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Abstract 

Background:  Next-generation sequencing provides comprehensive information about individuals’ genetic makeup 
and is commonplace in oncology clinical practice. However, the utility of genetic information in the clinical decision-
making process has not been examined extensively from a real-world, data-driven perspective. Through mining real-
world data (RWD) from clinical notes, we could extract patients’ genetic information and further associate treatment 
decisions with genetic information.

Methods:  We proposed a real-world evidence (RWE) study framework that incorporates context-based natural lan-
guage processing (NLP) methods and data quality examination before final association analysis. The framework was 
demonstrated in a Foundation-tested women cancer cohort (N = 196). Upon retrieval of patients’ genetic information 
using NLP system, we assessed the completeness of genetic data captured in unstructured clinical notes according to 
a genetic data-model. We examined the distribution of different topics regarding BRCA1/2 throughout patients’ treat-
ment process, and then analyzed the association between BRCA1/2 mutation status and the discussion/prescription 
of targeted therapy.

Results:  We identified seven topics in the clinical context of genetic mentions including: Information, Evaluation, 
Insurance, Order, Negative, Positive, and Variants of unknown significance. Our rule-based system achieved a precision 
of 0.87, recall of 0.93 and F-measure of 0.91. Our machine learning system achieved a precision of 0.901, recall of 0.899 
and F-measure of 0.9 for four-topic classification and a precision of 0.833, recall of 0.823 and F-measure of 0.82 for 
seven-topic classification. We found in result-containing sentences, the capture of BRCA1/2 mutation information was 
75%, but detailed variant information (e.g. variant types) is largely missing. Using cleaned RWD, significant associations 
were found between BRCA1/2 positive mutation and targeted therapies.

Conclusions:  In conclusion, we demonstrated a framework to generate RWE using RWD from different clinical 
sources. Rule-based NLP system achieved the best performance for resolving contextual variability when extract-
ing RWD from unstructured clinical notes. Data quality issues such as incompleteness and discrepancies exist thus 
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Background
BRCA1/2 germline mutations are considered a risk factor 
for breast, ovarian, and other hereditary cancers [1, 2]. 
BRCA1/2 plays an important role in the maintenance of 
genome integrity and DNA repair through homologous 
recombination repair (HRR) pathway [3]. Poly-aden-
osyldiphosphate-ribose polymerase (PARP) inhibitors 
are a relatively new type of cancer treatment initially 
designed to target HRR defects, especially for people 
with inherited mutations in BRCA1/2 [4]. Recent stud-
ies prove that mechanisms and treatment susceptibility 
of BRCA-mutant tumors are not restricted to inherited 
tumor – both familial and sporadic tumor share common 
clinical features [5]: extreme levels of genomic instabil-
ity, basal-like transcriptomic signature (genes expression 
profile similar to normal breast myoepithelial layer), 
and triple-negative phenotype (oestrogen receptor, pro-
gesterone receptor and ERBB2 oncogene not expressed 
or amplified). With refined knowledge of the biologi-
cal mechanism of BRCA1/2 tumor suppressor functions 
over the past decade, the concept of “BRCAness” was 
introduced as: “A phenocopy of BRCA1 or BRCA2 muta-
tion; it describes the situation in which an HRR defect 
exists in a tumor in the absence of a germline BRCA1 
or BRCA2 mutation.” The new understanding of BRCA-
ness has driven wider adoption of Precision Medicine 
approaches, PAPR inhibitor specifically, to treat sporadic 
BRCA-mutant cancer.

The potential of Precision Medicine is to enable medi-
cal practitioners to make better clinical decisions by 
incorporating individual patients’ genomic information 
and clinical characteristics, to improve the selection of 
targeted therapies, avoid side effects from ineffective 
therapy, and therefore achieve desirable cost-effective-
ness [6–9]. Due to the heterogeneity of different malig-
nancies and diverse treatment considerations, patient 
size for similar clinical characteristics (e.g. receiving the 
same therapies, with similar disease stages, and have 
similar tumor tissue genetic makeup) is often small and 
makes it especially difficult for conducting clinical trial 
research for Precision Medicine therapies. To facilitate 
effective implementation of Precision Medicine and 
evaluations of its clinical benefits, it has become increas-
ingly important to leverage real-world data (RWD) and 
generate real-world evidence (RWE) to understand the 
challenges of maximizing clinical benefits of individual 

cancer patients, given knowledge of individual tumor’s 
characterization and options of new targeted therapies. 
Ideally, successful utilization of RWD will not only assist 
evaluations of Precision Medicine clinical utilities but 
also help to make novel discoveries for further advancing 
Precision Medicine applications.

Genetic testing (germline or somatic) involves exam-
ining a person’s DNA [10] and can reveal mutations in 
genes that may contribute to an increased risk of disease 
(predictive genetic tests [11]) or a different response to 
therapies (pharmacogenomics [12]). The advancement 
of next-generation sequencing and genetic testing has 
played an increasingly important role in the practice of 
Precision Medicine [13–15]. However, the clinical utility 
of genetic testing remains unevaluated in the real-world 
setting. With the wide adoption of electronic health 
records (EHRs), we can make secondary use of data from 
EHRs to study clinical questions in a real-world setting 
[16–19]. To examine how genetic data was utilized in 
the clinical decision-making processes, we first need to 
extract and curate genetic information as well as other 
associated clinical information from EHRs. Success-
ful retrieval of comprehensive information will enable 
evaluation of (1) utilization and the utility of genetic tests 
results in clinical decision making, (2) different cancer 
subtypes’ susceptibility to targeted therapies, (3) poten-
tial long-term benefit of genetic tests, and relevant tar-
geted therapies in overall survival.

Despite the  premise of using RWD for advancing 
Precision Medicine, data quality significantly limits 
the usages of RWD for RWE studies [20–22]. For exam-
ple, the  missingness of RWD from current structured 
electronic health records (EHRs) is one major concern 
[23]. As part of our prior research [24], we have exam-
ined EHRs at Mayo Clinic and found it challenging to 
completely capture genetic information generated by 
diverse commercial vendors in a structured EHR system. 
Natural language processing (NLP) techniques have been 
used to extract data from unstructured clinical notes and 
have been applied to the extraction of various clinical 
data elements such as disease phenotypes [25], adverse 
drug events [26], lab test results [27], and recently HLA 
genotypes [28]. Current work that utilized NLP for Pre-
cision Medicine studies emphasized clinical phenotype 
extraction while structured genetic information was 
already available from sequencing labs directly [29, 30] 

manual data cleaning is needed before further analysis can be performed. Finally, we were able to use cleaned RWD 
to evaluate the real-world utility of genetic information to initiate a prescription of targeted therapy.

Keywords:  Precision medicine, Real-world evidence, BRCA1/2, PARP inhibitor, Electronic health records, Natural 
language processing
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or from a structured genetic database linked to the EHR 
system [31]. However, given the substantial heterogene-
ity in how genetic information was documented in EHR 
systems [32], extracting/utilizing genetic information 
from unstructured clinical notes for research reuses has 
been of pressing need. Related to this proposed work, 
there were only a few previous efforts to extract genet-
ics data from unstructured EHRs: for example, Lee et al. 
have attempted to extract HLA genotype information 
from free-text clinical notes using rule-based meth-
ods, yet, restricting to a limited number of HLA-related 
variants [28]. Guan et  al. classified progress reports of 
755 cancer patients to the treatment-change and no-
treatment-change groups, using NLP keyword match-
ing and recurrent neural network (RNN) [33]; however, 
no genetic information was extracted in this works thus 
undermined the interpretability of their model. Although 
some previous works have been done to reuse genetic 
information in clinical notes, the  generalization and 
interpretability of these works are limited. To address 
these challenges, we proposed an RWE study framework 
that incorporates context-based NLP methods for data 
(genetic information) extraction and data quality exami-
nation before final classification and association analysis 
was performed. The novelty of our work is that we were 
able to extract patients’ personal genetic information by 
distinguishing it from general genetic information also 
documented in EHRs. Therefore, we can guarantee the 
data quality of genetic information we extracted from 
unstructured EHRs and enhance the interpretability of 
our analysis model when using it as features for down-
stream analysis.

Methods
To conduct RWE research of the utility of BRCAness in a 
clinical setting, we started with constructing a cohort and 
corpus with comprehensive genetic and clinical infor-
mation available from different linked sources (“Cohort 
and corpus” section). With the awareness of contextual 
variability in clinical notes, NLP-based approaches were 
applied to identify “topics” in clinical notes regarding 
BRCA1/2 mentions (“Sentence extraction and topic iden-
tification” section). After defining relevant topics, we 
developed and compared the  rule-based and machine 
learning NLP system for genetic information extraction 
(“NLP system development and evaluation” section). 
We visualized and investigated temporal distributions 
of topic occurrences across patients’ medical journeys 
(“Rule-based system”). Data quality issues such as incom-
pleteness and discrepancy were examined (“Temporal 
examination of topics and data quality examination” sec-
tion). Finally, we were able to use cleaned RWD to con-
duct a real-word evidence study regarding the association 

between BRCA1/2 mutation and prescription of PARP 
inhibitors (“Association analysis between mutation and 
targeted therapy” section).

Cohort and corpus
Our cohort included 196 women cancer (breast, ovary, 
cervix, and uterus) patients that have conducted Founda-
tion Medicine genetic tests with reports returned back to 
Mayo Clinic. Foundation Medicine, Inc. offered somatic 
genetic tests to qualifying patients across all solid 
tumors. With research authorization, we collected their 
genetic reports from Foundation Medicine, Inc. as well 
as unstructured clinical notes until March 31, 2020 from 
Mayo Clinic clinical data warehouse. The data warehouse 
integrated clinical notes from Mayo Clinic historical 
notes (Minnesota, Arizona, Florida, Mayo Clinic Health 
System notes), and Mayo Clinic Epic notes (Minnesota 
from May 2018, Arizona, Florida from Oct 2018, Mayo 
Clinic Health System from 2017). This research project 
was reviewed by the Mayo Clinic Institutional Review 
Board.

Sentence extraction and topic identification
Figure 1 illustrated the workflow of our NLP system. Step 
(1) is shared by both rule-based and machine learning 
systems while the rest applies for the rule-based system 
only. In step (1), we extracted all instances mentioning 
“BRCA1” and “BRCA2” gene from patients’ clinical notes 
using an NLP system MedTagger [34]. MedTagger ena-
bled a series of NLP processes including dictionary-based 
concepts indexing, keyword mention lookup, and regular 
expression matching [35]. Duplicate sentences within 
each patient’s array were removed and only the earli-
est sentence was kept. We first applied regular expres-
sion to identify gene names that follow HUGO Gene 
Nomenclature [36] and variant names that follow Human 
Genome Variation Society (HGVS) Nomenclature [37]. 
We replaced gene names (except BRCA1/2) with “GENE”, 
mutation nomenclature with “MUTATION”. We then 
processed each sentence by removing stopword, punctu-
ations, numbers and kept only Unified Medical Language 
System (UMLS) [38] identifiable concepts. We also nor-
malized each word using the Stanford Core NLP tool [39] 
which includes sentence splitting, tokenization, Part-of-
Speech tagging, lemmatization, negation detection and 
dependency parsing.

We characterized the universality of extracted sen-
tences using sf-ipf (sentence frequency-inverse patient 
frequency). We assumed that sentences containing infor-
mation regarding a  patient’s genetic test results should 
be relatively unique and specific to patients’ results thus 
have low sf-ipf. The sf-ipf setting was similar to tf-idf 
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(term frequency-inverse document frequency) [40] com-
monly used in document-topic modeling [41]. For sen-
tence s,

The sf-ipf (s) = sf(s)*ipf(s) where:

Sf-ipf sentence scores were calculated to represent how 
universal each sentence to actual genetic testing results. 
Two abstractors with medical education background 
reviewed sentences with sf-ipf < 0.5 (n = 46) plus addi-
tional randomly selected 50 sentences in the initial phase 
to determine topics. We chose 0.5 as a cut off for sf-ipf 
because it generates a managable size of initial senentece 
set for review. Stratified sampling from two different sen-
tence pools enabled us to create a balanced initial train-
ing set for rule development.

NLP system development and evaluation
Rule‑based system
As shown in Fig. 1, after the identification of topics and 
relevant topic-indicating words, we developed a rule-
based system for automatic topic assignment in an itera-
tive process. After the initial topic assignment, point-wise 
mutual information (PMI) [42, 43] was calculated and 
topic-indicating words were identified. Domain expertise 

(1)sf (s) =
# sentence s

total # sentence
, ipf (s) =

log(total # patients (N))

# patients with sentence s

was also applied to identify topic-indicating words. Rules 
were developed iteratively considering topic-indicating 
words and their proximity to genetic information men-
tions. If any sentence could not be categorized into exist-

ing topics, abstractors discussed with a domain expert 
to add new topics. We updated topic-indicating words 
and proximity rules iteratively until top PMI words and 
topic-indicating words converged. For sentences con-
taining positivity indicators, we extracted both its patho-
genic status (e.g. pathogenic, VUS, wildtype) and detailed 
variant information (if available) following the HGVS 
nomenclature. A heuristic rule was developed in which 
a positivity indicator was first assigned to the closet gene 
mention but was rejected subsequently if the gene men-
tion and indicator were beyond five-word distance apart. 
In total, abstractors reviewed 300 randomly selected sen-
tences in the development process (three iterations).

Machine learning system
We also developed a machine learning system to classify 
sentence topics utilizing 396 sentences evaluated during 
the iterative rule development process and were evalu-
ated using ten-fold cross-validation. Input sentences 

Fig. 1  Workflow of Genetic Information Extraction. (1) We extracted all sentences mentioning “BRCA1” and “BRCA2” gene from patients’ clinical 
notes using an NLP system, MedTagger. (2) We characterized the universality of extracted sentences using sf-ipf. The sf-ipf setting is similar to tf-idf 
commonly used in document-topic modeling. (3) We applied point-wise mutual information to automatically rank each word based on their 
inequality score and identified topic-indicating words. (4) We developed rules for automatic context inference in an iterative process by examining 
sentences with sf-ipf < 0.05 and a random sample of the rest of the sentences. (5) Manual evaluation was conducted by experts
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were tokenized and were then transformed into vectors 
and fed into the Random Forest classifier. The reason we 
chose to use the Random Forest classifier is because of 
its good interpretability [44]. We developed two classifi-
ers: one with the complete seven topics and another with 
only four topics: “Information”, “Positive”, “Negative”, and 
“VUS” where “Information”, “Evaluation”, “Order” and 
“Insurance” were combined into “Information”. The rea-
son we introduced two classification tasks is to evaluate 
data (feature) quality of downstream analysis tasks with 
respect to different topic granularity. For example, to 
examine whether patient education (“Information”) can 
initiate more ordering of tests (“Order”), we will need to 
perform the seven-topic task. In another use case where 
we only wanted to extract patients’ genotype, a four-topic 
task would suffice. Therefore, in our study, we compared 
the performance differences between the two classifica-
tion tasks.

Evaluation
Two abstractors manually assigned topics to another 
selected randomly 100 sentences according to final defi-
nitions of topics. Manual review results were compared 
to topic predictions generated by both rule-based and 
machine learning systems (two classifiers). Precision, 
recall, F-measure as well as an inter-rater agreement 
(Kappa statistics) were calculated using predictions from 
the finalized rules. Precision =  True Positive

True Positive+False Positive , 
Recall =  True Positive

True Positive+False Negative , F-meas-
ure =  2*True Positive

2*True Positive+False Positive+False Negative.

Temporal examination of topics and data quality 
examination
We visualized and examined the temporal pattern of top-
ics regarding BRCA1/2 by first ranking topic occurrence 
order in each patient’s timeline and then summarize the 
counts of ranks for different topics. Temporal distribu-
tions of topics were mapped into a “Topic” versus “Rank” 
heatmap. Counts were normalized and were presented in 
percentage (each row/topic sums up to 100%). Through 
the temporal visualization of each patient’s timeline, we 
were able to examine the order of types of encounters 
(“topics”) throughout a patient medical journey.

We examined the completeness of extracted genetic 
results in topics “Negative”, “Positive” or “VUS” by map-
ping them to an internal clinical genomic data model 
for genetic test result curation (Table 1). The data model 
was created by the integration of data elements from 
three different genetic testing report sources: Foundation 
Medicine, Tempus, and Mayo Clinic Internal Laboratory 
Service Line. We focused on examining the capture rate 
of (percentage of sentences with extracted genetic infor-
mation that can be represented by) five data elements 

(bolded in Table  1): “Variant_Type”, “Variant_Source”, 
“Variant_Pathogeneity_Reported”, “Variant_Classifi-
cation” and “HGVS_Short”. This data model has not 
been evaluated and was used just for data management 
purposes.

Association analaysis between mutation and targeted 
therapy
We expanded our analysis by examining whether 
BRCA1/2 mutation information from Foundation reports 
resulted in discussion or prescription of PARP inhibitors. 
We classified patients’ genetic mutation status using vali-
dated results from Foundation Medicine reports: BRCA 
Mutated, BRCA VUS, and BRCA Negative. We extracted 
PARP discussion status by identifying “Information” sen-
tences that also cover information of PARP inhibitors. 
PARP prescription status was retrieved by extracting 
patients’ prescription history from Mayo Clinic Unified 
Data Platform (UDP) [45, 46] structured Medication 
table, clinical data management (CDM) reports which 
were used to record clinical trial drug administration his-
tory, and semi-structured clinical notes “Current Medi-
cation” section. We searched for entries with “Olaparib”, 
“Rucaparib”, and “Niraparib” in UDP and CDM reports 
and terms “PARP”, “PARPi”, “Olaparib”, “Rucaparib”, 
“Niraparib” as well as their brand names (“Lyparza”, 
“Rubraca”, “Zejula”) in semi-structured clinical notes. 
Association analysis was performed between (1) BRCA 
mutation status versus PARP discussion status and (2) 
BRCA mutation status versus PARP prescription status.

Result
We examined the corpus using an NLP-based approach 
and identified seven topics regarding BRCA1/2 (“Topic 
identification to address contextual variability in unstruc-
tured clinical notes” section). The performance of the 
rule-based and machine learning-based NLP systems 
were evaluated and compared (“NLP system for auto-
matic topic classification” section). A timeline view of 
patients’ medical journey regarding BRCA1/2 was visu-
alized and temporal distributions of topics demonstrated 
a representative pattern for Precision Medicine practice 
(“Temporal visualization and examination of topics” sec-
tion). Data quality examination revealed incompleteness 
and discrepancy regarding the capture of genetic infor-
mation in unstructured clinical notes thus combining dif-
ferent sources is necessary (“BRCA1/2-related real-world 
data quality in unstructured clinical notes” section). 
Finally, using cleaned RWD, we were able to identify a 
significant association between BRCA1/2 mutation and 
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the prescription of PARP inhibitors (“Mutation-medica-
tion association” section).

Topic identification to address contextual variability 
in unstructured clinical notes
In total, we extracted 1179 sentences that contain key-
words BRCA1, BRCA2 for 122 patients while the remain-
ing 74 of 196 patients in the cohort cannot find any 
matching records with these keywords. After removing 
duplicate sentences, there were a total of 682 unique sen-
tences. Additional file 1: Table S1 listed top 10 lowest sf-
ipf sentences.

After reviewing sentences with sf-ipf < 0.5 (n = 46) plus 
50 additional randomly selected sentences in the initial 
phase, two abstractors and one domain expert classified 
the initial sentence topics into seven topics: Information, 
Evaluation, Insurance, Order, Negative (Mutation), Posi-
tive (Mutation), and VUS. Three of them (Negative, Posi-
tive, VUS) were related to patient genetic information. 
The scope of each topic was also defined clearly to enable 
evaluation by abstractors (Table 2). In the rule develop-
ment process, abstractors identified no sentence that 
cannot be classified into seven topics.

Table 1  Internal clinical genomics data model for genetic test result curation

Field_Name Descriptions Allowed_Values Examples Completeness

Hugo_Symbol Gene Symbol String EGFR 75% for Posi‑
tive, 20.8% 
for VUS

Ensemble_Gene_ID Ensemble Gene ID String starting with prefix "ENSG" ENSG00000146648 0%

Transcript_ID Transcript ID String starting with prefix "NM" or 
"NR"

ENSG00000146648 0%

De_sample_ID De-identified sample ID String MCM123 -

Pathogeneity_Report_Date Date of initial genetic report String of mm/dd/yyyy 2/12/2006 0%

Variant_Type Type of variants String of "SNP", "INDEL", “CNV”, “Rear-
rangement”

SNP 50%

Variant_Source Somatic or germline String of "somatic" or "germline" germline 26.4%
Variant_Pathogenicity Initial reported pathogenicity String of "actionable", "pathogenic", 

or "VUS"
pathogenic 43.8%

Variant_Classification Selected strings from some of 
below:

Frame_Shift_Del, Frame_Shift_Ins, 
In_Frame_Del, In_Frame_Ins, Mis-
sense_Mutation, Nonsense_Muta-
tion, Silent, Splice_Site, Transla-
tion_Start_Site, Nonstop_Mutation, 
3′UTR, 3′Flank, 5′UTR, 5′Flank, IGR, 
Intron, RNA, Targeted_Region, De_
novo_Start_InFrame, De_novo_
Start_OutOfFrame

Missense_Mutation 6.3%

HGVS_Short HGVS nomenclature for cDNA and 
Amino Acid Change

A string following HGVS nomencla-
ture to detonate protein amino acid 
change

p.Arg149Trp 25%

NCBI_Build The Genome Reference Consortium 
Build

"GRCh37" 0%

Chromosome Chromosome of event String of "1"-"22", "X", "Y", "M" "7" 0%

Start_Position Start position of event Numerical 0%

End_Position End position of event Numerical 0%

Strand Strand that the mutation is reported 
for

Character of "+" or "−" "+" 0%

Variant_Allele_Freq Percentage of variant presence in the 
sample

Numerical between 0 and 100 30 0%

BP_Coverage Base-pair coverage Numerical 270 0%

Variant_Pathogenicity_Updated Updated pathogenicity -

Pathogeneity_Update_Date Update date -
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NLP system for automatic topic classification
Identification of topic indicating words and assign-
ing topics to each sentence using regular expression 
involved an iterative evaluation process until top PMI 
words and topic indicating words converged. Accord-
ing to 682 BRCAness-related unique sentences in 
EHRs, a word-cloud was generated as Fig. 2a, showing 

the sizes of words proportional to their frequen-
cies in the corpus. Despite that some frequent words 
were implicitly related to BRCAness, such as “breast” 
“ovarian” “cancer” and “family” “history”, there lacked 
clinical contexts to cluster words that share a similar 
“topic”. After utilizing rule-based topic classification, 
specific words could be assigned to different topics 

Table 2  Definition of topics for sentences

Topic Definition

Information General information about guideline, genetic testing panels, pathways and biological implications, etc

Evaluation Physician estimating risk of having BRCA1/2 mutation, benefit of taking genetic test, etc. & Record any 
BRCA1/2 muation-carrier relative and risk of being a BRCA1/2 carrier from family history

Insurance Concerns over insurance coverage

Order Physician recording ordering of tests or waiting for results

Negative (mutation) Negative mutation result from genetic test

Positive (mutation) Positive mutation found from genetic test

VUS VUS found from genetic test

Fig. 2  a Word-cloud based on non-duplicate sentences extracted from EHRs regarding BRCA1/2; b Heatmap of Top PMI (Inequality score) Words in 
Different Topics (Yellow = Indicating Words; Light Yellow = Conditional Indicating Words)
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related to either type of medical encounters (e.g. Infor-
mation, Evaluation) or genetic results (Positive/Nega-
tive/VUS). Shown as Fig. 2b, a highly sparse pattern of 
the word-topic matrix indicated the specificity of rep-
resentative words, e.g. “family”, “history” and “heredi-
tary” were exclusive to the topic of “Evaluation”.

The final evaluation of our system was conducted by 
two abstractors with an inter-rater agreement (Kappa 
statistics) of 0.95, and achieved an overall precision 
of 0.87, recall of 0.93, and F-measure of 0.91. Perfor-
mance metrics of machine learning classifiers were 
listed in Tables  3 and 4. We could see that four-topic 
achieved better overall performance. Performance for 
classifying “Order” and “Insurance” was not ideal. This 
may be due to limited instances for these two topics 
(number of patients with “Order” topic = 29 and the 
number of patients with “Insurance” topic = 8).

Feature importance of two random forest classi-
fiers was calculated based on Gini impurity/informa-
tion gain [47] and was provided in Additional file  2: 
Table  S2 and Additional file  3: Table  S3. Feature 
importance from random forest classifiers agreed with 
our rule-based PMI calculation in a majority of cases. 
For example, “vus”, “negative”, “pathogenic”, “order”, 

“risk” and “analysis” were considered important topic-
indicators and they were ranked high in both “average 
impurity decrease” and “number of nodes using that 
attribute”.

Temporal visualization and examination of topics
In order to examine temporal patterns of topic distribu-
tions, BRAC1/2 related events were mapped to a time-
line. Figure  3a listed individual timelines for 5 patients. 
We could see that patients share a similar temporal pat-
tern of the medical journey starting from “Evaluation”, 
“Information”, followed by “Order”, and optionally “Insur-
ance” and finally genetic information (“Positive”, “Nega-
tive”, and “VUS”). Figure 3b demonstrated a summarized 
count percentage heatmap of the temporal order of 
topics (1 as earliest encounter, 14 as the last encounter, 
total numbers of encounters for each patient varies) for 
all the patients. The results from Fig. 3b agreed with our 
observation from the individualized view in Fig. 3a that 
“Evaluation” and “Information” encounters often appear 
earliest in the timeline. The initial topic of “Order” of 
genetic tests followed immediately after “Evaluation” was 
performed and “Information” was communicated with 
patients. “Insurance” occurred more frequently after the 
initial proposal of “Order” and would sometimes take 
several encounters to receive confirmation from insur-
ance companies and proceeded with genetic tests. Result-
related topics (“Positive”, “Negative”, and “VUS”) were 
mentioned repeatedly because every encounter, physi-
cians will refer back to medical history to initiate/change 
treatment plans. Among all result-related topics, “Posi-
tive” and “VUS” results were reported and documented 
earlier than “Negative” results.

BRCA1/2‑related real‑world data quality in unstructured 
clinical notes
We examined the data quality of RWD from unstruc-
tured sources with a focus on completeness and discrep-
ancies of genetic test results. We compared the results 
documented in unstructured clinical notes EHR records 
versus Foundation Medicine reports. Among Foundation 
positive patients (N = 12), 75% of patients (N = 9) had 
matching EHR records of their positive BRCA1/2 muta-
tion. For VUS, missingness was much larger – only 5 
patients out of 24 (20.8%) have their VUS recorded in the 
EHR. From Fig. 2b, we could see that we have more posi-
tive cases from EHR records (N = 48) than Foundation-
provided positive patients (N = 9). The reason for this is 
our information extraction system extracted previous 
germline BRCA1/2 panel test results as well.

Among all data elements in Table  1, five data 
elements “Variant_Type”, “Variant_Source”, 

Table 3  Performance of machine learning system on four-
topic classification

Class Precision Recall F-measure

Information 0.933 0.925 0.929

Positive 0.757 0.8 0.778

Negative 0.879 0.879 0.879

VUS 1 0.958 0.979

Overall 0.901 0.899 0.9

Table 4  Performance of  machine learning system 
on seven-topic classification

Class Precision Recall F-Measure

Information 0.714 0.645 0.678

Evaluation 0.911 0.895 0.903

Insurance 1 0.625 0.769

Order 1 0.5 0.667

Positive 0.707 0.829 0.763

Negative 0.789 0.909 0.845

VUS 0.92 0.958 0.939

Overall—ML 0.833 0.823 0.82

Overall—rule 0.87 0.93 0.91
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“Variant_Pathogeneity_Reported”, and “Variant_Clas-
sification” were considered most relevant to represent 
genetic information. Completeness of genetic infor-
mation captured in clinical notes was listed in the last 
column of Table  1. We found that the current capture 
rate of all data elements was low: “Variant_Type” (8 
out of 16, 50%), “Variant_Pathogeneity_Reported” (7 
out of 16, 43.8%) and “Variant_Classification” (1 out 
of 16, 6.3%), HGVS_short (4 out of 16, 25%) should 
be recorded for both positive and VUS patients while 
“Variant_Source” (24 out of 91, 26.4%) should be avail-
able for all negative, positive and VUS patients because 
it can be derived from genetic testing panel type. 
Among four data elements, “Variant_Classification” 
was least frequently documented—only one patient 

with a “splice_site” variant was documented. In some 
cases, “Variant_Type” was not extracted explicitly but 
can be inferred from extracted information that fol-
lows HGVS nomenclature, for example, S34F and 
c.7759C > T is a “single-nucleotide variant” and ampli-
fication is a “copy number variation”. Among five data 
elements, “Variant_Classification” was least frequently 
documented—only one patient with a “splice_site” vari-
ant was documented.

Figure 4 displayed a timeline view of a single patient 
(Patient 3). In this view, we could see that this patient 
had a discussion with the physician about the risk of 
having BRCA1/2 and the benefits of having the genetic 
test on 08/30/2017. After the discussion, the patient 
took the test, and the results returned positive. But 

Fig. 3  a Timeline view of Individual Patients’ Medical Journey; b Heatmap of A Summarized View for Temporal Pattern of Topics Throughout 
Patients’ Medical Journey. Y-axis = Topics, X-axis = Ranks of Occurrence Order in Patient Timelines. Counts were Normalized and were Presented in 
Percentage (each row/topic sums up to 100%)
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there was a discrepancy in clinical notes documenta-
tion where it first documents the results as a positive 
mutation in BRCA2 but later revised it to BRCA1 (rec-
tangled). This example demonstrated the benefit of 
using a timeline view to perform data quality checks in 
the future.

Mutation‑medication association
Figure 5 showed patient’s genetic mutation status vali-
dated by Foundation Medicine reports, patients’ PARP 

inhibitor discussions status from clinical notes, and 
patients’ PARP inhibitor prescription status from UDP, 
CDM reports, and clinical notes combined. “PARPi dis-
cussion” patient type referred to patients with the only 
discussion related to this drug while “PARPi prescrip-
tion” referred to patients with confirmed prescriptions 
from UDP, CDM reports, and clinical notes “current_
medication” section. “PARPi discussion + prescription” 
referred to patients with both discussions related to 
this drug in clinical notes and confirmed prescriptions. 
Because there was no patient that had “PARPi prescrip-
tion” without “PARPi discussion”, we didn’t display 

Fig. 4  Timeline view of medical journey of patient #3 revealed discrepancy in clinical notes documentation
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Fig. 5  Patient BRCA1/2 mutation status versus PARP inhibitor (“Olaparib”, “Rucaparib”, and “Niraparib”) Prescription. Mut = with BRCA1/2 mutation, 
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“PARPi prescription” in the figure. Fisher’s Exact Test 
was used to test differences between patients with dif-
ferent BRCA1/2 mutation status. Results from the test 
on the count data revealed a strong association between 
the patient’s genetic mutation in BRCA1/2 and the pre-
scription of PARP inhibitors with p-value = 0.0004.

Discussion
As the use of gene mutation data (somatic and germline) 
has become a common practice across all subspecial-
ties of oncology for the purpose of therapeutic planning, 
RWD that reflected utilization and outcomes of such 
testing was buried within clinical notes. Contextual vari-
ability introduced challenges for data extraction. There-
fore, identifying topics that revealed clinical contexts 
before applying the  NLP system can facilitate accurate 
extraction of genetic information from unstructured 
clinical notes. In addition, we proposed a machine learn-
ing system to classify extracted information into different 
“topics”.

We demonstrated that proposed “topics” and their dis-
tributions represented patients’ medical journeys and 
clinical decision-making process. We also examined the 
data quality of RWD and identified issues such as incom-
pleteness and discrepancies. Finally, further association 
analysis enhanced our understanding of the utility of 
genetic information in treatment selections.

Our genetic information extraction system revealed 
discrepancies and missingness of genetic data in EHRs: 
(1) BRCA1/2 mutation information was captured 75% 
and VUS only 20.8% (2) certain data fields (e.g. vari-
ant type or source) within clinical notes have a low rate 
of capture. Although we considered some of these fields 
to be important, such as VUS as well as detailed variant 
information, the low rate of documentation indicates that 
such data are not essential in the routine management of 
patients. Indeed, oncology providers only need to know 
whether a specific gene has a pathogenic mutation to 
determine eligibility for FDA-approved targeted agents; 
the specific variant details do not contribute to clinical 
decision making.

Although the missingness of data, in this case, is 
based on contemporary needs, the evolving knowledge 
in the field of clinical genomics could lead to a reclassi-
fication of a VUS to pathogenic within a few years. If we 
are able to automatically populate unstructured genetic 
information into a federated structured data ware-
house, we will probably benefit from a more detailed 
record of variant information by developing clinical 
decision support tools or EHR plug-in that consistently 
updates variant interpretations and informs physicians 
in a timely manner. Looking beyond the scope and 

benefit of a single institution, adoption of a standard-
ized data model to store clinical genomics information 
(variant + clinical phenotypes) in a structured database 
could benefit clinical practice in two ways: 1) reducing 
dependency on clinician’s documentation to capture 
genetic information given existing variability in docu-
mentation styles, especially when genetic tests are from 
an outside vendor and data capture rate in EHR is low 
[24]; 2) enabling multi-institutional collaboration for 
variant curation: examples for such collaborative effort 
are TCGA (The Cancer Genome Atlas) [48] and AACR 
Project GENIE (Genomics Evidence Neoplasia. Infor-
mation Exchange) [49] which focused on generating 
evidence for precision medicine by integrating cancer 
genomic data with clinical outcome data.

Our association analysis was performed on “BRCA-
ness” where we evaluated BRCA1/2 mutation status 
versus the prescription of PARP inhibitors. Also, given 
that BRCA1/2 is a strong indicator for the  prescrip-
tion of PARP inhibitors, discussion of PARP inhibi-
tors happens in over 50% of the patients in this cohort. 
The results agreed with our previous knowledge that 
BRCAness [5, 50], which describes somatic BRCA1/2 
homologous recombination repair (HRR) defect with 
no detectable germline BRCA1/2 mutation, provide 
actionable information in clinical decision-making.

The limitation of our work is that we only evaluated 
the extraction of BRCA1/2 related information and the 
topics we identified in  BRCA1/2  related information 
may not apply to other use cases. The generalizability of 
our methods needs further evaluation. Another limita-
tion of our work is that we only tested the performance 
of random forest classifier when comparing between 
machine learning and rule-based systems.

Other tree-based ensemble models such as XGBoost 
[51] might achieve superior performance than random 
forest and it also provides feature importance. How-
ever, feature importance orderings are very different 
for each of the three options (weight, cover, gain) pro-
vided by XGBoost, which might need additional evalu-
ation before a conclusion can be drawn. Therefore, this 
might be considered as a future attempt but is beyond 
the scope of this manuscript. In future work, we will 
apply this system to extract other HRR genes as they 
were also shown to cause cellular sensitivity to PARP 
inhibitors [52]. We will analyze topic distributions of 
those genes when mentioned in clinical notes to con-
firm/prioritize potentially actionable genes. Secondly, 
we can also use topics defined in this work to examine 
the benefit of adequate patient education (“Informa-
tion” topics) in promoting shared decision-making and 
precision medicine outcomes. Finally, we will expand 
our method on other cohorts including patients with 
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Tempus or Mayo in-house genetic tests or external 
cohorts from other institutions to test the generaliza-
bility of our method. After we have constructed a more 
comprehensive cohort, we will be able to examine the 
clinical utility (measured in overall survival or likeli-
hood of being matched to a clinical trial or a targeted 
therapy) of genetic testing panels of different sizes (sin-
gle gene vs multi-gene panel).

Conclusions
In our work, we demonstrated a framework to gener-
ate RWE using RWD from different clinical sources: (1) 
Applying the NLP system that can resolve contextual 
variability to extract RWD from unstructured clini-
cal notes. (2) Examination of data quality issues such 
as incompleteness and discrepancies in retrieved data. 
(3) Due to limited data quality, manual data cleaning is 
needed before further analysis can be performed. (4) 
Using cleaned RWD to generate RWE. From our use 
case, we found that currently, the rule-based NLP sys-
tem achieved the best performance. Data quality issues 
such as incompleteness and discrepancies exist and 
vary by data type. Finally, we were able to use cleaned 
RWD to show that the  real-world association of 
BRCA1/2 and discussion/prescription of PARP inhibi-
tor is significant.
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