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Abstract

Background: The objective of this research is to examine, conceptualize, and empirically validate a model of
mobile health (mHealth) impacts on physicians’ perceived quality of care delivery (PQoC).

Methods: Observational quasi-experimental one group posttest-only design was implemented through the
empirical testing of the conceptual model with nine hypotheses related to the association of task and technology
characteristics, self-efficacy, m-health utilization, task-technology fit (TTF), and their relationships with PQoC. Primary
data was collected over a four-month period from acute care physicians in The Ottawa Hospital, Ontario, Canada.
The self-reported data was collected by employing a survey and distributed through the internal hospital channels
to physicians who adopted iPads for their daily activities.

Results: Physicians’ PQoC was found to be positively affected by the level of mHealth utilization and TTF, while the
magnitude of the TTF direct effect was two times stronger than utilization. Additionally, self-efficacy has the highest
direct and total effect on mHealth utilization; in the formation of TTF, technological characteristics dominate
followed by task characteristics.

Conclusion: To date, the impact of utilized mHealth on PQoC has neither been richly theorized nor explored
in depth. We address this gap in existing literature. Realizing how an organization can improve TTF will lead
to better PQoC.
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Contributions to the literature

� The use of mHealth and physicians’ perceptions
regarding their satisfaction and performance as it
impacts upon quality of patient care is under
investigated.

� A conceptual model is developed and empirically
examined to understand the factors which impact
physicians’ perceived quality of care (PQoC) when
employing mHealth artefacts when delivering
healthcare services in a hospital setting.

� Our findings demonstrate that physicians using
mHealth at the point-of-care enhances their PQoC a
patient receives. These findings can be used to in-
form implementation strategies to increase the use
of mHealth in hospitals.

Background
The mobile health (mHealth) market has experienced a
significant growth since 2011, with the global mHealth
market estimated to grow to about $60 billion by 2020.
Lee [1] argued that that many hospitals are spending
vast amount of money for implementing mHealth
solutions and expecting that users (i.e. physicians) will
employ the technology to improve the quality of care
patients receive at the point-of-care. Concurrently,
hospitals face increasing demands to participate in a
wide range of quality improvement activities [2, 3] by
streamlining their processes in order to deliver high
quality and safe care [4, 5]. Instant real-time access to
data at the point-of-care is causing a paradigm shift in
how physicians deliver healthcare, making services more
streamlined and cost effective [6].
Despite the wide endorsement and support for the

implementation of mHealth, Rahurkar [7] argue that em-
pirical evidence surrounding the benefits of Information
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Technology (IT) in health care remains to be firmly
established. The limited evidence for the performance of
mHealth technologies may be attributable to a lack of
appropriate evaluation frameworks [8–10], with
Boudreaux et al., [11] arguing that there exists no evalu-
tation method which is mHealth specific. While some
attempts have been made by various researchers [12–16]
to evaluate mHealth, this work has predominantly
focused on reviewing and reporting the adoption of
mHealth technologies at early phases of implementation.
The lack of evaluation across the mHealth field, primar-
ily in post-adoption stages of implementation, may be
perceived as a major weakness of the mHealth domain
[9, 10]. Therefore, for mHealth to be truly valuable and
have a positive impact on quality of healthcare delivery,
the IT artefact must be utilized post-adoption [17, 18].
Furthermore, Goodhue and Thompson [19] argue that
the capabilities of the IT must match the tasks that the
user must perform. Serrano and Karahanna [20] argue
that the role of the user in influencing successful task
performance has not been explored in-depth within a
healthcare setting. Indeed, there has been a dearth of
research focused on exploring an mHealth specific
evaluation framework [11, 18] in a post-adoptive
scenario, specifically in a hospital setting [21].

MHealth and quality of care delivery
MHealth, for the purposes of this study, refers to the
application of mobile device/s and medical/clinical appli-
cation(s) run on the device by physicians in a hospital
domain, for communication, collaboration, and coordin-
ation of the physician’s healthcare delivery daily activities
in hospital premises including diagnosis, treatment, and
disease management (adapted from [22]).
It is purported [23] that based upon ones experiences

with using a new technology and having new informa-
tion to hand, an individual forms a post-adoptive
perception, which may potentially deviate from prior
beliefs. Indeed, they note that such deviation will both
impact user’s ongoing perceived usefulness of the
technology and influence user satisfaction, which will
influence one’s intention to continue to utilize the
technology. While mHealth has promised major benefits
at the national, regional, community, and individual
levels, insufficient attention has been paid to the per-
ceived quality of care delivery (PQoC) which can be ob-
tained from using technological artefacts [7, 24, 25].
Research has established that negative outcomes from
IT utilization are possible [24, 26]. Therefore, if the
utilization of mHealth is perceived to potentially harm
the quality of care a patient receives, then it is unsafe for
delivering healthcare services [27].
Various indicators for quality of care exist; namely,

structure, process, and outcome of care delivery [28].

Quality of care is often measured from two perspectives;
perceived and actual [24, 29], across several potential
stakeholders (e.g. patients, physicians, administrative
staff). Actual quality of care “relates to the interaction
between health-care providers and patients and the ways
in which inputs from the health system are transformed
into health outcomes” [30]. Conversely, PQoC, in this
study, is the physicians’ perceptions regarding their satis-
faction and performance as it impacts upon quality of
patient care. Examining actual quality of care is ex-
tremely difficult to attribute wholly to the IT artefact in
a complex multifaceted environment and requires an
unambiguous evidence base [30]. Furthermore, Serrano
and Karahanna ( [20] p.616) purport that the impact of
mHealth utilized by physicians on PQoC (consultation
delivery, in the context of Serrano and Karahanna’s
paper), has not been explored in depth. Therefore, the
research addresses this call for research and puts for-
ward the research question of what are the impacts
mHealth artefacts have on physicians’ perceived quality
of care delivery in a hospital setting. To answer this
question, we defined two main research objectives: 1) to
examine and conceptualize a model of mHealth impacts
on PQoC and 2) empirically validate this model.

A perceived quality of care delivery model:
theoretical underpinnings and model
development
Task-Technology Fit (TTF) reveals the association be-
tween IT and individual performance and is based on the
premise of ‘fit’. ‘Fit’ has been widely utilized and is associ-
ated with performance. For example, MIT’s 90’s model is
underpinned by the theory of fit [31, 32] and argues that
fit contributes to high performance [31–33]. Optimal per-
formance occurs only if there is a tight fit (alignment)
among the domains of strategy, structure, management
processes, individual roles and skills and technology [31].
TTF operates at an individual level of analysis with the

position that IT is more likely to have a positive impact on
individual performance and be utilized if the capabilities
of the IT match the tasks that the user must perform [19,
34]. It consists of five constructs namely, task characteris-
tics, technology characteristics, task-technology fit,
performance impacts and utilization. TTF theory as a the-
oretical lens for understanding the performance of elec-
tronic health (eHealth) technologies has previously been
explored [35]. Specifically, Chiasson et al. [35] answers the
call for research by Furneauz [36] to understand the effect
of user performance on utilization and the association be-
tween the use of effective technology and user perform-
ance. They found TTF to be a useful theory for exploring
IT in healthcare and illustrated the positive association be-
tween use and performance.
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However, in the context of performance, the associ-
ation between the utilization of a technology and the
PQoC (as a performance outcome) has not been investi-
gated. It is noted [4, 37] that there is scant empirical
evidence of the impact which healthcare information
systems have on the quality of care. Towards deriving an
understanding of same, a conceptual model is developed
to explore physicians’ view which mHealth has on
PQoC. Specifically, a conceptual model is developed
(based on the technology to Performance chain model)
to focus on PQoC as the dependent variable.

Hypotheses development
Researchers have found that mobile technologies impact
performance of mobile workers and promote efficiency
[38–41]. When IT artefacts are embedded within an in-
dividual’s work practice, then they must facilitate the ac-
complishment of their work [42, 43]. System usage for
this study is defined as the degree to which mHealth is
incorporated into the users’ (i.e. physicians) work pro-
cesses or tasks. The concept of usage focuses on incorp-
oration and comprises routine, feature and value-adding
use [44]. Feature use refers to the extent to which physi-
cians use the mHealth features/functionality to complete
any given task (adapted from [45]). Routine use is im-
portant in this study as this research is examined in a
post-adoptive scenario. Therefore, routine use refers to
the extent to which a healthcare physician tends to use
mHealth automatically (adapted from [46]). Finally,
value-adding use is the extent by which physicians cap-
ture “the additional (none-core, non-automated and/or
non-compulsory) use by the user conducted to enhance
the output or impact” ( [44] p.6).
Studies show that mHealth usage by physicians assists

with facilitating decision support and medication safety
in terms of prescribing and dispensing at the point-of-
care [47, 48], thereby increasing diagnoses while decreas-
ing missed diagnoses. Similarly, it was found [25] that
hospital implementation of Health IT was positively
associated with activities intended to improve patient
care quality. Therefore, it is hypothesized that:

Hypothesis 1
Physician’s perceive that the Quality of Care delivered to
their patients is positively impacted by the mHealth’s
alignment with the task at hand (TTF).

Hypothesis 2
Physician’s perceive that the Quality of Care delivered to
patients is positively impacted by physician’s utilization
of mHealth.

Hypothesis 3
Physician’s utilization of mHealth is positively impacted
by its alignment to the task at hand.
While technology is typically aligned with organizational

structures, it is not aligned with care coordination i.e.
healthcare physician tasks [2]. Task characteristics, in this
study, are defined broadly as the actions taken by physi-
cians and include flexibility, protocol adherence, and time
criticality [2, 18]. Due to the complex nature associated
with the delivery of healthcare services, flexibility in work-
flows is clinically pertinent. The flexibility of a process is
its ability to deal with both foreseen and unforeseen
change [49]. Patient care in most environments is by its
very nature a mobile experience [50]. Common problems
which arise in healthcare settings include unavailable
medical information at the time of treatment, replication
of test results, protocols not being followed and prescrip-
tion of incorrect medications [2]. Therefore, we propose
the following hypothesis:

Hypothesis 4–1
Physicians perceptions of Task Technology alignment will
be positively impacted by Healthcare task characteristics.

Hypothesis 4–2
Healthcare task characteristics impacts mHealth
utilization by physicians in a healthcare setting.
Research argues that technological resources are re-

quired for system usage [51]. Technology (i.e. mobile)
characteristics refer to specific features, functionality, or
usability of a technology that can affect its usage by tar-
get users [52]. It is argued that the implementation of
any eHealth technology must live up to its fullest poten-
tial in real-world conditions and circumstance [18, 53],
therefore having real world value. Existing research ar-
gues that physicians may be reluctant to utilize some IT
technologies because they may fear it will not perform
reliably or possess insufficient functionality for users to
perform tasks. Therefore, we hypothesize:

Hypothesis 5–1
Physician perceptions of Task Technology alignment will
be positively impacted by mHealth characteristics.

Hypothesis 5–2
The mHealth characteristics impact upon its use by
physicians in a healthcare setting.
Research [54, 55] argues that self-efficacy tailored to

an IT artefact is an important determinant of a variety
of user perceptions of technology. As a result, self-
efficacy has received considerable empirical support in a
vast array of papers spanning both pre-and post-
adoption research studies. Self-efficacy is defined as the
degree to which an individual’s perceives their ability to
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utilize mHealth in the accomplishment of a task
(adapted from [56]). Shaw and Manwani [57] found that
physicians with high self-efficacy had greater potential to
extensively use the vast array of features offered by a
technology. Moreover, it is argued [58–61] that individ-
uals with high self-efficacy tend to perform well when
conducting a variety of tasks using IT. Pierce et al. [62]
found that feelings of self-efficacy encourage individuals
to explore and manipulate the environment within
which they work and to feel a sense of empowerment.
Therefore, it is hypothesized that:

Hypothesis 6–1
Physician perceptions of Task Technology alignment will
be positively impacted by their perceived ability to utilize
mHealth.

Hypothesis 6–2
Physicians perception of their ability to employ mHealth
positively impacts utilize mHealth.

Figure 1 presents the conceptual model employed in
this study. The next section will discuss how we opera-
tionalized this model (Fig. 1).

Methods
To test the conceptual model (Fig. 1) an observational
quasi-experimental one group posttest-only design was
employed. The self-reported data was collected by
employing a survey and distributed through the internal
hospital channels to physicians who adopted iPads for
their daily activities. The online survey questionnaire
was constructed using indicators already validated in
existing research (see Additional file 1). The survey
instrument was piloted to ensure content and construct
validity. Over 20 medical experts (professionals who
work in healthcare delivery and actively utilize mHealth
as a part of their daily work related activities) in the US
and Ireland participated in the pilot study. Following
this, the questionnaire was refined before launching the
survey.

Fig. 1 Conceptual Model
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Data was collected over a four-month period, in 2012,
from physicians in an acute care context within The
Ottawa Hospital, Ontario, Canada. The Ottawa Hospital
(TOH) made over 3000 iPads, incorporating a mobile
Electronic Medical Record application, available for use
by physicians. TOH is one hospital spanning three sites
(Civic, Riverside, and General Campuses) and has been
using mHealth at the point-of-care for numerous years.
The survey was distributed via email (an URL link) to
physicians in TOH, Canada. No hard copies were dis-
tributed to the potential participants since all members
of the TOH staff had Internet access.
One major types of bias that is often associated with

web surveys is common method variance bias [63]. To
overcome the former, several reversed-scored items were
used to reduce sign rating problems associated with
Likert scales [63]. See Additional file 1 for a description
of the items used as part of the questionnaire.
Participants using mHealth within their daily practices

for 6 months or more was eligible for the study. A total
of 157 responses were obtained from various physicians
via the administration of an online survey (871 physi-
cians in total at the time of data collection), yielding a
response rate of 18%. Not all of the 871 physicians were
available/active during the data collection period of time,
which may have impacted the response rate. Note-
worthy, it is argued that physicians are often a group
with low survey response rates [64]. Nevertheless, 157
responses were cleaned for missing values and 102
complete responses were used for data analysis. While
research [65] argues that missing values affects directory
of taking the decision, G*Power (version 3.1.2) was used
to conduct power analysis and to establish whether the
sample size is sufficient. The analysis revealed a power
value close to one indicating that the sample size of 102
is sufficient as per Cohen [66]. A key benefit of using
Partial Least Square (PLS)- Structural Equation Model-
ing (SEM) is that it accommodates the use of small sam-
ple sizes giving that the ten [10] times rules is met. The
10 times rule depicts that a sample size should be equal
to 10 times the largest number of formative indicators
used to measure a particular construct, or 10 times the
largest number of paths directed at a construct in the
model [66]. Our sample size satisfies both requirements.
Structural Equation Modeling (SEM) was used for the

hypotheses testing and data analysis. The PLS (SEM)
approach, which uses component-based estimation was
chosen since it allows simultaneous examination of
both the measurement and the structural models. The
measurement (outer) model portrays the relationships
between a construct and its associated measurement
items whereas the structural (inner) model represents
direct and indirect unobservable relationships among
constructs [67, 68]. In addition, the PLS approach, in

contrast to covariance-based SEM, allows testing of the
relationships in the model with less restrictive require-
ments and relatively small sample sizes. PLS is also
considered very appropriate for exploratory studies and
for testing theories at earlier stages of development
[69], and it is highly suitable for prediction-oriented re-
search [70].
The evaluation process of the PLS path model with

mixed formative and reflective constructs involves
two steps [70–75]. Step 1 involves the testing of the
quality of the measurement (outer) models of first-
order constructs used in the first stage as well as
other endogenous and exogenous constructs. After
this we assess the appropriateness of the high order
constructs. The research model includes two second-
order constructs TTF - task technology fit and
Utilization (Fig. 2). We followed the recommendations
provided by Becker et al. [76] for repeated indicators,
two-stages, and hybrid approaches for estimation
hierarchical second-order constructs. As Step 1 was
successful and latent constructs were found to be reli-
able and valid, Step 2, which necessitates the assess-
ment of the structural (inner) model, was conducted
[70, 75]. SmartPLS 3.2.6 was employed for the PLS
model assessment.

Results
After excluding 55 responses from the 157 received, 102
surveys were usable for data analysis. This cohort repre-
sented 59 males and 43 females, with ages ranging from
18 to 25 years (n = 2); 26–40 years (n = 58); 41–55 years
(n = 25); 56–65 years (n = 14) and > 65 years (n = 3).
Attending Physicians accounted for 53% of the responses
(n = 54), with Residents/Fellows completing the remain-
der of 47%.
The reflective measurement constructs of the research

model were assessed according to the established criteria
to assess PLS models with reflective constructs (e.g., [67,
70, 73]). The research model includes six first-order
reflective constructs of higher-order construct Task-
Technology Fit, three first-order reflective constructs of
a second-order construct Utilization, one exogenous
reflective construct Self-Efficacy, and one endogenous
PQoC (Fig. 1). Hence 10 (ten) reflective measurement
models were assessed for reliability and validity. Table 1
demonstrates Individual reliability of the indicators - the
magnitudes of all indicators are above this lower limit of
0.707, with the lowest value of 0.731 and majority of
values above 0.8.
Table 1 illustrates that all manifest items are reli-

able for all reflective constructs, demonstrating in-
ternal consistency reliability since both parameters (i)
Cronbach’s α and parameter (ii) composite reliability
have high values (all values are above 0.752), with the
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required value being above 0.7 [70]. The validity test
of the reflective constructs examines the convergent
validity and the discriminant validity. Average Vari-
ance Extracted (AVE) for all constructs is higher than
0.5, which indicates sufficient convergent validity
(Table 1).
We tested discriminant validity with three approaches:

Fornell-Larker criterion analysis (See Table 2), cross-
loadings (see Additional file 2), and assessing the
heterotrait-monotrait ratio (HTMT) of the correlations
(See Table 3).
The results of all tests confirm that the manifest vari-

ables (indicators) presented in the research model are re-
liable and valid.

Assessment of measurement models – formative
constructs
The research model includes two lower order formative
constructs: Task Characteristics and Technology
Characteristics and two high-order formative contract:
TTF and Utilization.
For assessing multicollinearity in the formative

measurement model variance inflation factor (VIF) was
employed. All VIF indexes were below the critical value
of 5 [75] and even lower than the more strict threshold
of 3.3 [68], indicating absence of multicollinearity and
supporting validations of all indicators (Table 4).
For testing indicator validity, the t-tests of indicator

weight significance, accomplished with the SmartPLS

Fig. 2 Evaluation of measurement and structural models

O’Connor et al. BMC Medical Informatics and Decision Making           (2020) 20:41 Page 6 of 13



program employing the bootstrap method, revealed that
almost all endogenous formative latent variables met the
requirements of indicator validity. One of the indicators
(Tech3) of the Technology Characteristics concept was
found not statistically significant with 95% confidence
but significant with 90%. This indicator must be kept in
the model since it represents critical dimension of the
coordination role of the technology. In second-order
construct of TTF the weight of the first-order construct
mHealth reliability was not statistically significant.

However, this construct has also been retained in the
model due to theoretical consideration.
Routine Use was found as a major Utilization factor

(γ = 0.540). Value-adding Use has a high impact (γ =
0.424) and is highly important and significant for
utilization of mHealth. On the other hand, Feature Use
was found although statically significant but the least
important factor (γ = 0.235) in the Utilization construct.
Learning/Training was found to be the most important
component of Task Technology Fit construct (γ = 0.404).

Table 1 Construct reliability and convergent validity

Constructs Indicator Indicator Reliability/Convergent Validity Internal Consistency Reliability

Loading T-Stat p-value AVE Cronbach’s α Composite Reliability

Performance (PQoC) PQoC1 0.815 26.58 0.00 0.636 0.856 0.897

PQoC2 0.814 19.16 0.00

PQoC3 0.861 23.83 0.00

PQoC4 0.731 12.11 0.00

PQoC5 0.761 14.38 0.00

Self-efficacy (SE) SE1 0.900 33.41 0.00 0.836 0.902 0.939

SE2 0.934 34.19 0.00

SE3 0.908 26.53 0.00

Learning/Training (Learn) Learn1 0.862 33.79 0.00 0.624 0.802 0.869

Learn2 0.748 10.41 0.00

Learn3 0.802 17.61 0.00

Learn4 0.741 11.49 0.00

Locatability (Loc) Loc1 0.877 25.04 0.00 0.679 0.768 0.863

Loc2 0.843 13.90 0.00

Loc3 0.746 9.08 0.00

MHealth Reliability (Rel) Rel1 0.897 36.69 0.00 0.799 0.874 0.923

Rel2 0.927 44.36 0.00

Rel3 0.857 25.90 0.00

Relationship with Users/Functionality (Fun) Fun1 0.869 31.02 0.00 0.763 0.844 0.906

Fun2 0.907 40.68 0.00

Fun3 0.843 20.86 0.00

Timeliness (T) T1 0.865 20.61 0.00 0.681 0.764 0.865

T2 0.853 22.01 0.00

T3 0.754 9.52 0.00

Value-Adding Use (VAU) VAU1 0.802 18.19 0.00 0.686 0.771 0.868

VAU2 0.841 19.74 0.00

VAU3 0.843 21.82 0.00

Feature Use (FU) FU1 0.771 12.57 0.00 0.669 0.752 0.858

FU2 0.895 45.54 0.00

FU3 0.782 10.91 0.00

Routine use (RU) RU1 0.915 42.60 0.00 0.832 0.899 0.937

RU2 0.914 43.12 0.00

RU3 0.906 30.64 0.00
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Timeliness also play a significant role in forming this
construct (γ = 0.308), followed by Ease of use (γ = 0.301),
Locatability (γ = 0.225), and Relationship with Users/
Functionality with (γ = 0.166). Accuracy and time critic-
ality (Task3) was the most dominating (γ = 0.542) in
constructing the Task Characteristics construct. Interde-
pendability (Task2) took the second place (γ = 0.491)
and non-routines (Task1) were the weakest source (γ =
0.336) in forming this construct. The formation of Tech-
nology Characteristics construct Mobility (Tech 1)
played the most critical role (γ = 0.651) followed by
Personalization (Tech 2) (γ = 0.333). Coordination (Tech
3) (γ = 0.287) was not statistically significant but
remained in the model.
For assessing discriminant validity, all correlations of

first-order constructs were found to be higher with their
second-order constructs than with any other construct
in the model. Correlations of formative indicators of two
formative constructs were also found higher with their
own constructs than with any other construct. Through
assessing content validity, construct reliability and
validity of the model, it was demonstrated that the

measurement models are appropriate and valid. This
analysis paved the way for the evaluation of the struc-
tural mode.

Assessment of structural model
The central criterion for evaluating the structural model
is the level of explained variance of the dependent con-
structs. This model explains Perceived Quality of Care
Delivery (PQoC), for which the R-square was 63.9%.
Also, our model explains 62.8% of TTF and 68.3% of
Utilization variance (Fig. 2). The variances of all three
constructs were explained at the substantial or close to
substantial level according to Chin’s [74] criteria. R2

values of 0.67, 0.33, or 0.19 for endogenous latent
variables are described as substantial, moderate, or weak
( [74] p.323).
All paths coefficients except paths connecting Task

and Technology Characteristics with Utilization were
found to be highly statistically significant (see Table 5
and Fig. 2).
PQoC was found to be positively affected by TTF (H1

supported with β = 0.570) and Utilization (H2 supported

Table 2 Fornell-Larker criterion analysis

FU Learn Loc Rel PQoC Fun RU SE T VAU

FU 0.818

Learn 0.357 0.790

Loc 0.465 0.307 0.824

Rel 0.273 0.337 0.478 0.894

PQoC 0.455 0.708 0.363 0.379 0.798

Fun 0.376 0.366 0.507 0.644 0.507 0.873

RU 0.466 0.427 0.490 0.529 0.646 0.589 0.912

SE 0.475 0.295 0.536 0.496 0.369 0.440 0.535 0.914

T 0.330 0.352 0.145 0.249 0.444 0.288 0.440 0.168 0.825

VAU 0.464 0.632 0.409 0.276 0.613 0.359 0.571 0.485 0.456 0.828

Table 3 Heterotrait-monotrait ratio

EU FU Learn Loc Rel PQoC Fun RU SE T

FU 0.469

Learn 0.490 0.424

Loc 0.487 0.618 0.359

Rel 0.473 0.329 0.392 0.588

PQoC 0.667 0.554 0.830 0.420 0.433

Fun 0.554 0.468 0.434 0.621 0.747 0.598

RU 0.607 0.564 0.474 0.577 0.591 0.728 0.676

SE 0.398 0.575 0.326 0.635 0.548 0.417 0.503 0.592

T 0.320 0.425 0.428 0.188 0.299 0.545 0.361 0.532 0.204

VAU 0.376 0.588 0.759 0.512 0.331 0.745 0.448 0.685 0.584 0.593
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with β = 0.270). TTF affects Utilization (H3 supported
with β = 0.563). TTF was found to be positively affected
by Task Characteristics (H4–1 supported with β =
0.335), Technology Characteristics (H5–1 supported
with β = 0.479), and Self-efficacy (H6–1 supported with
β = 0.184), and Internal Knowledge (H5 supported with
β = 0.379). In addition to TTF, we found that self-
efficacy also affects Utilization (H6–2 supported with
β = 0.295), while task and technology characteristics do
not affect Utilization (H4–2 and H5–2 not supported).
In addition to path coefficients that represent direct ef-

fects we assessed indirect and total effects of the con-
structs. Changes in R-square were explored to
investigate the substantive impact of each independent

construct on the dependent construct, carrying out the
effect size technique by re-running PLS estimations, ex-
cluding one explaining latent construct in each run.
Chin [74] proposed an effect size f2 categorization of
PLS constructs similar to Cohen’s implementation for
multiple regression: small (f2 = 0.02), medium (f2 = 0.15),
and large (f2 = 0.35). TTF has a large effect on both
PQoC and Utilization (with f2 = 0.351 and f2 = 0.372 ac-
cordingly). While the effect of Utilization on PQoC is
small (f2 = 0.079). There is a large effect of Technology
Characteristics on TTF (f2 = 0.444), while effect of Task
Characteristics is medium (f2 = 0.243) and Self-efficacy
has a small effect on TTF (f2 = 0.072) and medium on
Utilization (f2 = 0.192).

Table 4 Multicollinearity and indicator-validity tests

Indicator - > Construct Weight STD T-Stat P Value VIF

Tech1 - > Technology Characteristics 0.651 0.121 5.396 0.000 1.251

Tech2 - > Technology Characteristics 0.333 0.167 1.997 0.046 1.367

Tech3 - > Technology Characteristics 0.287 0.165 1.742 0.082 1.576

Task1 - > Task Characteristics 0.336 0.163 2.067 0.039 1.149

Task2 - > Task Characteristics 0.491 0.168 2.926 0.003 1.207

Task3 - > Task Characteristics 0.542 0.181 2.987 0.003 1.120

Ease of use - > TTF 0.301 0.075 3.991 0.000 1.604

Learning/Training - > TTF 0.404 0.080 5.027 0.000 1.387

Locatability - > TTF 0.225 0.076 2.971 0.003 1.502

MHEALTH Reliability- > TTF 0.019 0.085 0.228 0.820 1.850

Relationship with Users/Functionality- > TTF 0.166 0.083 2.001 0.045 2.050

Timeliness - > TTF 0.308 0.097 3.190 0.001 1.197

Feature Use - > Utilization 0.235 0.093 2.518 0.012 1.379

Routine use - > Utilization 0.540 0.097 5.565 0.000 1.607

Value-Adding Use - > Utilization 0.424 0.111 3.807 0.000 1.603

Table 5 Path coefficients significance test. Direct, indirect, and total effects

Path (Direct) T-Stat P value Indirect Total T-Stat P Value

Self-Efficacy - > TTF (H6–1) [+] 0.183 2.261 0.024 0.000 0.183 2.261 0.024

Self-Efficacy - > Utilization (H6–2) [+] 0.285 3.631 0.000 0.103 0.388 4.692 0.000

TTF - > PQoC (H1) [+] 0.570 6.194 0.000 0.152 0.722 12.658 0.000

TTF - > Utilization (H3) [+] 0.563 5.203 0.000 0.000 0.563 5.203 0.000

Task Characteristics - > TTF (H4–1) [+] 0.337 3.718 0.000 0.000 0.337 3.718 0.000

Task Characteristics - > Utilization (H4–2) [−] 0.014 0.180 0.858 0.190 0.204 2.379 0.017

Tech Characteristics - > TTF (H5–1) [+] 0.479 5.581 0.000 0.000 0.479 5.581 0.000

Tech Characteristics - > Utilization (H5–2) [−] 0.101 1.072 0.284 0.270 0.371 4.380 0.000

Utilization - > PQoC (H2) [+] 0.270 2.790 0.005 0.000 0.270 2.790 0.005

Self-Efficacy - > PQoC_ 0.000 0.209 0.209 3.440 0.001

Task Characteristics - > PQoC_ 0.000 0.247 0.247 3.526 0.000

Technology Characteristics - > PQoC 0.000 0.373 0.373 5.302 0.000
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For the evaluation of the predictive relevance of the
structural model, the Stone and Geisser test was per-
formed using the blindfolding procedure. Q2 reflects an
index of goodness of reconstruction by model and par-
ameter estimations. A positive Q2 > 0 provides evidence
that the omitted observations (from blindfolding) were
well-reconstructed and that predictive relevance is
achieved, while a negative Q2 reflects absence of predict-
ive relevance. All values of Q2 were greater than zero,
indicating predictive relevance for the endogenous con-
structs of the research model. Table 6 shows that the Q2

effect size for the relationships of TTF with PQoC and
Utilisation can be considered as close to medium predic-
tion relevance. Predictive relevance of Technology char-
acteristics with respect to TTF can be considered as
between small and medium while the rest of relation-
ships have small Q2 effect size.

Discussion
While the TTF theory has been studied in health
domains [20, 77] and even variant model has been sug-
gested such as inclusion of self-efficacy in the model [78,
79] and feed-forward chain in the TTF theory [35], a
dearth of research focuses on the impact on PQoC [20].
Towards addressing this shortcoming in existing re-
search, this study examines the impact of mHealth on
the PQoC in a post-adoptive scenario. The conceptual
model was developed and empirically tested (Fig. 2). The
model explains 64% of the PQoC. Furthermore, it also
explains 63 and 68% respectively of the endogenous con-
structs (TTF and utilization). TTF was found to be the
dominant construct in explaining the variance of PQoC.
We can infer that in a post-adoptive scenario, TTF be-
comes fundamental (and a very important mediator) for
PQoC. Realizing how an organization can improve TTF
will lead to better PQoC.
A systematic review [80] on mHealth adoption by

healthcare professionals found that perceived usefulness
and ease of use, design and technical concerns, cost,
time, privacy and security issues, familiarity with the
technology, risk-benefit assessment, and interaction with
others (colleagues, patients, and management) are the
main factors to providers’ adoption behavior. Our re-
search corroborates these findings. However, towards

understanding how to improve TTF, our model tested
the main components of TTF and found that physicians
should keep investing in learning and training, regardless
of the stages of technology adoption. Learning and
Training was found to be the most critical factor in the
formation of TTF. Training and implementation man-
agement, as part of the Normalisation Process Theory
(NPT), is argued [81] to promote the successful imple-
mentation and integration of interventions into routine
work. Timeliness and Ease of Use were found to be the
second and third factors in the formation of TTF. The
medical domain is one which is continuously evolving,
necessitating physicians to continuously learn. By utiliz-
ing mHealth to keep up to date with the latest clinical/
medical protocols, physicians are continuously striving
to improve quality of care.
Research confirms that self-efficacy plays an important

role for IT utilization (cf. [55, 56, 82, 83]). In a post-
adoptive scenario, the findings reveal that self-efficacy is
critical for utilization, and this construct has the highest
direct and total effect on utilization. Interpreting this
finding, there is an ongoing requirement to continuously
enhance an individual’s skillset for using mHealth. The
findings reveal that self-efficacy has a small effect on
TTF, which is unsurprising given the fact that the
mHealth is already embedded in a physicians’ work prac-
tices. In the formation of TTF, the findings further re-
veal that technological characteristics dominate followed
by task characteristics.
In the conceptual model (Fig. 2), the alignment be-

tween task and technology (TTF) has an impact upon
use. Interestingly, our findings reveal that (1) the techno-
logical characteristics of mHealth and (2) healthcare
physician’s work practices have no direct impact upon
utilization. Towards explaining these findings, one
should consider the context of the study. Data was gath-
ered at a post-adoptive stage, meaning that mHealth had
been continuously used over an extended period of time
resulting in mHealth being embedded in physicians’
work practices. It was found that there is no direct im-
pact of task characteristics and technology characteris-
tics on mHealth utilization, although we hypothesized
these impacts. However, both these constructs have
significant indirect effects (TTF is a mediator) and total
effects on utilization. Therefore, at the most advanced
stages of utilization direct impacts are not relevant, but
TTF becomes a very important mediator.
A user’s behavior can range from stagnation in utiliz-

ing IT features to total integration of the IT in his/her
work domain [84–86]. Therefore, it is important that the
features/functionalities of mHealth can be adapted easily
to reflect the true but constant changing working nature
of physicians to complete any given task within hospi-
tals. MHealth containing electronic pharmacopoeias (i.e.

Table 6 The effect size Q2 predictive relevance test

PQoC TTF Utilisation

Task 0.00 0.03 −0.01

Technology 0.01 0.10 0.00

Self-Efficacy −0.01 0.03 0.06

Utilisation 0.01

TTF 0.12 0.12
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drug information), medical calculations, guideline infor-
mation and administrative tasks have been identified as
the most useful resources by physicians, nurses and
other clinical staff [87].
In the context of understanding utilization and its

constituent parts, this article decomposes utilization into
routine, feature, and value-adding use; the three of
which have not been collectively examined in explaining
utilization. By breaking utilization into these three con-
stituent parts, we were able to identify that routine use
and value-adding use are the major utilization factors
for mHealth when delivering healthcare services at the
point of care. At the earliest stages of adoption routine
use can be very critical. However, at a post-adoption
stage, routine use, while statistically significant, is the
least important factor in mHealth utilization; feature
use takes the leading role. An explanation for this is
that as system usage becomes repetitive and habitual,
routine use emerges. This confirms existing research
[53]. In the context of value-adding use, physicians take
advantage of the current artefact by exploring features
which they as individuals are less familiar with. This
potentially enables mHealth to be used by physicians in
novel ways/for unanticipated emerging patient prob-
lems. Therefore, in post-adoptive scenarios physicians
may employ different features to cope with changing
working requirements.

Conclusion
This article answers calls for the development of a
specific mHealth evaluation framework which is scant in
existing literature [8–11]. In meeting this request, we
have also addressed the dearth of research examining
mHealth in a post-adoptive scenario and its impact upon
Perceived Quality of Care Delivery (PQoC).
MHealth presents healthcare organisations with a sig-

nificant amount of opportunity which benefits health-
care professionals and patients alike. This study informs
hospitals and software vendors as to the performance of
mHealth by clearly demonstrating that physicians using
mHealth at the point-of-care enhances their PQoC a pa-
tient receives. As the availability of mHealth continues
to increase, we call that all mHealth should be reviewed
by clinical experts in order to safeguard the quality of
care patients receive.
This study also contributes to the practitioner commu-

nity by highlighting the importance of adapting mHealth
to adhere to users work practices, without unnecessary
disruption to the use of the service. Changes in work
practices within healthcare environments are often
dictated by external forces (e.g. pharmaceutical society
introduces new guidelines for dispensing drugs). For
PQoC to remain constant, it is imperative that mHealth
continuously evolves and adapts to changing work

practices and that mHealth be designed with work prac-
tices in mind. Indeed, our findings reveal that once tech-
nology is embedded, technology characteristics are a
secondary consideration for physicians.
Although this research achieved its objective, the re-

sults of this study should be interpreted in the context
of its limitations. First, this model was examined from a
healthcare physician perspective. While a healthcare
physician population was appropriate for this study, the
conceptual model (see Fig. 1) could be tested across a
wide cohort of medical professions (e.g. nurses, physio-
therapists, dieticians and, pharmacists). Such context ex-
tensions are argued ([88]) p.103) to be “part of on-going
efforts to provide generalised measures of TTF con-
structs”. Additionally, healthcare services are often deliv-
ered across different levels (e.g. primary, secondary and
territory) and scenarios (e.g. preventive care, urgent care,
emergency care, home health, and long-term care) ( [89]
p.66). As a result, we further urge future research to also
consider these domains. Moreover, individuals use mo-
bile technology, especially smartphones, for both he-
donic and utilitarian purposes [90]. Building from this,
future research should examine medical professionals
who use smartphones which are consumed for both
work and personal purposes. Although rich data was ob-
tained from participants in the study to develop and val-
idate the conceptual model, future research could
conduct similar empirical work with a larger study
population. This will further validate the research model.
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