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Abstract

Background: Semantic textual similarity (STS) is a fundamental natural language processing (NLP) task which can
be widely used in many NLP applications such as Question Answer (QA), Information Retrieval (IR), etc. It is a typical
regression problem, and almost all STS systems either use distributed representation or one-hot representation to
model sentence pairs.

Methods: In this paper, we proposed a novel framework based on a gated network to fuse distributed
representation and one-hot representation of sentence pairs. Some current state-of-the-art distributed
representation methods, including Convolutional Neural Network (CNN), Bi-directional Long Short Term Memory
networks (Bi-LSTM) and Bidirectional Encoder Representations from Transformers (BERT), were used in our
framework, and a system based on this framework was developed for a shared task regarding clinical STS organized
by BioCreative/OHNLP in 2018.

Results: Compared with the systems only using distributed representation or one-hot representation, our method
achieved much higher Pearson correlation. Among all distributed representations, BERT performed best. The highest
Person correlation of our system was 0.8541, higher than the best official one of the BioCreative/OHNLP clinical STS
shared task in 2018 (0.8328) by 0.0213.

Conclusions: Distributed representation and one-hot representation are complementary to each other and can be
fused by gated network.
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Background
Electronic Health Records (EHRs) that record patients’
complete information, including family history, general
situation, chief complaint, examination, lab test, diagno-
sis, assessment, and plan, etc., have been widely used to
help medical experts to improve processes of care on
patient outcomes. The key to secondary use of EHRs lies
in high quality. However, the quality of EHRs has met
challenges such as frequent use of copy-and-paste,
templates, and smart phrases which lead to bloated or
erroneous clinical notes [1]. A study of 23,630 clinical
notes written by 460 clinicians showed that 46% of the
text in the clinical records copied other clinical records,
36% was imported from templates, and only 18% was
manually entered [2]. To aggregate data from diverse
sources and minimize data redundancy, BioCreative/
OHNLP organized a shared task to evaluate the seman-
tic similarity between text snippets (also called sentences
in this paper) of clinical texts in 2018. In this shared
task, the similarity between two clinical text snippets
ranged from 0 to 5, where 0 means that the two clinical
text snippets are not semantically similar at all, and 5
indicates that the two clinical text snippets are entirely
equal. In the past few years, SemEval workshop has
launched STS shared task in the general domain many
times [3–8]. In the clinical area, BioCreative/OHNLP
first organized an STS shared task in 2018.
As many NLP applications such as QA, IR, etc. usually

used STS as a core component, large quantities of
researchers have contributed to STS and achieved great
success. STS is a typical regression problem, and how to
model sentence pairs is the key to solutions. There are
two main types of representations to model sentence
pairs: one-hot representation and distributed representa-
tion. The one-hot representation that depends on
manually-crafted features suffers from sparsity. The
distributed representation that learns dense real-value
vector from unlabeled data automatically by neural
networks have shown great potentialities. Most studies
focus on one type of representations. In this paper, we
proposed a novel framework to fuse the two types of
representations using a gated network. In the case of
distribution representations, we compared some current
state-of-the-art neural networks such as CNN, Bi-LSTM,
and BERT. To evaluate our method, we conducted
experiments on the clinical STS corpus of BioCreative/
OHNLP 2018 by comparing our method with the
methods that only using one type of representation and
the official best method on the clinical STS shared task.
Experimental results showed that: 1) the proposed
method achieved much higher Pearson correlation than
the methods only using one type of representations. 2)
BERT performed better than other distributed represen-
tations. 3) Our method achieved the highest Pearson

correlation of 0.8541, higher than the best official one of
the clinical STS shared task (0.8328) by 0.0213.

Related work
There are two main types of sentence representation: (1)
sparse one-hot representation based on manually
extracted features. (2) densely distributed representation
learnt from large labeled data. Within a long period,
there have been a large number of feature extraction
methods proposed to represent sentence by one-hot
vector. Gomaa et al. [9] summarized several types of
features and various similarity computation methods:
string-based similarity computation methods such as N-
gram [10–12], corpus-based similarity methods [13–16]
and knowledge-based similarity computation methods
[17–19]. In recent years, neural networks have became
mainstream methods for sentence representation and
STS. Bromley et al. [20] firstly presented a Siamese
architecture to encode sentence pairs. Based on previous
work, Mueller et al. [21] used Siamese recurrent archi-
tecture learning sentence representation. Tang et al. [22]
used deep belief network to learn sentence representa-
tion. He et al. [23] proposed a novel pairwise word
interaction method to measure the sentence semantic
similarity. Gong et al. [24] further hierarchically
extracted semantic features from interaction space. Tai
et al. [25] used tree-structured LSTM to improve the
sentence representation. Subramanian et al. [26] used
transfer learning to learn sentence representation. In
recent years, neural language models have been also ulti-
lized for sentence representation, such as ELMo [27]
and GPT [28]. Some researchers extracted features at
different granularities and combined them with distrib-
uted representations, such as He et al. [29] and Wang
et al. [30]. Ji et al. [31] combined the features with
distributed representation, our work was similar to Ji’s
work, but we used a novel gate to choose how to
combine one-hot representation and distributed
representation.

Methods
Task definition
Formally, the clinical STS task is to determine the simi-
larity of a pair of given sentences, denoted by sim(s1, s2),
where s1 is a sentence of length m and s2 is a sentence
of length n. We used sij to denote the j-th word of si. In
this study, the similarity of a sentence pair ranged from
0 to 5, where 0 represents the two sentences are not se-
mantically similar, and 5 represents the two sentences
are semantically equal. Besides, we used D and O to de-
scribe a sentence’s distributed representation and one-
hot representation respectively.
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Dataset
The BioCreative/OHNLP organizer manually annotated
750 sentence pairs with semantic similarity ranging from
0 to 5 for system development and 318 sentence pairs
for system test. We further divided the 750 sentence
pairs into a training set and a develop set using stratified
sampling to guarantee that the develop set is a represen-
tative of the overall dataset. Figure 1 shows the fractional
similarity interval distribution in the training, develop-
ment and test sets, and Table 1 lists some annotated
examples.

Data processing
We preprocessed each sentence as follows: 1) used
NLTK tool (http://www.nltk.org/) for tokenization and
lemmatization; 2) converted Arabic numerals into
English numbers. For example, the sentence “Indica-
tion, Site, and Additional Prescription Instructions:
Apply 1 patch every 24 hours; leave on for up to 12
hours within a 24 hour period” became “indication
site additional prescription instruction apply one
patch every twenty four hour leave twelve hour within
twenty four hour period” after preprocessing.

Distributed representation and one-hot representation
fusion
Figure 2 shows an overview architecture of our dis-
tributed representation and one-hot representation fu-
sion system based on a gated network for the clinical
STS task of BioCreative/OHNLP 2018 (i.e., task2).
The system consists of three components: (1) sen-
tence pair representation – distributed representation
and one-hot representation; (2) representation fusion
with gated network; (3) neural network to compute
sentence similarity. We described some of them in
the following sections in detail.

Distributed representation
In this study, we investigated three types of distrib-
uted representations: Siamese CNN [32], Siamese
RNN [21] and BERT [33], where Siamese CNN and
Siamese RNN are two popular neural networks used
to represent sentence pair, while BERT is a new lan-
guage representation method proposed recently.

(1) Siamese CNN is composed of two CNNs, each
of which represents a sentence, and the two
CNNs share weights. The representation of
sentence pair (s1, s2) is obtained as follows:

CNN ∙ð Þ ¼ avg pool convolution ∙ð Þð Þ
Dcnn ¼ CNN s1ð Þ;CNN s2ð Þ½ �; ð1Þ

where avg _ pool is the average pooling operation,
convolution is the convolution operation, s1 and s2 are
the two input sentences.

(2) Siamese RNN, similar to Siamese CNN, is
composed of two RNNs that represent each one
sentence respectively and share weights. In our
study, we adopted Bi-directional Long Short
Term Memory (Bi-LSTM) networks as an imple-
mentation of RNN, where each word i at s1 and
s2 is represented as:

Fig. 1 Fractional similarity interval distribution in the training,
develop and test sets

Table 1 Annotated examples

Score Example

0 s1: discus necessity member healthcare team male
female participate procedure
s2: report represent interpretation original data
trace store electronic record esophageal laboratory

1 s1: mother blood type o + hepatitis b negative hiv
negative found gb positive
s2: patient undergone genetic test found brca1 2
negative well bart negative

2 s1: patient discharge home ambulate without
assistance discharge instruction give patient
s2: patient left without see ambulate without
assistance family drive accompany husband wife

3 s1: negative cardiovascular review system historian
denies chest pain dyspnea exertion
s2: negative cardiovascular review system historian
denies chest pain diaphoresis syncope palpitation

4 s1: patient education ready learn apparent learn
barrier identify learn preference include listen
s2: assistance somali interpreter ready learn apparent
learn barrier identify learn preference include listen

5 s1: nurse visit ten minute half spent counsel point test
s2: nurse visit ten minute half spent consultation
point test
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(3) BERT (Bidirectional Encoder Representations from
Transformers) is a language representation
method to obtain deep bidirectional
representations of sentences by jointly
conditioning on both left and right context in all
layers from free text unsupervised. In our study,

the representation of a sentence pair (s1, s2) was
denoted by

Dbert ¼ BERT s1; s2½ �ð Þ ð5Þ

We trained a new BERT model on MIMIC III start-
ing from the pre-trained model released by Google
(https://github.com/google-research/bert).

One-hot representation
We followed Tian’s work [34] to extract the following
two types of features: (1) Sentence-level features: IDF
(inverse document frequency) [35] and sentence
length; (2) Sentence pair-level features: N-gram over-
laps defined in eq. (6), and distances or similarities
between the two input sentences calculated by cosine,
Manhattan, Euclidean, Chebyshev, polynomial kernel,
RBF kernel, Laplacian kernel and sigmoid kernel after
each sentence is represented by the average vector of
all words’ embeddings (https://github.com/mmihaltz/
word2vec-GoogleNews-vectors).

Fig. 2 Overview architecture of our distributed representation and one-hot representation fusion system based on gated network
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NGO s1; s2ð Þ ¼ 2
Ngram s1ð Þ∩Ngram s2ð Þj j

j Ngram s1ð Þ j þ j Ngram s2ð Þ j
� �

ð6Þ
where Ngram(si) (i = 1,2) is a N-gram set extracted from si. In
our study, unigrams, bigrams and trigrams were considered.

Fusion gate
Inspired by the gated network mechanism in variants of
RNN such as LSTM and GRU (Gated Recurrent Unit),
we introduced a gate to leverage distributed representa-
tion and one-hot representation. Before fusion, we
adopted the tanh function as an activation function to
convert the two types of representation into the same
space. So that the final representation of sentence pair
(s1, s2) R can be obtained in the following way:

Dnorm ¼ tanh Wd ∙Dþ bdð Þ ð7Þ
Onorm ¼ tanh Wo∙Oþ boð Þ ð8Þ
f ¼ σ W f ∙ Dnorm;Onorm½ � þ bf

� � ð9Þ
R ¼ f �Dnorm þ 1− fð Þ�Onorm ð10Þ

Where Wd, Wo, Wf are weights matrices; bd, bo, bf are
bias vectors; σ is the sigmoid activation function; f is le-
verage coefficient between the distributed representation
and the one-hot representation.

Experiments
We started from the baseline systems that only used one type
of representations (distributed representation or one-hot rep-
resentation), then concatenated the two types of representa-
tions, and finally fused the two types of representations with a

gated network. All systems were evaluated on the clinical STS
corpus of the BioCreative/OHNLP challenge in 2018, and
Pearson correlation was used to measure the performance of
the systems.

Results
As shown in Table 2, the baseline system only using
one-hot representation achieved much higher Pearson
correlation than the baseline system just applying CNN
or LSTM, but lower Pearson correlation than the base-
line system only using BERT. The highest Pearson cor-
relation of the baseline systems was 0.8461. When
concatenating each distributed representation with the
one-hot representation, we received higher Pearson cor-
relation, indicating that the two types of representations
are mutually complementary. For example, when we
concatenated BERT with one-hot representation, we ob-
tained a Pearson correlation of 0.8525, higher than the
baseline system only using BERT by 0.0064 and the
baseline system solely using one-hot representation by
0.0586. Instead of concatenating any distributed repre-
sentation with one-hot representation, fusing them
brought more significant improvement in Pearson cor-
relation. The Pearson correlation difference between the
systems that using concatenation strategy and fusion
strategy ranged from 0.0016 to 0.0359. Among three dis-
tributed representations, our system achieved highest
Pearson correlation of 0.8541 when using BERT for fu-
sion, higher than the best official one of the BioCreative/
OHNLP clinical STS shared task (0.8328) by 0.0213.

Discussion
In this study, we investigated three state-of-the-art dis-
tributed representation methods, that is, CNN, Bi-

Table 2 Performance of systems on the clinical STS corpus of the BioCreative/OHNLP shared task in 2018

Method Score Interval

[0,1] [1, 2] [2, 3] [3, 4] [4, 5] Overall

Baseline

One-hot 0.5567 0.2311 0.0998 0.2409 0.1167 0.7939

CNN 0.3960 −0.0850 −0.0090 0.0370 −0.0654 0.4444

LSTM 0.3920 −0.2945 0.2088 −0.0538 −0.0303 0.4275

BERT 0.7613 0.1206 0.2635 0.2530 0.1210 0.8461

Concatenation

CNN + one-hot 0.5406 0.6917 0.1352 0.2539 0.0744 0.8083

LSTM+one-hot 0.5850 0.3415 0.2269 0.2173 0.2155 0.8030

BERT+one-hot 0.6684 0.3038 0.2309 0.2425 0.2203 0.8525

Fusion (gated network)

CNN + one-hot 0.6973 0.2324 0.1675 0.2336 0.0864 0.8442

LSTM+one-hot 0.6253 0.3583 0.1869 0.2550 0.1018 0.8379

BERT+one-hot 0.6872 0.1605 0.3238 0.2822 0.1666 0.8541
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LSTM, and BERT, and proposed a novel framework
based on a gated network to fuse distributed representa-
tion and one-hot representation of sentence pairs.
Among the systems only using any one distributed rep-
resentation or one-hot representation, the system using
BERT achieved highest Pearson correlation, but the sys-
tem using one-hot representation produced much higher
Pearson correlation than the method using CNN or Bi-
LSTM. Both concatenation and fusion of distributed
representation and one-hot representation brought im-
provement, and the fusion with gated network per-
formed better.
The reason why the system using CNN or Bi-LSTM per-

formed much worse than that using BERT or one-hot rep-
resentation lies in the following two aspects: 1) the word
embeddings used in CNN or Bi-LSTM were trained on a
much smaller corpus than BERT; 2) one-hot representation
had an advantage over CNN and Bi-LSTM on sentence
pairs not very similar when the embeddings were trained
on a small corpus. For example, it was easy to determine
that “it be appropriate to retain the patient at the present
level of care since the patient be make progress but have
not yet achieve the goal articulate in the individualize treat-
ment plan” and “the patient demonstrates the ability to fire
the ta g and fhl of the operative extremity” are not seman-
tically similar (i.e., similarity of 0) when we applied the sys-
tem using one-hot representation as there was no N-gram
overlapped by the two sentences, but a little semantically
similar (e.g., similarity of 2.02 when using CNN) when we
applied the system using CNN or Bi-LSTM. The improve-
ment because of concatenation or fusion of distributed rep-
resentation and one-hot representation mainly came from
sentence pairs of high similarity. As an illustration, we com-
pared mean square error (MSE) on fractional similarity in-
tervals as shown in Fig. 3.
For further improvement, there are three possible direc-

tions as follows: 1) fuse multiple distributed representations

with one-hot representation as different distributed repre-
sentations may be complementary; 2) increase more data
for word embedding training and model training; 3) intro-
duce domain knowledge into our framework. All of them
will be investigated in the future.

Conclusion
In this paper, we proposed a novel framework to fuse
distributed representation and one-hot representation
using a gated network for clinical STS. Experiments on a
benchmark dataset showed that the two types of repre-
sentations were complementary and gated network was
a good way for representation fusion.
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