novel
statistical techniques [37].

Methods
Data source and study design
In this study, electronic health record (EHR) data was
obtained from a large midwestern medical center. The
patients (n = 1934) were all initially diagnosed with
breast cancer during 2006 or 2007 and did not have pre-
existing CHD. We included follow-up data for 10 years
following the initial diagnosis. Our goal was to

investigate the association between CVH, potentially-
cardiotoxic cancer treatments, age, race, and the 10-year
risk of post-treatment CHD [38] and death, respectively.
We defined CHD according to 217 unique ICD 9/10
diagnosis codes and 14 unique procedure codes, and
date of death was ascertained from EHR data which
were updated regularly with data from the National
Death Index.
We utilized measures of CVH as follows: smoking sta-

tus, body mass index (BMI), blood pressure, glucose/
hemoglobin A1c, and cholesterol [20], which were intro-
duced by the AHA and shown in detail in Table 1. The
most recent CVH data were ascertained within the 5
years prior to the diagnosis of breast cancer. We used
these baseline data to assign a pre-treatment CVH score
to each woman with a breast cancer diagnosis. A value
of “ideal” corresponded with 2 points on that submetric;
a value of “intermediate” with 1 point; and a value of
“poor” with 0 points.
For smoking status, for which data were complete, we

classified current smoking as 0 points, and not current
smoking as 1 point, as there were no data available to in-
dicate if they had never smoked or had quit for more
than 1 year (representing the “ideal” category). However,
not all CVH data were completed for all women; there-
fore, we imputed a value of 2 points for all missing sub-
metric values. We tested the robustness of this strategy
by imputing a value of 1 or 0, respectively, for missing
values. For all analyses, overall CVH was calculated by a
sum of all points, divided by the total possible points
[10], and multiplied by 100, and was defined as: 0- < 30%
for poor; 30- < 80% for intermediate; and 80–100% as
ideal.
Of interest for these analyses were the following treat-

ments, due to their potential adverse effects on the myo-
cardium: chemotherapy, left-sided radiation, hormone-
related or anti-estrogen pills, and Herceptin. We catego-
rized the breast cancer treatments as eight categories ac-
cording to what medicines were ordered: anthracyclines,
hormone therapy, aromatase inhibitors, monoclonal
antibodies, antimicrotubule agents, alkylating agents, an-
timetabolites, and other (e.g., Bortezomib). In our
current analysis, we included the receipt (yes/no) of each
type of treatment.

Statistical analysis
We classified age into three groups: 20–40, 41–60, and
61–100 years. The age is the age at the breast cancer
diagnosis. Race/ethnicity was defined as: black, non-
black, and unknown. After we quantified and categorized
the features of CVH, cancer treatments, age, and race,
we applied both traditional statistical methods and ma-
chine learning algorithms [i.e., support vector machines
(SVM) [39], decision tree [40], and logistic regression
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[41]] to investigate the associations between age, race,
CVH, cancer treatments, the interaction between CVH,
cancer treatments, and CHD and all-cause mortality, re-
spectively. We also conducted the Welch’s t-test and
produced boxplots to evaluate the differences between
independent and joint effects of CVH and cancer treat-
ments. In the machine learning models, we used CVH,
treatment and the interaction of CVH and treatment as
features, and applied linear SVM, decision tree, and lo-
gistic regression models, respectively, to predict if a
woman had incident CHD or death during 10 years of
follow-up. For the death prediction, we randomly se-
lected a similar number of patients who had died (n =
468) to compare to a sample of patients who had not
died (n = 374) due to the imbalance of our data accord-
ing to mortality. We used all patient observations in the
CHD risk prediction models. We tested the 5 CVH sub-
metrics and 8 treatment categories as input features for
the classification models. The dataset was randomly split
into training (80%) and test (20%) data sets, on which
the models were trained and then applied. Criteria of ac-
curacy and area under the receiver operator curve
(AUC) were calculated to evaluate the performance of
the models. Analyses were conducted by using the li-
braries of Scikit-learn, Scipy, Matplotlib with Python,
version 3.6.5 (2018).

Results
The average age of the population was 58.5 years, and
the majority of women (73%) were non-black (Table 2).
Approximately 20% of women were currently taking a
cholesterol medication, and few women (3%) were
current smokers (Table 2). There were 341 patients with
receipt of any class of cardiotoxic cancer treatments.
Among these 341 patients, 46% women received aroma-
tase inhibitors and 26% women received hormone ther-
apy. During the 10-year follow-up period, one-third of
the population developed CHD and 19% died.
Figure 1 shows the counts of women with each out-

come of interest and the proportion of women

represented in that strata. Women with a lower occur-
rence of CHD were younger (20–40 years), and the
prevalence of CHD steadily increased across older age
groups (Fig. 1a). Black women experienced a higher oc-
currence (48%) of CHD compared to the other race
groups (31%) (Fig. 1b). Rates of CHD were lower among
women with an ideal CVH score (24%) as compared to
those with CVH at non-ideal levels (61.9%) (Fig. 1c). Re-
ceipt of potentially cardiotoxic breast cancer treatments
was associated with an increased occurrence of post-
treatment CHD. Rates of incident CHD were higher
among women who received any cancer treatment
(58.9%) compared to the women who did not receive
any cancer treatments (29.1%) (Fig. 1d). We observed
similar trends for the outcome of mortality (Fig. 1e-h).
Particularly, Fig. 1f shows 29% of the black women died
compared to 15.9% for the non-black race; Fig. 1h shows
that higher percentage of patients died in the recipient
of treatment group. Women who died during the 10-
year follow-up tended to be older, of black race, who re-
ceived cancer treatments, and who had non-ideal CVH.
In Fig. 2, we show the independent and joint effects of

receipt of cardiotoxic breast cancer treatments and
poorer CVH. Women in poor (non-ideal) CVH who
were also exposed to cardiotoxic treatments had a syner-
gistically higher occurrence of post-treatment CHD
(75.9%) compared to women not exposed to cardiotoxic
treatments who were in good CVH (20.8%) (Fig. 2a).
Women in poor CVH who were not exposed to cardio-
toxic treatments, as well as women in good CVH who
were exposed to cardiotoxic treatments, had an elevated
occurrence of post-treatment CHD (55.9 and 43.6% re-
spectively), but did not experience a rate as high as those
who were doubly-exposed. Similar trends were observed
for the outcome of mortality (Fig. 2b). In addition, the
independent effect of treatment is bigger on CHD
(43.6%) than on death (35.8%).
The boxplots in Fig. 2c also indicate the significant dif-

ference between CHD rates among women who were
doubly-exposed and the women who were independently

Table 1 Measures of CVH in the EHR (Adapted from Lloyd-Jones, 2011) [38]

Poor Health Intermediate Health Ideal Health

Health Behaviors

Smoking status Yes Former ≤12months Never or quit > 12
months

Body mass index ≥ 30 kg/m2 25–29.9 kg/m2 < 25 kg/m2

Health Factors

Total cholesterol ≥ 240mg/dL 200–239mg/dL or treated to goal < 200mg/dL

Blood pressure Systolic ≥140mmHg or Diastolic ≥90
mmHg

Systolic 120–139mmHg or Diastolic 80–89 mmHg or
treated to goal

Systolic < 120mmHg
Diastolic < 80 mmHg

Fasting plasma
glucose

≥ 126mg/dL 100–125mg/dL or treated to goal < 100mg/dL
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exposed to poor CVH and cancer treatments (p < 0.0001
for poor CVH vs. joint exposure, p < 0.0001 for cancer
treatments vs. joint exposure). We observed similar re-
sults for the outcome of mortality shown in Fig. 2d (p <
0.0001 for poor CVH vs. joint exposure, p < 0.007 for
cancer treatments vs. joint exposure).
We obtained similar results using machine learning

models. Table 3/4 (in the supplementary material) lists
the performance results for death/CHD prediction by
the three models. The accuracy for predicting death by
SVM was 69% for models containing CVH (68% by deci-
sion tree, 69% by logistic regression), 63% for models
containing cancer treatment (69% by decision tree, 66%
by logistic regression) and 70% for models containing
both CVH and treatment (72% by decision tree, 72% by
logistic regression). The metrics of precision, recall and

f1-score had a similar trend for the prediction. The pre-
diction performance results held the same trends for the
CHD prediction (Table 4).
The first column in Fig. 3 shows the AUC plots for

CHD prediction while the second column shows the
prediction characteristics for the outcome of death by
SVM, decision tree, and logistic regression classifiers
under three different conditions of features: CVH,
cancer treatments, and combined CVH and cancer
treatments. The average AUC of the three machine
learning models was 0.65 for CVH, 0.60 for cancer
treatment, and 0.73 for both CVH and cancer treat-
ments. We obtained similar results for the mortality
analyses. We also performed 10-fold cross validation
for each model and the results were similar (data not
shown).

Table 2 Characteristics [mean (SD) or n (%)] of the study population (n = 1934)

Total (n = 1934) CHD(n = 664) Death (n = 374)

Age (years)

Mean (SD) 58.5 (12.9) 62.9 (13.1) 61.4 (13.9)

20–40 135 (7.0) 23 (3.5) 23 (6.1)

> 40–60 975 (50.4) 260 (39.2) 159 (42.5)

> 60–100 824 (42.6) 381 (57.4) 192 (51.3)

Race

Black 435 (22.5) 209 (31.5) 126 (33.7)

Non-black 1419 (73.4) 433 (65.2) 226 (60.4)

Unknown 80 (4.1) 22 (3.3) 22 (5.9)

BMI (kg/m2) 21.9 (13.6) 29.3 (8.3) 28.1 (10.1)

Systolic blood pressure (SBP, mmHg) 125.4 (20.7) 128.4 (22.0) 126.0 (20.7)

Diastolic blood pressure (DBP, mmHg) 69.8 (11.2) 69.8 (11.6) 69.4 (11.4)

Fasting glucose (mg/dL) 109.3 (33.3) 129.9 (53.6) 127.6 (58.3)

Hemoglobin A1c (%) 6.94 (1.9) 7.05 (1.8) 7.45 (2.3)

Total cholesterol (mg/dL) 186.6 (50.3) 181.6 (46.6) 178.9 (61.0)

Current smoking 66 (3.4) 51 (7.7) 18 (4.8)

Taking antihypercholesterolemia medication 367 (19.0) 267 (40.2) 88 (23.5)

Taking antihypertensive medication 461 (23.8) 386 (58.1) 215 (57.5)

Taking diabetic medications 346 (17.9) 238 (35.8) 138 (36.9)

Classes of potentially cardiotoxic cancer treatmentsa

Total patients (%) receiving treatments 341 (17.6) 201 (30.3) 128 (34.2)

Anthracyclines 6 (1.8) 4 (2.0) 3 (2.3)

Hormone therapy 87 (25.5) 51 (25.4) 28 (21.9)

Aromatase inhibitors 158 (46.3) 97 (48.3) 44 (34.3)

Monoclonal antibodies 7 (2.1) 3 (1.5) 2 (1.6)

Antimicrotubule agents 15 (4.4) 9 (4.5) 9 (7.0)

Alkylating agents 21 (6.2) 12 (6.0) 12 (9.4)

Antimetabolites 37 (10.9) 20 (10.0) 27 (21.1)

Other 10 (2.9) 5 (2.5) 3 (2.3)
aThe percentages for each class of treatments used 341, 201 and 128 as the denominator
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The results from Table 3 and Fig. 3 indicate that all
three models achieved higher accuracy with the inclu-
sion of joint effects as compared to only individual ef-
fects. Specifically, models which include both CVH and
receipt of treatment data provide additional information
and improve the prediction of CHD and death. Patients

with poor overall CVH who received cancer treatments
had the highest risk of CHD and death.

Discussion
In this study, we utilized data from the EHR to identify
women who were diagnosed with breast cancer in order

Fig. 1 Associations between age, race, CVH, treatment and CHD or death. a-d show associations between age (a), race (b), CVH (c), treatment (d)
and CHD. e-h show associations between age (e), race (f), CVH (g), treatment (h) and death. In c and g, CVH is ideal if CVH = 2.0, and
intermediate if CVH = 1.0
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to examine the independent and joint effects of CVH
and cancer treatments on 10-year risk of post-treatment
CHD or death. Our results indicated women with ideal
CVH scores, and those who did not receive potentially
cardiotoxic cancer treatments had the lowest risk of
post-treatment CHD or death, while the joint effects of
poor CVH and exposure to cancer treatments signifi-
cantly increased the risk of post-treatment CHD or
death. Additional factors that were associated with a
higher prevalence of CHD and death included older age
and black race.
Our results were consistent with previous conclusions

that minority and older adults were more likely to have
poorer CVH and ideal CVH was inversely associated
with cancers and cardiovascular disease [20]. Consistent
with biologic plausibility, our results indicated a higher
risk of post-treatment CHD among those who received
breast cancer treatments such as ionizing radiation to
the heart [27].
The innovation in this study was to investigate the

joint effects of CVH and potentially cardiotoxic breast
cancer treatments by both statistical methods and mul-
tiple machine learning approaches. The results from all

these methods were consistent, indicating the robustness
of our methods and results.
Our next step is to investigate some questions such as

which individual treatments (e.g. anthracyclines, hor-
mone therapy) and individual CVH submetrics (e.g.
BMI, blood pressure) are the most important variables
for predicting CHD and death, but these questions are
beyond the scope of this paper. We also plan to replicate
these analyses in distinct cancer types.
Another next step is to involve deploying and evaluating

clinical decision support in the cancer survivorship setting
for managing cardiovascular late effects among cancer
survivors. Our clinical decision support system (CDSS)
presents CVH and cancer treatment data separately in the
EHR-embedded data visualization. Our goal is to 1 day in-
tegrate a validated cardiovascular risk algorithm into our
existing CDSS to better target cardiovascular disease pre-
vention and management efforts in cancer survivorship.

Limitations
We encountered many limitations in using EHR data for
these analyses. First, there were many missing data for
CVH, likely because these women were not being seen

Fig. 2 Associations between joint effects/interactions and CHD or death. a and b show the contribution of CVH and treatments on CHD (a) and
death (b). c and d are box plots of the individual and joint (interaction) effects of CVH and treatments on CHD (c) and death (d). In a and b, CVH
is ideal if CVH = 2.0, and intermediate if CVH = 1.0
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for preventive care but rather for cancer care and treat-
ment. Second, we acknowledge that we may be missing
CHD and mortality outcome data for women who ob-
tained cancer care and treatment at our medical center
but after which returned home and sought care outside
of our medical center. Third, we used CVH measure-
ments up to 5 years prior to the cancer diagnosis, of
which the time frame varied for each woman. Fourth,
physical activity and diet data are not commonly re-
corded in the EHR as structured, actionable data ele-
ments. If physical activity and diet data do exist in the
EHR, they are usually recorded as clinical notes using
free text. Importantly, these data are not easily translated
into the American Heart Association’s metric definitions
and thus are not actionable at the point-of-care or easily

incorporated into risk scoring algorithms. Similarly, data
on diagnosis and treatment, have not always been stored
as structured data elements in the EHR. Conducting this
analysis required mining data from legacy EHR systems
and for pragmatic reasons we accessed only structured
data elements for this analysis, which resulted in incom-
plete data ascertainment. Finally, we are missing data on
radiotherapy. We will explore the missing radiotherapy
data from multiple data sources as our future work.

Conclusions
An ideal CVH score predicted a lower risk of post-
treatment CHD or death. Receipt of cardiotoxic breast
cancer treatments was associated with increased post-
treatment CHD or death, and there was a synergistic

Fig. 3 The first column (a-c) represent CHD prediction, and the second column (d-f) show results of mortality prediction. a and d show the AUC
in ROC by SVM models, b and e show the AUC in ROC by decision tree models, and c and f show the AUC in ROC by logistic regression models.
The three curves in each plot represent the individual and joint effects of CVH and potentially-cardiotoxic treatments
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effect of CVH such that better CVH seemed to be pro-
tective against the development of CHD even among
women who had received potentially cardiotoxic treat-
ments. This study determined the extent to which ideal
CVH is important to attain and maintain for more favor-
able outcomes following a breast cancer diagnosis.
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