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Abstract

Background: Adverse drug events (ADEs) often occur as a result of drug-drug interactions (DDIs). The use of data
mining for detecting effects of drug combinations on ADE has attracted growing attention and interest, however,
most studies focused on analyzing pairwise DDIs. Recent efforts have been made to explore the directional
relationships among high-dimensional drug combinations and have shown effectiveness on prediction of ADE risk.
However, the existing approaches become inefficient from both computational and illustrative perspectives when
considering more than three drugs.

Methods: We proposed an efficient approach to estimate the directional effects of high-order DDIs through frequent
itemset mining, and further developed a novel visualization method to organize and present the high-order directional
DD effects involving more than three drugs in an interactive, concise and comprehensive manner. We demonstrated
its performance by mining the directional DDIs associated with myopathy using a publicly available FAERS dataset.

Results: Directional effects of DDIs involving up to seven drugs were reported. Our analysis confirmed previously
reported myopathy associated DDIs including interactions between fusidic acid with simvastatin and atorvastatin.
Furthermore, we uncovered a number of novel DDIs leading to increased risk for myopathy, such as the
co-administration of zoledronate with different types of drugs including antibiotics (ciprofloxacin, levofloxacin) and
analgesics (acetaminophen, fentanyl, gabapentin, oxycodone). Finally, we visualized directional DDI findings via the
proposed tool, which allows one to interactively select any drug combination as the baseline and zoom in/out to
obtain both detailed and overall picture of interested drugs.

Conclusions: We developed a more efficient data mining strategy to identify high-order directional DDIs, and
designed a scalable tool to visualize high-order DDI findings. The proposed method and tool have the potential to
contribute to the drug interaction research and ultimately impact patient health care.

Availability and implementation: http://lishenlab.com/d3i/explorer.html
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Background

Recent advances in large-scale electronic health record
database techniques provide exciting new opportunities
to the study of drug safety. Drug-drug interactions (DDIs),
a major cause of adverse drug events (ADEs), are a serious
global health concern, and a severe detriment to public
health. In fact, over 500,000 serious medical complica-
tions per year, a portion of which are fatal, result from
multiple drug consumption [1]. The most common cause
of ADEs is DDIs, and more than three-fourths of Amer-
ican elderly citizens take two or more drugs per day [2].
Therefore, studying DDIs is clearly a relevant and pressing
area of research.

The scale of DDIs involving three or more drugs (also
called high-order DDIs) has posed a prohibitory challenge
for molecular pharmacology and clinical research, which
motivates alternative strategies such as mining health
record data. This project aims to develop large-scale com-
putational strategies and effective software tools for min-
ing high-order DDI effects from health record databases,
in order to yield novel discoveries in drug safety, and
ultimately to benefit national health and well being.

Although many research groups have used various sta-
tistical methods or machine learning algorithms to dis-
cover DDIs, most of these efforts have focused on finding
pairwise DDIs [3]. Due to the lack of multiple-drug experi-
mental data, a common method to predict high-order DDI
is to piece together multiple pairwise analyses to form
an overall high-order analysis [4]. However, studying high
order DDI through pairwise analysis is a relatively sim-
plistic approach, as it neglects the fact that networked
interactions can change when a third drug enters the
pair. For instance, a three-way combination could lead to
ADEs even when its subsets of pairwise drug combina-
tions do not [5]. DDIs get increasingly complex as more
drugs are involved, and it is also statistically complicated
to aggregate the results of separate pairwise analyses [2].

While investigation of high-order DDIs is still an under-
explored area [2], new methods involving data mining
have appeared to predict high-order DDIs, bypassing the
need for experimental data. Ning et al. demonstrates that
frequent drug combinations and clinical data indicating
patient side effects can be extracted from public health
record databases to find correlations between drug com-
binations and ADEs [3]. Ultimately, this becomes a binary
classification problem of whether certain drug combina-
tions lead to ADEs, like myopathy, a degenerative muscu-
lar condition.

However, high-order DDIs, or DDIs involving three
or more drugs, is a topic that has only recently been
researched. For instance, a recent article by Li [6] dis-
cusses how big data can drive the pharmacology research
space, thus implying that this is a concept that has not
yet been fully taken advantage of. Therefore, a logical next
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step in this research area is to improve on methods for
discovering high-order DDIs. As the quantity of pheno-
typic and genomic data increases, we can use this big data
opportunity to fine-tune statistical and machine learning
algorithms to better predict high-order DDI effects. The
research area of computationally finding DDIs is relatively
new, and thus the development of novel approaches and
analyses is a promising research direction. As ADE report-
ing data grows at an increasing rate, we are also facing
challenges to properly analyze large datasets.

With the above observations, the goal of this study
is to identify high-order DDIs via mining the FAERS, a
public health record databases with 4,077,447 drug com-
bination records of 1,763 drugs. The ADE of interest
is myopathy, which is a muscular degenerative disorder.
Our previous study [7] has reported directional effect
of DDIs for myopathy, the results of which were limited
to involve up to three drugs due to both computational
time and space complexities. In this paper, a more effi-
cient data mining strategy is utilized to extract all the
high-order directional DDIs. Given increasing numbers of
co-administrated drugs, the tree-structured visualization
could not effectively show all the DDI findings for a high-
order drug combination. Thus, the second novelty of this
study is that we develop an efficient and scalable method
to visualize high-order directional DDIs in an interactive
and comprehensive manner.

Methods
Materials and data sources
The proposed strategy for detecting high-order direc-
tional DDI effects on ADEs was applied to a publicly
available database, the FDA Adverse Event Reporting
System (FAERS: https://open.fda.gov/data/faers/). Specif-
ically, we apply our method on the myopathy event using
ADE reporting records from FAERS, to investigate the
directional effects of high-order DDI on myopathy.
Myopathy is a relatively frequent (around 3.64% in our
dataset) and clinically important ADE, and has been listed
as a side effect of more than 80 FDA approved drugs.
Given its high frequency and close and complex associ-
ations of myopathy with drugs, it is appropriate to use
myopathy-related events as testbed for investigating the
performance of directional effects of high-order DDIs.
Below, we describe the data preprocessing and present the
summary statistics of the FAERS dataset we used in this
study.

FAERS database

The data used for this analysis included reports from
FAERS collected between Q1 2004 and Q3 2012. The
FAERS is a database that contains information on adverse
event and medication error reports submitted to FDA.
Reports were obtained from the FAERS database, and
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preprocessed as described in [7]. Briefly, the most recent
reports from each individual were extracted and orga-
nized as a list of records, where each record consisted of
an ADE and corresponding administered drugs.

Myopathy-related case-control dataset
As this analysis focused on the myopathy-related ADE, we
firstly derived ADEs grouped under “myopathy” And then
we assembled a case-control dataset by labeling record as
“case” if the ADE was in “myopathy” group, and other-
wise labeling record as “control” To avoid the confusion
between causal effect and bystander effect, we included
only drugs with primary or secondary suspects, while
removing the drugs that were concomitant or interacting.
We use T to denote the set of all the records from the
FAERS database, and use T}, and T}, to denote the sets
of case and control records, respectively. Finally, totally
|T| = 4,077,447 records were analyzed, including | T;,| =
136,860 cases and |Ty;,| = 3,940,587 controls, and
totally 1,763 unique FDA approved drugs (see Fig. 1a-b).
The number of drugs contained in a single record ranges
from 1 to 103, with a mean of 2.98 drugs in each record
in FAERS. However, the numbers of drugs taken between
two groups are significantly different (independent T-test
p-value < 2.2E-16), with mean of 4.18 drugs taken in
myopathy cases and 2.94 drugs taken in non-myopathy
controls. When focusing on records having more than
three drugs, 25.82% individuals from FAERS dataset are
taking four or more drugs together, while the proportion
changes to 36.27% in myopathy cases and 25.45% in non-
myopathy controls. Significant difference is also observed
between these two groups (independent 7T'-test p-value <
2.2E-16), giving a mean of 8.79 drugs in myopathy group
and 7.30 drugs taken in non-myopathy group.

Methods for mining high-order directional dDlI effects

We use DC to denote drug combination, and use
sup(DC, T) to represent the support (i.e., count of occur-
rences) of DC in dataset T. To evaluate the risk of develop-
ing myopathy by adding drugs to existing drug combina-
tion, for example, taking DCy = (Dj41, .., Dy) in addition
to taking DC; = (D, ..., D;), we formulate the problem as
follows: 1) the baseline population is defined as those who
take DCy = (Dy, ..., D;), regardless of taking other drugs or
not; 2) exposed population is defined as those who take
DG, in addition to DCy, say DCs3, where DC3 =DC;UDCy;
and 3) unexposed population is defined as those who take
DC; but without taking at least one drug from DCj. See
Fig. 1e-f for a schematic example.

Then we employ the odds ratio (OR) to measure the
directional DDI effect of adding DC; to existing DC;, by
formulating the DDI effect problem to mining the asso-
ciation between myopathy event with exposure to drug
combination. In practice, the OR compares the odds of
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exposure to DCy among cases to the odds of exposure to
DC,; in controls, within the baseline population who all
take DCj. Accordingly, given an interested drug combi-
nation, we need to calculate the number of exposed and
unexposed population in both cases and controls before
the calculation of OR.

In the following sections, we organize and present the
framework as follows. First, we describe the algorithm
for constructing candidate drug combinations. Second, we
present the algorithm for extracting supports of occur-
rence of drug combinations in case and control datasets.
After that, we discuss the calculation of OR for estimat-
ing the directional effect of drug combinations. Finally we
present the novel and scalable tool we developed for visu-
alizing high-order DDIs. Figure 1 shows the workflow of
this study.

Construct candidate drug combinations from T

We first created a set of drug combinations with their sup-
ports from our FAERS dataset T. To avoid the possible
misleading results from low-frequent drug combinations,
we restricted our analysis to the DCs with a minimum
support of MinSup = 250 records in 7, named candidate
drug combinations. Algorithm 1 summarized the proce-
dures for constructing candidate drug combinations from
T (see Fig. 1c).

Briefly, we applied Apriori, an influential algorithm
for mining frequent itemsets to 7, to discover frequent
DCs with sup(DC, T) > MinSup that involved up to seven
drugs. Apriori has been used in our previous work [7]
for mining the frequent drug combinations from both T
and Ty, using MinSup = 1000 and MinSup = 1 respec-
tively. However, due to time and space complexities, our
previous strategy could not generate drug combinations
containing more than three drugs. Instead of applying
Apriori onboth T and T, we only employed it on T to
generate candidate DCs.

Computing supports for case records and control records

For each candidate drug combination obtained from
above, we would like to extract their counts of occurrence
in both cases and controls, for constructing contingency
table for OR estimation. As we mentioned before, the
computational time and space of using Apriori on 7, to
extract DCs with MinSup = 1 limited our previous work
to involve up to three drugs (see gray part in Fig. 1). In
this work, we develop a more efficient strategy to calcu-
late supports for only candidate DCs instead of mining all
possible drug combinations appeared in T},. Algorithm 2
describes how to extract the case and control supports
from T}, and Ty, respectively (see Fig. 1d).

Estimating directional dDI effects
We organize the results from Algorithms 1 and 2, and con-
struct a table of drug combinations (DC); see Fig. 1e. Each
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(A)

T: FAERS dataset
# of records: 4,077,447

Case-control
dataset

Apriori
(Algorithm 1)

(B) T,: Myopathy cases
# of records: 136,860

T,,,: Non-myopathy controls
# of records: 3,940,587

(C) Algorithm 1 on 7 (min sup = 250)

F={(fi sup(fi, T))| sup(fi, T) = min_sup}

Single drug: 1,032; two drugs: 27,058; three drugs:
63,702; four drugs: 33,596; five drugs: 6,628; six
drugs: 479; seven drugs: 11; eight and up: 0

Apriori
(Algorithm 1)

}

Algorithm 2: for f; € F, calculate

frequency of f;in T,, and T,,,,

(D)

Apriori on Tm

Algorithm 2 on T, m (min sup =1)

min_sup =1
Up to 3 drugs

= sup(f, T,)) | f, € F}
Ep=s sup(fy, T) - sup(f, T,)) | [, € F}

¥

Organize counts of DCs in case and control

Fig. 1 The workflow for mining high-order directional DDls

Drug combination (DC) #in T #in T, #inT,,
D¢ = (Dy,..., D)) X1 Y1 X1 =Y
DC; = (Diy1, -, Dp) X3 Y2 X2~ Y2
DC; = (Dy, .., Dy, Djyq, ..., Dy) X3 V3 X3~ Y3
* Construct contingency table
Exposure to drug combination Myopathy | Non-myopathy Total
(F) DC; = DC; U DC, a=y; b=ux3—y;3 a+b=ux;3
DC; without taking at least one drugin DC, (¢ =y; —y3|d=x1—y; —b|c+d=x; —x3
DC, a+c=y; |b+d=x1—y X1
Estimate directional effect (H)
of DC; = DGy Visualization of top
myopathy-relevant DDIs
(G)|  ORpc,-pc, = (ad)/(bc) <

record in the table stores the counts of the corresponding
DC in the entire studied FAERS set, the case subset and
the control subset respectively. Base on this information,
for each candidate DC, a contingency table is constructed
and then used for OR calculation, where four counts 4, b,
c and d can be calculated as shown in Fig. 1f.

Figure le-g shows our procedure for estimating the
directional effect of adding DCy to DC; on myopa-
thy, including contingency table construction and OR

calculation. The baseline population, exposed popula-
tion and unexposed population are the sets of individ-
uals who take DC;, DCs, and DC; but without taking
at least one drug in DCy, respectively. The numbers of
exposed individuals with myopathy and non-myopathy
can be directly extracted from Fig. 1e as follows: a = y3
exposed individuals with myopathy and b = x3 — y3
exposed individuals with non-myopathy. The numbers of
unexposed individuals with and without myopathy (i.e.,
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Algorithm 1 Apriori: Mining frequent itemsets

Input:
T, a collection of transactions, i.e., all FAERS records;
A, a user-specified minimum support threshold;
k, the level of itemset, i.e., the number of items in

itemset.
Output: F, a set of all frequent itemsets with their fre-
quencies.
1: Initialize F < @, k < 1, C; <« 1-drug candidate
itemsets;

2: while Cy # ¢ do
. For each itemset x € Ci, compute support sup(x, T')
inT;
4. Fp < {(x,sup(x,T)) | x € Cxand sup(x, T) > A};
/| Generate candidate (k+1)-level itemsets Cy 1, and
prune candidate if there are any infrequent subsets.
6 G« {xU{y}tlxeCandy¢xl—{z]{s|sC
zand |s| =k — 1} € Cr_1};
7. k< k+1;
8: end while
9: return | Fy
k

Algorithm 2 Mining high-order itemsets in Myopathy
and Non-Myopathy records

Input:
T, a collection of transactions with myopathy;, i.e., all
myopathy records;
Tym» a collection of transactions with non-myopathy,
i.e., all non-myopathy records;
F, a set of all frequent itemsets with their frequencies,
i.e., the results from Algorithm. 1;
K, the maximum level of itemset in F;
Output:
F,,, a set of itemsets from F with their frequencies in
Toms
F,m» a set of itemsets from F with their frequencies in
Tyum-
. Initialize F,,, <= @, F;, < 0, k < 1;
fork=1 to Kdo
Fi < {(x, sup(x, Try)) | x € Fils
Fumi < {(x,sup(x, T) — sup(x, Ty,)) | x € Fi};
. end for
. return | Fp 0, U Fumi
k k

¢ and d) can then be obtained by computing the dif-
ference between baseline and exposed populations. That
is, unexposed individuals with myopathy are the individ-
uals from baseline population but not in exposed pop-
ulation. Based on Fig. le, given y; individuals in the
baseline population with myopathy, the number of unex-
posed individuals with myopathy is ¢ = y, —a =
y1 — y3. Similarly, the number of unexposed individuals
with non-myopathy is d = (x1 —y1) — b = (x1 — y1)
—(x3 — ¥3).

With the above calculation, the OR estimation of direc-
tional effect of DC; to DCs on myopathy can be computed
as follows:

afb _ ac

c/d — bd @)

ORpc,—pc; =
Here ORs of the ADE for adding one to seven drugs are
examined in this study.

Chi-square test is used in this work to evaluate the
significance of associations between drug combination
and myopathy ADE, were p-value and confidence interval
corresponding to each odds ratio are obtained. Multi-
ple comparison correction is further performed using the
Bonferroni strategy.

Sunburst visualization for directional dDI findings

Another important aspect of DDI mining is the visu-
alization. In our previous work, we proposed a tree
structure to visualize the directional DDIs involving up
to three drugs. However, the growth of the tree was

exponential, making it infeasible to read for combi-
nations involving four or more drugs. In this paper,
we develop a novel tool to organize and visualize
high-order directional DDIs using D3 sunburst diagram
(https://d3js.org/).

Specifically, given a candidate drug combination S and
a set C of all subsets of S, we organize the pair-wised rela-
tionship of elements C and arrange them into a series of
circles in a hierarchical manner as shown in Fig. 1h. Each
ring sector represents a drug combination, outer ring sec-
tors radiated from which indicate the directional DDIs
from inner to outer. The sector color indicates the effect
size (i.e., OR value). In addition, we include the zooming
function to enable more effective visualization via interac-
tive exploration, where one can select a drug combination
as baseline to (1) zoom in and see the details or (2) zoom
out and see an overall picture.

Results

Data summary

There are totally T = 4,077,447 records included in our
processed FAERS dataset, involving 1,736 unique FDA-
approved drugs, of which 7, = 136,860 records are
myopathy cases and Ty, = 3,940, 587 records are non-
myopathy controls. Using MinSup = 250 as the frequency
threshold on 7, we obtained 1,032 frequent single drugs,
27,058 frequent two drug combinations, 63,702 frequent
three drug combinations, 33,596 frequent four drug com-
binations, 6,628 frequent five drug combinations, 479 fre-
quent six drug combinations, and 11 frequent seven drug
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combinations after running Algorithm 1 on T (Fig. 1c).
There are no frequent drug combinations that include
more than seven drugs available in our dataset.

Myopathy-associated high-order directional dDls

We have reported directional DDI results for myopathy
that contained up to three drugs with minimum sup-
port of 1000 in [7]. Given the fact that 25.81% individuals
have taken more than three drugs together and the pro-
portion increases to 36.27% in myopathy cases, in this
paper, we extended our previous work to mining DDIs
with higher-order and reported all the myopathy associ-
ated directional DDI findings based on a less stringent
mininum support of MinSup = 250. As a result, we
discovered higher-order directional DDIs involving up to
seven drugs. We describe our results in the following
subsections.

Effects of high-order drug combinations vs baseline

Tables S1-S7 show the top 10 findings from one to seven
drugs versus the baseline. The top drug from one drug
versus baseline (Table S1) is “fusidic acid’, a bacteriostatic
agent primarily on inhibiting Gram-positive bacteria, with
OR = 27.24. This means the odds of myopathy in indi-
viduals taking fusidic acid is 27.24 times higher than in
individuals not taking it.

Fusidic acid has been reported frequently associated
with myopathy upon co-administration with statins [8].
There is no frequent co-administration of fusidic acid
with other drugs from our results under the threshold of
MinSup = 250. However, we observe that the top two
most frequent drugs taken together with fusidic acid in
myopathy cases are both statins (simvastatin and ator-
vastatin). Specifically, there are 352 myopathy cases that
take fusidic acid, among which 188 cases have taken both
fusidic acid and simvastatin and 141 cases have taken
both fusidic acid and atorvastatin. The counts of taking
fusidic acid with these two stains decrease to 51 and 15 in
non-myopathy controls, ranking as the 4tk and 42nd co-
administrated ones with fusidic acid. These indicate the
joint effect of fusidic acid with statins on myopathy.

The use of MinSup = 250 allows us to identify more
myopathy risk DDIs than our prior study [7], conse-
quently to help provide more comprehensive references
for adverse effects of DDIs. For example, in addition
to fusidic acid, another six drugs which have not been
reported in our previous study are identified in this
analysis, including telbivudine, cerivastatin, trabectedin,
terconazole, flucloxacillin and pindolol (see Table S1).
Tables S1-S7 summarize all the top 10 findings.

Directional effects of four-drug combinations
As mentioned above, our findings include the DDIs
involving up to seven drugs. For the sake of conciseness,
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as an example, here we focus on reporting the top DDI
results related to four-drug combinations. We calculated
the ORs of the myopathy risk associated with the direc-
tional DDIs of each four drug combination versus all of its
subsets. We obtained 27,112; 85,557; 87,069; and 25,575
significant findings with OR > 1 for 4-drug combination
versus baseline; 1-drug combination; 2-drug combination;
and 3-drug combination, respectively. Shown in Tables 1,
2, 3 and 4 are the top 10 findings for the above four
categories respectively.

Table 1 shows the top 10 findings of directional effects
of adding four drugs to baseline, with OR values ranging
from 42.44 to 49.65. There are twelve unique drugs across
top 10 findings in Table 1, a number of which are indi-
cated for pain relief. Specifically, fentanyl and oxycodone
are opioid analgesics; gabapentin is a non-opioid anal-
gesic and has been used in treatment of neuropathic pain;
pamidronate and zoledronate are both bisphosphonates
which are primarily used in treatment of bone metasta-
sis. The top result illustrates that the risk of myopathy
development would increase to 49.65 when taking fen-
tanyl, gabapentin, levofloxacin and zoledronate together
compared with baseline.

Based on Table 2, adding gabapentin, levofloxacin
and zoledronate on top of fentanyl would result in
43.3 times altered risk of myopathy. Most of the top
findings in Table 2 involve co-administration of zole-
dronate with different types of drugs including antibiotics
(ciprofloxacin, levofloxacin), analgesics (acetaminophen,
fentanyl, gabapentin, oxycodone) and others. Among the
above mentioned drugs, several are reported to increase
myopathy risk as single agents. However, to the best of our
knowledge, no previous reports have indicated the inter-
actions among these drugs. We will discuss these findings
in the next section.

Tables 3 and 4 present the top OR results of compar-
ing four-drug combinations with their subsets of two-

Table 1 Top 10 OR results for 4-drug combination vs. baseline:
with Bonferroni correction, a significant p is 1.50E-6

4-drug combination OR
49.65 6.46E-194
4843 2.66E-174

p-value

Fentanyl, Gabapentin, Levofloxacin, Zoledronate

Furosemide, Gabapentin, Levofloxacin, Zoledronate
Azithromycin, Ciprofloxacin, Levofloxacin, Zoledronate 4530 2.27E-157
4497 4.17E-159
44.76 447E-180
4474 2778214

Azithromycin, Gabapentin, Levofloxacin, Zoledronate
Gabapentin, Levofloxacin, Omeprazole, Zoledronate

Gabapentin, Levofloxacin, Zoledronate, Zolpidem

Fentanyl, Levofloxacin, Omeprazole, Zoledronate 4462 6.06E-181
Gabapentin, Levofloxacin, Pamidronate, Zolpidem 44.37 1.10E-179
Alprazolam, Levofloxacin, Omeprazole, Oxycodone 43.24 1.45E-151

Gabapentin, Levofloxacin, Omeprazole, Oxycodone 4244 854E-160
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Table 2 Top 10 OR results for 4-drug combination vs. 1-drug:
with Bonferroni correction, a significant p is 3.75E-7

4-drug combination 1-drug combination ~ OR p-value
Fentanyl, Gabapentin, Fentanyl 4330  6.52E-181
Levofloxacin, Zoledronate

Fentanyl, Levofloxacin, Fentanyl 3879  2.03E-168
Omeprazole, Zoledronate

Ciprofloxacin, Fentanyl, Fentanyl 3670  1.15E-157
Levofloxacin, Zoledronate

Acetaminophen, Doxorubicin 3540  444E-114
Doxorubicin, Omeprazole,

Zoledronate

Capecitabine, Capecitabine 3436 9.61E-100
Dexamethasone, Fentanyl,

Zoledronate

Alprazolam, Fentanyl, Fentanyl 3433 1.19E-146
Levofloxacin, Zoledronate

Acetaminophen, Doxorubicin 3353  4.23E-113
Doxorubicin, Levofloxacin,

Zoledronate

Ciprofloxacin, Fentanyl, Fentanyl 3340  2.10E-146
Levofloxacin, Oxycodone

Fentanyl, Gabapentin, Metoclopramide 33.13  4.86E-117
Metoclopramide,

Zoledronate

Docetaxel, Oxycodone, Docetaxel 3297  157E-140

Prochlorperazine,
Zoledronate

and three-drug combinations. Part of these findings are
similar to those in Tables 1 and 2. For example, adding
zoledronate to the combination of docetaxel, oxycodone
and prochlorperazine increases the risk of myopathy with
OR = 62.64 (see the 6th findings in Table 4). The same
combination of these four drugs gives the estimation of
OR = 32.97 compared to docetaxel (the 10th findings in
Table 2).

Top findings from Table 4 show the effect of adding
either acetaminophen or zoledronate on existing drug

Page 7 of 11

combinations. For example, six findings are from adding
zoledronate and the other four findings are from adding
acetaminophen. This suggests further investigation on
possible interactions between acetaminophen and zole-
dronate with other drugs.

Interactive visualization of DDIs

The complexity of directional effects among high-order
DDIs requires a concise yet comprehensive way to orga-
nize and present the complex relationships among inter-
esting drug sets. We develop a visualization tool using
sunburst diagram, inputting a drug set and visualizing
directional DDIs among all its subsets in an interactive
manner.

Figure 2 shows an example of the visualization of a
four-drug combination including fentanyl, gabapentin,
levofloxacin and zoledronate. Due to the space limita-
tion, we use numbers 1, 2, 3, and 4 to denote these four
drugs. Figure 2a presents an overview the DDIs corre-
sponding to four drugs, showing all paths from base-
line node (i.e., none of drugs 1,...,4 are taken) to all
the subsets of these four drugs. In the plot, circum-
jacent ring sectors present the directional DDI from
inner sector to outer one. For example, the arrow in
Fig. 2a represents the DDI from baseline to drug 1
(i.e., fentanyl), with the color representing the effect
size (OR).

Given a user-interested drug, for example drug 1, we
can zoom in to focus on only directional DDIs on top
of drug 1. Figure 2b shows all the directional DDIs by
adding subsets of other three drugs to drug 1. Iteratively,
from Fig. 2b to ¢, we can zoom in to a two-drug com-
bination (drug 1 and drug 2) to generate another plot
for showing the local DDI results on top of drugs 1
and 2. Similarly, we can also zoom out from a plot of
local DDIs to a global one, for obtaining a comprehen-
sive overview of the interested sets of drugs (e.g., from
Fig. 2e— d—c—b—a).

Table 3 Top 10 OR results for 4-drug combination vs. 2-drug: with Bonferroni correction, a significant p is 2.61E-7

4-drug combination 2-drug combination OR p-value
Gadobenate Dimeglumine, Gadodiamide, Gadoteridol, Prednisone Gadobenate Dimeglumine, Prednisone 270.16 8.81E-09
Pamidronate, Sulfamethoxazole, Trimethoprim, Zoledronate Pamidronate, Sulfamethoxazole 85.71 487E-23
Doxorubicin, Pamidronate, Vincristine, Zoledronate Doxorubicin, Vincristine 41.74 2.02E-129
Dexamethasone, Doxorubicin, Oxycodone, Vincristine Doxorubicin, Vincristine 36.77 2.59E-92
Dexamethasone, Doxorubicin, Pamidronate, Vincristine Doxorubicin, Vincristine 30.99 5.38E-108
Dexamethasone, Doxorubicin, Vincristine, Zoledronate Doxorubicin, Vincristine 30.52 6.37E-112
Acetaminophen, Diphenhydramine, Prochlorperazine, Zoledronate Diphenhydramine, Prochlorperazine 29.15 7.61E-62
Docetaxel, Oxycodone, Prochlorperazine, Zoledronate Docetaxel, Prochlorperazine 28.95 9.23E-79
Acetaminophen, Cyclophosphamide, Doxorubicin, Pamidronate Cyclophosphamide, Doxorubicin 27.76 1.79E-85
Docetaxel, Furosemide, Oxycodone, Zoledronate Docetaxel, Furosemide 2732 5.22E-58
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Table 4 Top 10 OR results for 4-drug combination vs. 3-drug: with Bonferroni correction, a significant p is 5.27E-7

4-drug combination 3-drug combination OR p-value
Acyclovir, Dexamethasone, Pamidronate, Zoledronate Acyclovir, Dexamethasone, Pamidronate 126.35 9.82E-29
Dexamethasone, Lorazepam, Thalidomide, Zoledronate Dexamethasone, Lorazepam, Thalidomide 88.15 4.16E-22
Acetaminophen, Azithromycin, Cephalexin, Lorazepam Azithromycin, Cephalexin, Lorazepam 77.91 6.75E-19
Docetaxel, Fentanyl, Oxycodone, Zoledronate Docetaxel, Fentanyl, Oxycodone 7567 7.06E-20
Pamidronate, Sulfamethoxazole, Trimethoprim, Zoledronate Pamidronate, Sulfamethoxazole, Trimethoprim 70.29 2.35E-19
Docetaxel, Oxycodone, Prochlorperazine, Zoledronate Docetaxel, Oxycodone, Prochlorperazine 62.64 2.99E-36
Acetaminophen, Dexamethasone, Oxycodone, Tramadol Dexamethasone, Oxycodone, Tramadol 57.39 131E-14
Dexamethasone, Epoetin Alfa, Omeprazole, Zoledronate Dexamethasone, Epoetin Alfa, Omeprazole 56.20 1.37E-32
Acetaminophen, Alendronate, Omeprazole, Oxycodone Alendronate, Omeprazole, Oxycodone 53.65 2.97E-15
Acetaminophen, Fentanyl, Fluconazole, Oxycodone Fentanyl, Fluconazole, Oxycodone 5158 1.11E-14

Discussion

This analysis extends our previous work [7] from estimat-
ing DDI directional effects of up to three drugs with min-
imum support of 1000 to a larger scale involving higher-
order combinations with less stringent minimum support
of 250. In this paper, we investigate the risk of adding up
to seven drugs at a time with minimum support of 250 on
the same dataset. We employed an efficient Apriori imple-
mentation in R package “arules’, the same as that used
in our previous work [7], to extract the frequent item-
sets (MinSup = 250) from the total 4,077,447 records.
However, as we also need to extract the itemsets with

MinSup = 1 from myopathy records, the computational
burden for more than three drug combinations would
increase too dramatically to be affordable. In practice, we
tried the previous implementation for extracting itemset
with MinSup = 1 on myopathy cases using Algorithm 1
on a Window 10 Enterprise 64 bit desktop with an Intel
(R) Core(TM) i9-7900X CPU and 32 GB memory. We
were unable to obtain drug combinations involving more
than four drugs due to the huge number of drug combina-
tions. In this work, using the newly proposed Algorithm 2,
we were able to obtain all the drug combinations using
MinSup = 1, which involved up to seven drugs from
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3: Levofloxacin
4: Zoledronate
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Fig. 2 Interactive visualization for all possible directional DDI effects related to the subsets of fentanyl, gabapentin, levofloxacin and zoledronate. a
shows the overall picture of all possible directional DDIs effects. b shows details of DDI effects of taking fentanyl as baseline, by zooming in the
highlighted part of (a). € shows the details of DDI effects of taking both fentanyl and gabapentin as baseline, by zooming in the highlighted part of
(b). d shows the details of DDI effects of taking fentanyl, gabapentin and levofloxacin as baseline, by zooming in the highlighted part of (c). @ shows
the DD effects of taking all four drugs vs. taking the first three ones. The sector color indicates the effect size of DDIs from inner to outer ring sectors




Yao et al. BMC Medical Informatics and Decision Making 2020, 20(Suppl 2):50

myopathy cases. The newly designed tool also allows
us to visualize the high-order directional DDI results
effectively.

Tatoneti et al. [9] and Li et al. [10] also analyzed
the FAERS data, but focused on examining either sin-
gle drug effects or two-way drug interaction effects,
without exploring the directional effects proposed here.
As an exploratory study, our work focused on estimat-
ing the ORs of high-order directional DDIs on myopa-
thy using the FAERS data. For validation purpose, we
assessed the sensitivity of our findings using available side
effect databases including OFFSIDES and TWOSIDES
databases from [9] and Side Effect Resource (SIDER)
database [11].

Our comparison with OFFSIDES focused on two events:
myopathy toxic and myopathy steroids. In the OFFSIDES
database, there are 17 drugs with myopathy toxic as event.
Except potassium acetate, all the other 16 drugs exist in
our data. Our method identified 14 out of 16 drugs with
significant p-values, while ethambutol and epinephrine
were not captured. In addition, there are 19 drugs with
myopathy steroid as event in OFFSIDES. Except cetrax-
ate and salina, all the other 17 drugs exist in our data.
Our method identified 14 out of 17 drugs with significant
p-values, and vinorelbine, voriconazole and bortezomib
were not captured.

In the TWOSIDES database, we focused on the 2-
drug combinations associated with muscle weakness,
rhabdomyolysis, muscle disorder, muscle paresis, muscle
spasm, muscle inflammation, musculoskeletal pain, myas-
thenia gravis, muscle strain, and muscle rupture. A total
of 32,304 unique 2-drug combinations linking to events
listed above were reported in the TWOSIDES database,
among which 7,444 were identified in our “2-drug vs.
baseline” results with significant p-values. The ORs of
myopathy risk, based on our analysis, for these two-drug
combinations ranging from 24.95 to 0.05. Specifically,
the OR is 24.95 for (fulvestrant, gabapentin) with p =
3.89E-138, and the OR is 0.05 for (heparin, pancuronium)
with p = 2.05E-07. Both are significant after Bonferroni
correction.

For high-order findings, due to the lack of high-order
DDI databases, we alternatively assessed the individual
drugs from our high-order results with known myopathy-
related drugs. For example, we compared the unique drugs
reported in our “four-drugs vs. baseline” findings with the
SIDER database [11]. In the SIDER database, 97 drugs are
listed with myopathy as event, among which 75 drugs exist
in our FAERS data. In our result, we have 27,191 four-drug
combinations with significant p-values, which consist of
372 unique drugs. 37 out of 75 SIDER drugs are part of
the identified 372 unique drugs. Of note, since we focus
on identifying high order drug combinations that induce
adverse effect, any individual drug from our reported drug
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combinations may not necessarily have an impact on the
adverse effect by itself alone.

Our analysis has uncovered a number of interesting
drug combinations leading to increased risk for myopathy.
Drugs most often appearing in the top results are bis-
phosphonates (zolendronte, pamidronate), chemotherapy
agents (doxorubicin, capecitabine, vincristine, cyclophos-
phamide), opioid analgesics (fentanyl, oxycodone), non-
opioid analgesics (acetaminophen, gabapentin), corti-
costeroids (dexamethasone), and other renally-excreted
drugs (levofloxacin, ciprofloxacin, and gadolidium based
contrast agents). In the top 20 4- vs. 3-drug combinations,
only zolendronate and acetaminophen added on top of
3-drug combinations led to increased risk of myopathy
events. Interestingly, many of the co-prescribed medica-
tions are nephrotoxic or renally cleared, which may lead
to pharmacokinetic-based drug interactions with other
drugs. Additionally, many of drugs have reported myopa-
thy or rhabdomyolysis risk. Thus, it is likely that interac-
tions in pharmacodynamic mechanisms also increase risk
of myopathy. For instance, each of the drugs in the top 4-
way combination (fentanyl, gabapentin, levofloxacin, and
zolendronate) have each individually been associated with
myopathy [12-18].

Zolendronate and pamidronate are bisphospho-
nates used to treat osteoporosis, hypercalcemia of
malignancy, Paget’s disease, and metastatic bone
metastases. It is primarily cleared through renal
excretion. Myalgia following infusion is reported
in 65-70% of postmenopausal women but is typ-
ically self-limiting [12, 13]. While acetaminophen
would most likely be associated with myopathy due
to its use in treating pain, there are several reports
of rhabdomyolysis as a symptom of acetaminophen
overdose [19-21].

A limitation to the structured FAERS data is that it does
not report timing of drug administration with respect to
the adverse event. Thus, it is difficult to distinguish drugs
used to treat myopathy from those that cause myopa-
thy. Some drugs, such as opioid and non-opioid anal-
gesics, muscle relaxers, and corticosteroids may have been
used for treatment of myopathy. Thalidomide, cyclophos-
phamide and dexamethasone have been used in combi-
nation to treat sporadic late-onset nemaline myopathy
with monoclonal gammopathy of undetermined signifi-
cance (SLONM-MGUS) [22]. Thalidomide has also been
reported as a treatment for scleromyxedema with myopa-
thy [23]. However, glucocorticoids such as prednisone
and dexamethasone are well-known as a cause of drug-
induced myopathy, especially at high doses [24]. Opioids
(e.g. fentanyl, oxycodone) are also associated with myopa-
thy events and non-opioid analgesics such as celecoxib
and ibuprofen are nephrotoxic, which could increase risk
of myopathy due to other myotoxic drugs. Thus, it is
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difficult to distinguish whether these agents instigated the
myopathy adverse events or were used in its treatment.

Conclusions

We have proposed a high-order directional DDI mining
strategy for identifying myopathy associated drug inter-
actions from large-scale ADE reporting database. We
have demonstrated its efficiency using real data from the
public health record database FAERS. Our method con-
firms several prior drug or DDI effects on myopathy, as
well as suggests novel interactions involving more than
three drugs. We have also developed a more effective and
scalable visualization tool for easy interpretation of DDI
findings. However, the absence of report timing of drug
administration with respect to the adverse event limits
our capability to distinguish DDI findings from causal to
treatment. Given this limitation, this work can be further
expanded towards including temporal relation informa-
tion between drug administration and event, to improve
the inference of causal DDI effects.
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