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Abstract

Background: Medication errors have been identified as the most common preventable cause of adverse events.
The lack of granularity in medication error terminology has led pharmacovigilance experts to rely on information in
individual case safety reports’ (ICSRs) codes and narratives for signal detection, which is both time consuming and
labour intensive. Thus, there is a need for complementary methods for the detection of medication errors from
ICSRs. The aim of this study is to evaluate the utility of two natural language processing text mining methods as
complementary tools to the traditional approach followed by pharmacovigilance experts for medication error signal
detection.

Methods: The safety surveillance advisor (SSA) method, I2E text mining and University of Copenhagen Center for
Protein Research (CPR) text mining, were evaluated for their ability to extract cases containing a type of medication
error where patients extracted insulin from a prefilled pen or cartridge by a syringe. A total of 154,209 ICSRs were
retrieved from Novo Nordisk’s safety database from January 1987 to February 2018. Each method was evaluated by
recall (sensitivity) and precision (positive predictive value).

Results: We manually annotated 2533 ICSRs to investigate whether these contained the sought medication error.
All these ICSRs were then analysed using the three methods. The recall was 90.4, 88.1 and 78.5% for the CPR text
mining, the SSA method and the I2E text mining, respectively. Precision was low for all three methods ranging
from 3.4% for the SSA method to 1.9 and 1.6% for the CPR and I2E text mining methods, respectively.
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Conclusions: Text mining methods can, with advantage, be used for the detection of complex signals relying on
information found in unstructured text (e.g., ICSR narratives) as standardised and both less labour-intensive and
time-consuming methods compared to traditional pharmacovigilance methods. The employment of text mining in
pharmacovigilance need not be limited to the surveillance of potential medication errors but can be used for the
ongoing regulatory requests, e.g., obligations in risk management plans and may thus be utilised broadly for signal
detection and ongoing surveillance activities.

Keywords: Signal detection, Pharmacovigilance, Individual case reports, Medication errors, Natural language
processing, Text mining, Precision, Recall

Background
A medication error is defined as the unintended failure
in drug treatment occurring at any stage of the treat-
ment process that results or can result in patient harm
[1]. Medication errors have been identified as the most
common preventable cause of adverse events and a sig-
nificant source of economic burden for healthcare sys-
tems [2]. For European healthcare systems, for example,
estimates of the yearly economic impact of medication
errors range between 4.5 and 21.8 billion euros [2]. Fur-
thermore, the reporting of medication errors has in-
creased at a steady pace since 2005, which may be due
to factors such as changes to the Medical Dictionary for
Regulatory Activities (MedDRA®) terminology, increased
awareness or a generally increased risk for medication
errors as more medications with complex devices be-
come available [3]. In an effort to prevent patient harm
due to medication errors, various stakeholders such as
the World Health Organization (WHO), the European
Medicines Agency (EMA) and the Food and Drug Ad-
ministration (FDA) have created guidelines and imposed
legislations aiming at improving the reporting and detec-
tion of medication errors [3–7]. One of these mitigation
efforts is the EU pharmacovigilance legislation from
2012. The legislation requires that all suspected serious
and non-serious adverse reactions associated with medi-
cation errors must be reported by national competent
authorities and marketing authorisation holders to the
EudraVigilance system, which is the EMA’s database for
safety monitoring of medicinal products [2].
Regardless of whether the medication error results in

harm or not, the detection of medication errors involves
similar pharmacovigilance sources such as those
employed when identifying adverse drug events (ADEs).
Thus, common data sources for medication errors in-
clude clinical trials, spontaneous safety reports, observa-
tional studies, administrative claims, solicited reports
and medical literature [2, 8]. Furthermore, the identifica-
tion and analysis of medication errors in a similar way as
ADEs also rely on the manual review performed by med-
ical/pharmacovigilance assessors [9, 10] and the use of
MedDRA® terminology for the coding of drug-related

events [3]. Despite the expansion in the MedDRA® ter-
minology to facilitate the coding of medication errors
[3], signal detection of medication errors is still a chal-
lenge as many of these terms lack sufficient granularity
to capture the root cause of the error. This is because
medication errors are often a result of a chain of events
impacted by human behavior and reasoning. Conse-
quently, pharmacovigilance experts resort to the descrip-
tion of the signal in the narrative to perform the
analysis, thus making the process both time consuming
and labour intensive. Since the process requires manual
review, signal detection of medication errors is further
challenged by the previously described increase in sub-
mitted reports of medication errors [3].
Investigations of the utility of text mining techniques

in the identification of ADEs have increased significantly
in recent years and have so far been primarily addressed
by academia [11–15] and the FDA [16, 17]. The pharma-
ceutical industry could potentially also benefit from the
use of text mining methods for signal detection. This
study explores the possibility of supplementing the man-
ual work performed by pharmacovigilance experts in the
identification of medication errors with the use of nat-
ural language processing (NLP)-based text mining tools.
To achieve this purpose, three methods will be evaluated
for their ability to retrieve individual case safety reports
(ICSRs) that contain a specific medication error from
Novo Nordisk’s (NN) safety database Argus®: the safety
surveillance advisor (SSA) method, representing the
traditional approach for the detection of a medication
error, and two NLP-based text mining methods, namely
the I2E text mining and the Center for Protein Research
(CPR) text mining. The medication error in question en-
tails the extraction of insulin from a prefilled pen or cart-
ridge by a syringe (EIPPCS), which was identified as a
safety signal by the EMA in May 2017 [18].

Methods
The aim of this study is to evaluate the use of two nat-
ural language processing text mining methods as com-
plementary tools to the traditional approach followed by
pharmacovigilance experts for medication error signal
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detection by using case narratives from NN Argus
Safety® database.

Data source
The input data for the current study consisted of all
ICSRs received by NN in the period from January 1987
to February 2018 and involving all NN insulin products
in the form of cartridges, prefilled pen devices and dur-
able pen devices from NN Argus Safety® database. The
retrieved 154,209 ICSRs served as the dataset upon
which the three methods to extract cases containing the
EIPPCS medication error were applied.

Training dataset
A set of 137 cases served as training data to create and
improve the I2E and CPR text mining queries, of which
117 cases were identified in June 2017 by the Safety Sur-
veillance department at NN, using a standard SSA ap-
proach, in response to EMA’s assessment of EIPPCS as a
safety signal. The search criteria used to identify the 117
cases included solely the fast-acting NN insulin products
in a cartridge or prefilled pen presentation over a period
ranging from 1 January 2002 to 31 March 2017. Twenty
(20) cases were randomly selected from the output of
the SSA method and added to the above-mentioned 117
cases. The rationale behind the addition of the 20 cases

is to reflect the broader criteria for the data source, i.e.
more products included and longer time period, as the
input data for the SSA method covered a period ranging
from January 1987 to February 2018, and included all
NN insulin products in the form of cartridges, prefilled
pen devices and durable pen devices. Furthermore, the
longer time period also accounts for changes in the de-
scription of EIPPCS error in the case narratives, ranging
from shorter and less descriptive narratives for older
cases to longer and more detailed narratives for the
more recent cases.

Annotated dataset
The MedDRA® terminology has an internal hierarchy,
which permits linking levels of the hierarchy. We col-
lapsed all MedDRA® codes stored in the ICSRs to high
level group terms (HLGTs). A dataset for manual anno-
tation was obtained by applying the two MedDRA®
HLGTs Device issues and Medication errors, and other
product use errors and issues to filter through the full set
of ICSRs meeting the inclusion criteria. A subset of 10%
was manually annotated by NKE (Fig. 1). This annotated
dataset, which did not include the 117 case narratives,
served as the test set to evaluate the performance of the
three methods in extracting ICSR narratives that contain
the EIPPCS medication error. To account for potential

Fig. 1 Annotated dataset. Two MedDRA® HLGTs Device issues and Medication errors, and other product use errors and issues were applied as filters
to the starting dataset of 154,209 narratives. This decreased the number of ICSRs to 25,328, and from the latter dataset a 10% random sample
corresponding to 2533 ICSRs was taken for manual annotation. MedDRA® Medical Dictionary for Regulatory Activities, HLGTs high level group
terms, ICSRs individual case safety reports
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discrepancies in the assessment of EIPPCS between an-
notators, another annotator SLH reviewed a sample of
100 ICSRs from the annotated set. The inter-annotator
agreement was calculated using Cohen’s κ coefficient.

Safety surveillance advisor method
The SSA method was developed based on learnings from
the initially identified 117 cases. For the original signal
analysis, case extraction involved the use of two Med-
DRA® preferred terms (PTs), namely Wrong technique in
product usage process and Drug administered in wrong
device as filters to identify relevant cases. Based on infor-
mation gathered from the narratives of the 117 cases,
root causes of EIPPCS error were elucidated as being re-
lated to issues with the device itself, the technique in
using device or to situations where patients intentionally
used the device incorrectly. Examples of phrasing in the
narratives that helped elucidate the possible root causes
of EIPPCS include: “It was reported that the patient had
been using Levemir® PenFill® and NovoRapid® PenFill® for
the last 2 years. It was reported that Levemir® and
NovoRapid® was intentionally mixed in the one syringe
(to minimise injections in paediatrics patients)”; “A pa-
tient experienced a pen with air inside and a bubble. She
verified this problem as insulin was not coming out of the
pen. For this reason, the consumer is taking insulin with
syringe.” and “A man reported that he mistakenly with-
drew insulin out of the NovoLog® FlexPen® with a regular
syringe and then injected it back into the FlexPen®”.
The root cause analysis assisted in expanding the PTs

that could potentially be used to code this error from
two PTs to the 12 PTs listed in Table 1. The 12 PTs
were applied as second filter in the SSA method. The
first filter consisted of using the word ‘syringe’ to search
across case narratives, as EIPPCS error implies the use
of a syringe.

Text mining methods
In this project we decided to include two rule-based text
mining methods, one method developed for commercial
settings and one method currently developed for aca-
demic settings. We included both of these to investigate
two rule-based text mining methods originating from in-
dependent settings. The commercial product included
was I2E (Linguamatics, Cambridge, UK), a product
already used by the pharmaceutical industry. This is an
NLP text mining software that can be applied to various
data formats and data sources. It also features an inter-
active and user-friendly interface. The other text mining
method was developed at the Novo Nordisk Foundation
Center for Protein Research, University of Copenhagen,
and is referred to in this article as “CPR text mining”.
This method has a strong focus on the ability to fine
tune and processing speed. It also provides a wide range
of features that may be independently optimised.
The I2E text mining method and the CPR text mining

method both followed an NLP rule-based approach to
identify relevant ICSRs. A dictionary referred to as the
‘EIPPCS dictionary’ was created by compiling a list of
words and short phrases descriptive of this medication
error that were extracted from the 117 case narratives.
This dictionary was employed in creating the first set of
queries for both text mining methods. Fine tuning of the
two text mining methods was performed independently.

I2E text mining method
The methodology employed for this study was previously
described by Milward et al., 2005 [19]. The I2E query re-
lied on simple linguistic pattern extraction rules using a
data-driven methodology on the case narrative, to in-
clude or exclude cases as presented in the flow diagram
(Fig. 2a).

CPR text mining method
CPR text mining is based on a named entity recognition
(NER) tagger, which identifies matches in input texts.
The method was originally designed to identify drug-
related adverse events in Danish medical records [14].
However, since the framework of the method is neither
context nor language specific, it was possible to apply it
for the purpose of this study by constructing a context-
specific dictionary that included all insulin pen products
marketed by NN, which was used in combination with
the EIPPCS dictionary. All of the information extraction
was done case insensitive.
The pre-processing steps included isolating the rele-

vant sections from the case narratives for further ana-
lysis. This included only analysing the sections
associated with consumer mishandling of products and
excluding sections concerning subsequent physical and
chemical analyses.

Table 1 Twelve MedDRA® preferred terms used as second filter
in the SSA method

1. Device failure

2. Device malfunction

3. Device use error

4. Device use issue

5. Drug administered in wrong device

6. Drug administration error

7. Intentional device misuse

8. Intentional product misuse

9. Product use issue

10. Wrong device used

11. Wrong technique in device usage process

12. Wrong technique in product usage process
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After tagging relevant terms, negative filters were ap-
plied to disqualified cases. This included cases that con-
tained text indicating that the consumer had not
performed the sought drug administration error or that
the information originated from an inhaled insulin clin-
ical trial. Finally, we required the word syringe to be
equal or less than 8 words separated from words acting
as positive filters, as well as these being within the same
sentence (Fig. 2b).

Evaluation measures
EIPPCS identification methods
Recall (sensitivity) and precision (positive predictive
value) are the parameters used in this study to evaluate

the performance of the three methods in retrieving
EIPPCS cases. Recall is defined as the proportion of
EIPPCS case narratives annotated in the test dataset that
were also retrieved by the method under evaluation,
among all the EIPPCS narratives listed in the test data-
set. Precision is the proportion of EIPPCS narratives re-
trieved by the method that were also part of the test
dataset, among all the EIPPCS narratives retrieved by
the method in question.

Results
We retrieved 154,209 ICSRs fulfilling the inclusion cri-
teria from the NN Argus Safety® database. Applying the
two MedDRA® HLGTs to build our annotated dataset

Fig. 2 Flow diagrams depicting the I2E method (a) and the CPR method (b)
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resulted in 25,328 ICSRs. Therefore, the random sample
consisting of 10% of these was 2533 ICSRs (Fig. 1).
By extracting only ICSRs containing the word ‘syringe’,

5535 ICSRs were identified using the SSA method. This
was further reduced by applying the 12 MedDRA® codes,
resulting in an end result of 1104 ICSRs. The I2E
method identified 2019 ICSRs and the CPR method
identified 2042 ICSRs (Fig. 2).

Annotated dataset
From the reviewed 2533 narratives, 42 were assessed as
containing EIPPCS and 2491 as non-EIPPCS case narra-
tives (Fig. 2). The sample of 100 ICSRs that was inde-
pendently reviewed included the above-mentioned 42
EIPPCS cases and additional 58 cases randomly chosen
from the 2491 remaining narratives. The calculated
Cohen’s κ coefficient for inter-annotator agreement was
0.96.

Comparison of method performance
The CPR text mining identified 38 out of 42 EIPPCS
cases, the SSA method identified 37 out of the 42 cases
and the I2E text mining identified 33 out of the 42 cases.
Recall ranged from 90.4 to 78.5%, with the CPR text

mining showing the highest recall (90.4%), followed by
the SSA method (88.1%) and the I2E with the lowest re-
call (78.5%).
The distribution of true positive (TP) cases captured

by the three different methods is depicted in Fig. 3. The
TP cases captured by the different methods were com-
pared against each other, and the possible root cause for

the missed cases was assessed (Table 2). Two cases were
missed by I2E text mining due to the context in which
the EIPPCS error was described in the narratives. These
cases included situations where the product (cartridge)
subject to EIPPCS was not clearly stated in the case nar-
rative; but deducible from the product forms. Rule 1 of
the I2E text mining was identified as the reason for
which two cases were not captured due to insufficient
variations of the vocabulary. To overcome this, rule 1
could be adjusted by including more synonyms such as
the verbs, e.g. inject, administer or use, which when
present in the same sentence as the word syringe can be
descriptive of the error, and thus capture the EIPPCS
cases. Similarly, adjusting the CPR text mining rule 5 to
include the verb administer would have captured the
case that was otherwise retrieved by the SSA and I2E
text mining methods. CPR missed one case because it
failed to capture the case based on what is written in
rule 2, i.e. insulin was withdrawn with a syringe but that
was only mentioned in a separate section of the narrative
“analysis results” (dedicated section to describe analysis
of returned products).
Furthermore, the TP cases identified by the SSA

method were analysed based on the frequency of the
PTs for the SSA method. The PT Wrong technique in
product usage process retrieved 40% of TP cases
(Fig. 4a).
The number of false negative (FN) cases was 4, 5 and

9 for CPR text mining, SSA and I2E text mining
methods, respectively. Two of the FN cases were not
captured by all three methods due to the absence of the
word “syringe” from the narrative.
Precision was low for all methods with the lowest

precision at 1.6% for I2E text mining, 1.9% for CPR
text mining and 3.4% for the SSA method. The false
positive (FP) cases of all three methods were analysed
to investigate if there is a pattern among the cases
that could explain the high ratio of FP. The FP cases
captured by the SSA method were mapped to the PT
term or terms that captured them. Device malfunction
was identified as the PT capturing the largest number
of FP cases, followed by Device failure responsible for
approximately one-fourth of the FPs cases (Fig. 4b).
For the two text mining methods, a comparative
post-hoc analysis was made to investigate if there
were any concepts present only in the FP data pool
and not in the TP data pool, and thus suggesting a
potential future filtering step. We identified the most fre-
quent concepts for each text mining method (Table 3).
Most of the terms presented are common terms used in
daily language but could as well have been used to im-
prove performance in our test set. Thus, filtering based on
these terms would be expected to impact precision. Terms
related to “prefilled” in connection with e.g. “insulin “or

Fig. 3 Venn diagram of the true positive cases captured by each
method from the annotated dataset. Two TP cases were not
captured by any of the methods
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“flexpen” is only represented in the I2E FP data pool. The
CPR text mining method already includes a filter to re-
move the word “prefilled” associated with “syringe” (Fig.
2b).

Discussion
Based on the complexity of EIPPCS both in terms of the
numerous ways in which the error can be phrased in the
narratives, and the lack of MedDRA® PTs that can spe-
cifically code such error, this research aimed to evaluate
the utility of applying two text mining methods to com-
plement the work performed by pharmacovigilance ex-
perts. The main finding is that the two text mining
methods I2E and CPR have a similar level of recall and
precision as compared to the traditional SSA method.

Recall
Recall was high for all three methods. The CPR method
was most successful in capturing EPICCS cases, with 32

cases in common with the I2E method and 35 cases in
common with the SSA method. Analysis of the discrep-
ancies between the methods showed that a recurrent
reason was insufficient variations of the vocabulary.
There was a low occurrence of EIPPCS cases in the

annotated test and despite annotating 2533 cases only
42 EIPPCS cases were identified. The size of the true
cases in the test set could substantially impact the
achieved recall, as with a relatively small set of true cases
few or even only one case could to a large extent nega-
tively influence the recall of the methods.
The SSA method relied on 12 PTs to capture EIPPCS

cases. The 12 PTs were identified based on the analysis
of various ways to describe the signal which often relied
on a root cause and was thus highly context dependent.
For complex signals like the EIPPCS, this is labour-
intensive work as no single, or even few PTs, sufficiently
describe the signal. Consequently, 12 PTs were selected
to capture EIPPCS cases which resulted in a slightly

Table 2 Number of true positive cases missed by each method and the root cause for missing cases

Affected method Cause Number of cases

SSA PT term not part of the 12 listed in Table 1 3

I2E Context 2

I2E I2E rule 4 needs adjustment 2

I2E Flextouch® not part of the query 2

CPR CPR rule 5 needs adjustment 1

I2E and CPR CPR rule 2 was not followed
I2E rule 4 needs adjustment

1

Fig. 4 Frequency of PTs across true positive cases (a) and false positive cases (b). *Composite PTs: Cases in which more than one of the 12 PTs
captured the case. #PTs: Several PTs captured less than 10 cases; these have been grouped together in “PTs < 10”. a Only 5 PTs were employed
to capture true positives in the test set. b All 12 PTs were employed to capture false positives; however, the majority captured less than 10 cases
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higher precision as compared to the text mining
methods. However, despite the slightly higher precision,
the SSA failed to capture 3 cases in which the EIPPCS
error was coded with PTs not part of the 12 PTs listed
in the method. Including PTs to ensure that these 3
EIPPCS cases would be captured would have increased
the number of FPs even further. The missed cases are
not considered to be due to insufficient coding;

MedDRA® coding of ICSRs is a specialist task, which re-
quires specific training and experience. Rather, a correct
coding of ICSRs containing medication errors often re-
lies on decoding the root cause of the error, and since
human behaviour is the source of the root cause this in-
evitably makes MedDRA® coding of medication errors a
challenging task.

Precision
Precision for all three methods was at a similar level and
low, which can be attributed to different factors. First,
the occurrence of the EIPPCS signal is rare as only 1.7%
(42 out of 2533) of the test dataset was identified as
EIPPCS cases. Reducing the number of false positives
identified from scarce events is complicated without un-
intentionally decreasing the number of true positive
cases, as one parameter often influences the other. Sec-
ond, the EIPPCS signal is characterised by its many fold
root causes, meaning the actual signal description varies
both in terms of the several root cause scenarios to be
described, and the multiple ways a particular root cause
can be described. ICSRs are reported worldwide and
translated into English from various other languages
which can impact both quality and variability of the case
narrative. The source of the ICSR may further add to
the variability, e.g., a spontaneous case reported by a pa-
tient in layman language or a solicited case report from
a clinical trial reported by a medical doctor in long and
scientifically correct sentences. Thus, the correct identi-
fication of an EIPPCS case relies on the correct inter-
pretation of the context. Therefore, improved
interpretation of the context could potentially increase
precision.

Rule-based text mining in the pharmaceutical industry
Rule-based approaches were chosen in this project. This
is due to the desirable features of such an approach in
the pharmaceutical industry, which are not always ful-
filled by machine learning methods.
The most obvious reason is the ability to check every

single step of a query and that all modifications to the
algorithm behave in a predictable and transparent
manner.
The ability to check every step is particularly valuable

for the identification of medication error signals, where
the error is often a result of a chain of events compli-
cated by variations of human behaviour and reasoning
and language complexity as detailed above.
Reproducibility and transparency are essential require-

ments from the authorities to the pharmaceutical industry
and it is therefore necessary to avoid any black boxes. Ma-
chine learning is based on probabilistic results, where pro-
cesses are hidden from the human observer, potentially
resulting in an unpredictable model. Small pieces of

Table 3 The 25 most frequent terms only found in the false
positive dataset and not in the true positive for each of the two
text mining methods. If present in both methods, the counts
are sorted on the frequencies in the I2E method, otherwise
sorted for each method. Terms not present in dataset are
marked with '-'

Term I2E CPR

insulin syringes 718 516

woman 700 622

elevated 624 567

changes 613 492

prefilled 608 -

prefilled insulin 573 -

flexpen prefilled 545 -

elevated blood 545 495

elevated blood glucose 542 492

the woman 542 471

flexpen prefilled insulin 539 -

introduced 505 404

introduced to 500 397

was introduced 498 401

switched 497 533

was introduced to 494 395

prefilled insulin syringes 491 -

elevated blood glucose levels 489 447

who was introduced 488 399

who was introduced to 486 395

activity 463 -

flexpen prefilled insulin syringes 460 -

conventional 459 657

air 455 414

prior 439 390

while using - 401

conventional insulin - 389

man - 385

prior to - 375

a woman - 369

woman reported - 351

his blood - 346
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information may significantly change the model and fur-
ther increase the unpredictability of the model. The more
parameters a machine learning approach can compute
may result in an improved model but probably at the ex-
pense of the human understanding of the model.
Further, rules in a rule-based approach may be pro-

duced in a flexible manner, for example extending
searches with lexical synonyms from a database. A rule-
based system does not need a massive training corpus,
which is especially important in this project since we
were searching for a very sparse event. Producing a satis-
factory corpus to train a machine learning approach
would be extremely time consuming due to the sheer
size of the task.
There are, however, also obvious advantages of ma-

chine learning that we were not able to benefit from.
This includes that the method can “learn” from any data,
and therefore may produce results soon after a signal
has been identified, and such a methodology may be
both time and resource saving for detection of less com-
plex signals as compared to rule-based approaches. Here
it is also important to point out that poor input data
most likely will produce poor results. In the end, the lar-
gest disadvantage of the rule-based method is probably
the requirement of skilled operators that can construct
rules and enhance these rules over time.
Thus, machine learning models seem to lack the flexi-

bility to capture the dynamic nature of safety signal de-
tection and the transparency to meet regulatory
requirements.

Method comparison
Both text mining methods relied on information from
case narratives based on which a set of pre-specified
rules were generated. The definition of these rules
allowed for a more nuanced vocabulary to describe the
signal. Although both definition of rules and the pre-
processing steps are based on manual work, it is still less
labour intensive than the SSA method. In text mining,
ideally a balance between precision and recall should be
achieved. Nevertheless, given that EIPPCS is a rare
phenomenon accentuating recall over precision is often
the norm [20]. Thus, identification of a rare signal or in-
surance of high degree of certainty that most ICSRs are
captured, i.e. high sensitivity, happens at the expense of
a low precision. We also favoured high recall, since the
false positive cases could be further processed by apply-
ing filters such as the concepts listed in Table 3, which
would only improve precision without at all decreasing
recall. Furthermore, the pharmaceutical industry must
meet regulatory requirements to report signals [5], and
thus prioritising a high recall is required.
Both with the traditional SSA method and the two text

mining methods, a large number of FP EIPPCS cases

were captured. To explore if there were any apparent
pattern which could be suggestive of the means to opti-
mise the methods, analysis of patterns of TP and FP was
undertaken. For the SSA method, the PT terms Device
malfunction and Device failure when combined are re-
sponsible for capturing over to two-third of the FP cases.
Therefore, omitting these PT terms may improve preci-
sion although at the sacrifice of TP cases as 5 cases were
captured by either of the two PTs. A number of PTs
captured zero cases in the test set although these were
identified as appropriate PTs in the initial signal analysis
investigating the root causes. Thus, the choice of which
PTs to include is a delicate balance between detecting
the signal without drowning in noise. The same goes for
the text mining methods, where distance between key-
words set to a specific maximum can fail to include or
exclude cases. For the two text mining methods, an ana-
lysis was undertaken to investigate if there were any
unique terms present in the FP dataset, and which were
not represented in the TP dataset, which could be sug-
gestive of a means to improve precision. Most of the
identified terms were common language to describe the
signal. For the I2E method terms related to “prefilled” in
connection with e.g. “insulin” or “flexpen” is only pre-
sented in the I2E FP data pool and could therefore be a
suggestion for future optimisation. A similar optimisa-
tion was already implemented in the CPR method dur-
ing development.
Leveraging of valuable information for pharmacovigi-

lance purposes from unstructured text in case narratives
has been tested by several researchers [15, 21, 22].
Through the use of NLP text mining, Wang et al.
[21]was able to uncover novel ADEs, thus drawing atten-
tion towards prospective surveillance versus the trad-
itional retrospective approach that is the mainstay of
traditional pharmacovigilance. Furthermore, Harpaz
et al. [22] demonstrated that combining data from spon-
taneous reports with data harvested from the narratives
of electronic health records through the use of NLP
techniques allows for more accurate signal detection.
In this paper, the usefulness of applying text mining as a

pharmacovigilance tool is demonstrated for the detection of
a rare signal primarily by reducing work load. The rapid
growth of safety data to surveillance combined with in-
creasing regulatory requirements call for the development
and testing of new methodologies in pharmacovigilance.
This study is the first to exploit the use of text mining
methodologies on a ‘real world’ safety signal. Surveillance of
medication errors is by nature challenging as the cause of
error is often driven by human behaviour which is only
poorly captured by MedDRA@ coding. This means that
surveillance of potential medication errors relies on manual
and labour-intensive methodology. Our paper provides an
alternative to this in the form of a standardised and
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transparent methodology. The employment of text mining
in pharmacovigilance, as described here, need not be lim-
ited to the surveillance of potential medication errors but
can be used for the ongoing regulatory requests, e.g., obliga-
tions in risk management plans and may thus be utilised
broadly for signal detection and ongoing surveillance
activities.

Conclusion
This research shows that text mining methods may be
useful tools for signal detection as compared to the trad-
itional pharmacovigilance method. In particular, text
mining methods may be beneficial when the signal de-
scription relies on unstructured text information, e.g.
ICSR narrative, in terms of providing a standardised and
less labour-intensive alternative to the traditional phar-
macovigilance method.
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