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Abstract 

Background:  Cognitive assessments represent the most common clinical routine for the diagnosis of Alzheimer’s 
Disease (AD). Given a large number of cognitive assessment tools and time-limited office visits, it is important to 
determine a proper set of cognitive tests for different subjects. Most current studies create guidelines of cognitive test 
selection for a targeted population, but they are not customized for each individual subject. In this manuscript, we 
develop a machine learning paradigm enabling personalized cognitive assessments prioritization.

Method:  We adapt a newly developed learning-to-rank approach PLTR to implement our paradigm. This method 
learns the latent scoring function that pushes the most effective cognitive assessments onto the top of the prioritiza-
tion list. We also extend PLTR to better separate the most effective cognitive assessments and the less effective ones.

Results:  Our empirical study on the ADNI data shows that the proposed paradigm outperforms the state-of-the-art 
baselines on identifying and prioritizing individual-specific cognitive biomarkers. We conduct experiments in cross 
validation and level-out validation settings. In the two settings, our paradigm significantly outperforms the best base-
lines with improvement as much as 22.1% and 19.7%, respectively, on prioritizing cognitive features.

Conclusions:  The proposed paradigm achieves superior performance on prioritizing cognitive biomarkers. The cog-
nitive biomarkers prioritized on top have great potentials to facilitate personalized diagnosis, disease subtyping, and 
ultimately precision medicine in AD.
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Background
Identifying structural brain changes related to cogni-
tive impairments is an important research topic in Alz-
heimer’s Disease (AD) study. Regression models have 
been extensively studied to predict cognitive outcomes 
using morphometric measures that are extracted from 
structural magnetic resonance imaging (MRI) scans [1, 
2]. These studies are able to advance our understanding 
on the neuroanatomical basis of cognitive impairments. 
However, they are not designed to have direct impacts on 

clinical practice. To bridge this gap, in this manuscript 
we develop a novel learning paradigm to rank cognitive 
assessments based on their relevance to AD using brain 
MRI data.

Cognitive assessments represent the most common 
clinical routine for AD diagnosis. Given a large number 
of cognitive assessment tools and time-limited office vis-
its, it is important to determine a proper set of cognitive 
tests for the subjects. Most current studies create guide-
lines of cognitive test selection for a targeted population 
[3, 4], but they are not customized for each individual 
subject. In this work, we develop a novel learning para-
digm that incorporate the ideas of precision medicine 
and customizes the cognitive test selection process to 
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the characteristics of each individual patient. Specifically, 
we conduct a novel application of a newly developed 
learning-to-rank approach, denoted as PLTR [5], to the 
structural MRI and cognitive assessment data of the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) cohort 
[6]. Using structural MRI measures as the individual 
characteristics, we are able to not only identify individ-
ual-specific cognitive biomarkers but also prioritize them 
and their corresponding assessment tasks according to 
AD-specific abnormality. We also extend PLTR to PLTRh 
using hinge loss [7] to more effectively prioritize individ-
ual-specific cognitive biomarkers. The study presented in 
this manuscript is a substantial extension from our pre-
liminary study [8].

Our study is unique and innovative from the following 
two perspectives. First, conventional regression-based 
studies for cognitive performance prediction using MRI 
data focus on identifying relevant imaging biomarkers at 
the population level. However, our proposed model aims 
to identify AD-relevant cognitive biomarkers customized 
to each individual patient. Second, the identified cogni-
tive biomarkers and assessments are prioritized based on 
the individual’s brain characteristics. Therefore, they can 
be used to guide the selection of cognitive assessments 
in a personalized manner in clinical practice; it has the 
potential to enable personalized diagnosis and disease 
subtyping.

Literature review
Learning to rank
Learning-to-Rank ( LETOR ) [9] is a popular technique 
used in information retrieval [10], web search [11] and 
recommender systems [12]. Existing LETOR methods 
can be classified into three categories [9]. The first cat-
egory is point-wise methods [13], in which a function is 
learned to score individual instance, and then instances 
are sorted/ranked based on their scores. The second cat-
egory is pair-wise methods [14], which maximize the 
number of correctly ordered pairs in order to learn the 
optimal ranking structure among instances. The last cat-
egory is list-wise methods [15], in which a ranking func-
tion is learned to explicitly model the entire ranking. 
Generally, pairwise and listwise methods have superior 
performance over point-wise methods due to their ability 
to leverage order structure among instances in learning 
[9]. Recently, LETOR has also been applied in drug dis-
covery and drug selection [16–19]. For example, Agarwal 
et al. [20] developed a bipartite ranking method to prior-
itize drug-like compounds. He et al. [5] developed a joint 
push and learning-to-rank method to select cancer drugs 
for each individual patient. These studies demonstrate 
the great potential of LETOR in computational biology 

and computational medicine, particularly for biomarker 
prioritization.

Machine learning for AD biomarker discovery
The importance of using big data to enhance AD bio-
marker study has been widely recognized [6]. As a result, 
numerous data-driven machine learning models have 
been developed for early AD detection and AD-relevant 
biomarker identification including cognitive measures. 
These models are often designed to accomplish tasks 
such as classification (e.g., [21]), regression (e.g., [1, 2, 
22]) or both (e.g., [23, 24]), where imaging and other 
biomarker data are used to predict diagnostic, cognitive 
and/or other outcome(s) of interest. A drawback of these 
methods is that, although outcome-relevant biomarkers 
can be identified, they are identified at the population 
level and not specific to any individual subject. To bridge 
this gap, we adapt the PLTR method for biomarker prior-
itization at the individual level, which has greater poten-
tial to directly impact personalized diagnosis.

Methods
Materials
The imaging and cognitive data used in our study were 
obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database [6]. The ADNI was launched 
in 2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal 
of ADNI has been to test whether serial MRI, PET, other 
biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression 
of mild cognitive impairment (MCI, a prodromal stage 
of AD) and early AD. For up-to-date information, Please 
refer to [25] for more detailed, up-to-date information.

Participants include 819 ADNI-1 subjects with 229 
healthy control (HC), 397 MCI and 193 AD participants. 
We consider both MCI and AD subjects as patients, and 
thus we have 590 cases and 229 controls. We downloaded 
the 1.5T baseline MRI scans and cognitive assessment 
data from the ADNI website [25]. We processed the MRI 
scans using Freesurfer version 5.1 [26], where volumetric 
and cortical thickness measures of 101 regions relevant to 
AD were extracted to characterize brain morphometry.

We focus our analysis on 151 scores assessed in 15 neu-
ropsychological tests. For convenience, we denote these 
measures as cognitive features and these tests as cognitive 
tasks. The 15 studied tasks include Alzheimer’s Disease 
Assessment Scale (ADAS), Clinical Dementia Rating Scale 
(CDR), Functional Assessment Questionnaire (FAQ), Geri-
atric Depression Scale (GDS), Mini-Mental State Exam 
(MMSE), Modified Hachinski Scale (MODHACH), Neu-
ropsychiatric Inventory Questionnaire (NPIQ), Boston 
Naming Test (BNT), Clock Drawing Test (CDT), Digit 
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Span Test (DSPAN), Digit Symbol Test (DSYM), Category 
Fluency Test (FLUENCY), Weschler’s Logical Memory 
Scale (LOGMEM), Rey Auditory Verbal Learning Test 
(RAVLT) and Trail Making Test (TRAIL).

Joint push and learning‑to‑rank using scores—PLTR

We use the joint push and learning-to-rank method that we 
developed in He et al. [5], denoted as PLTR , for personal-
ized cognitive feature prioritization. PLTR has also been 
successfully applied in our preliminary study [8]. We aim to 
prioritize cognitive features for each individual patient that 
are most relevant to his/her disease diagnosis. We will use 
patients’ brain morphometric measures that are extracted 
from their MRI scans for the cognitive feature prioritiza-
tion. The cognitive features are in the form of scores or 
answers in the cognitive tasks that the patients take. The 
prioritization outcomes can potentially be used in clini-
cal practice to suggest the most relevant cognitive features 
or tasks that can most effectively facilitate diagnosis of an 
individual subject.

In order to prioritize MCI/AD cognitive features, PLTR 
learns and uses patient latent vector representations and 
their imaging features to score each cognitive feature for 
each individual patient. Then, PLTR ranks the cognitive 
features based on their scores. Patients with similar imag-
ing feature profiles will have similar latent vectors and thus 
similiar ranking of cognitive features [27, 28]. During the 
learning, PLTR explicitly pushes the most relevant cogni-
tive features on top of the less relevant features for each 
patient, and therefore optimizes the latent patient vectors 
and cognitive feature vectors in a way that they will repro-
duce the feature ranking structures [9]. In PLTR , these 
latent vectors are learned via solving the following optimi-
zation problem:

where α , β and γ ∈ [0, 1] are coefficients of O+
s  , Ruv and 

Rcsim terms, respectively; U = [u1,u2, · · · ,um] and 
V = [v1, v2, · · · , vn] are the latent matrices for patients 
and features, respectively ( u and v are column latent 
patient vector and feature vector, respectively); Ls is the 
overall loss function. In Problem 1, P↑

s  measures the aver-
age number of relevant cognitive features ranked below 
an irrelevant cognitive feature, defined as follows,

where m is the number of patients, f +j  and f −i  are the 
relevant and irrelevant features of patient Pp , n+p  and n−p  
are their respective numbers, and I(x) is the indicator 

(1)min
U ,V

Ls = (1− α)P↑
s + αO+

s +
β

2
Ruv +

γ

2
Rcsim,

(2)P↑
s =

m∑

p=1

1

n+p n
−
p

∑

f −i ∈Pp

∑

f +j ∈P+
p

I(sp(f
+
j ) ≤ sp(f

−
i )),

function ( I(x) = 1 if x is true, otherwise 0). In Eq.  (2), 
sp(fi) is a scoring function defined as follows,

that is, it calculates the score of feature fi on patient Pp 
using their respective latent vectors up and vi [29]. By 
minimizing P↑

s  , PLTR learns to assign higher scores to 
relevant features than irrelevant features so as to rank the 
relevant features at the top of the final ranking list. Note 
that, PLTR learns different latent vectors and ranking 
lists for different subjects, and therefore enables person-
alized feature prioritization. In Problem (1), O+

s  measures 
the ratio of mis-ordered feature pairs over the relevant 
features among all the subjects, defined as follows,

where fi ≻Pp fj represents that fi is ranked higher than 
fj for patient Pp . By minimizing O↑

s  , PLTR learns to push 
the most relevant features on top of the less relevant fea-
tures. Thus, most relevant features are pushed to the very 
top of the ranking list. In Problem (1), Ruv is a regularizer 
on U and V to prevent overfitting, defined as,

where ‖X‖F is the Frobenius norm of matrix X. Rcsim is a 
regularizer on patients to constrain patient latent vectors, 
defined as

where wpq is the similarity between subject Pp and Pq 
that is calculated using the imaging features of thesub-
jects. The assumption here is that patients who are simi-
lar in terms of imaging features could also be similar in 
terms of cognitive features.

Joint push and learning‑to‑rank 
with marginalization—PLTRh

The objective of PLTR is to score relevant features higher 
than less relevant features as shown in Eqs.  2 and 4. 
However, in some cases, the score of relevant features is 
expected to be higher than that of less relevant features 
by a large margin. For example, patients can be very sen-
sitive to a few cognitive tasks but less sensitive to many 
others. In order to incorporate such information, we pro-
pose a new hinge loss [7] based PLTR , denoted as PLTRh . 
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T
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In PLTRh , the overall loss function is very similar to Eq. 1, 
defined as follows,

where Lh is the overall loss function; U, V, Ruv and Rcsim 
are identical as those in Eq. 1. In PLTRh , P↑

h measures the 
average loss between the relevant features and irrelevant 
features using hinge loss as follows,

where max(0, tp − (sp(f
+
j )− sp(f

−
i ))) is the hinge loss 

( max(0, x) = x if x > 0 , otherwise 0) between the rel-
evant feature f +j  and the irrelevant feature f −i  , and 
tp is the pre-defined margin. Specifically, only when 
sp(f

+
j )− sp(f

−
i ) > tp will not induce any loss during opti-

mization. Otherwise, the hinge loss will be positive and 
increase as sp(f +j )− sp(f

−
i ) gets smaller than tp . Thus, the 

hinge loss forces the scores of relevant features higher 
than those of irrelevant features by at least tp . By doing 
this, the relevant features are ranked higher than irrele-
vant features in the ranking list. Similarly, O+

h  measures 
the average loss among the relevant features also using 
hinge loss as follows,

where to is also the pre-defined margin.

Data processing
Data normalization
Following the protocol in our preliminary study [8], we 
selected all the MCI and AD patients from ADNI and 
conducted the following data normalization for these 
patients. We first performed a t test on each cogni-
tive feature between patients and controls, and selected 
those features if there is a significant difference between 
patients and controls on these features. Then, we con-
verted the selected features into [0,  1] by shifting and 
scaling the feature values. We also converted all the nor-
malized feature values according to the Cohen’s d of the 
features between patients and controls, and thus, smaller 
values always indicate higher AD possibility. After that, 
we filtered out features with values 0, 1 or 0.5 for more 
than 95% patients. This is to discard features that are 
either not discriminative, or extremely dominated by 
patients or controls. After the filtering step, we have 112 
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cognitive features remained and used in experiments. 
Additional file  1: Table  S1 presents these 112 cognitive 
features. We conducted the same process as above on 
the imaging features. Additional file 1: Table S2 presents 
these imaging features used in experiments.

Patient similarities from imaging features
Through the normalization and filtering steps as in “Data 
normalization” section, we have 86 normalized imaging 
features remained. We represent each patient using a vec-
tor of these features, denoted as rp = [rp1, rp2, · · · , rp86] , 
in which rpi ( i = 1, · · · , 86 ) is an imaging feature for 
patient p. We calculate the patient similarity from imag-
ing features using the radial basis function (RBF) kernel, 
that is, wpq = exp(−

�rp−rq�
2

2σ 2 ) , where wpq is the patient 
similarity used in Rcsim.

Results
Baseline methods
We compare PLTR and PLTRh with two baseline meth-
ods: the Bayesian Multi-Task Multi-Kernel Learning 
( BMTMKL ) method [30] and the Kernelized Rank Learn-
ing ( KRL ) method [31].

Bayesian multi‑task multi‑kernel learning ( BMTMKL)
BMTMKL is a state-of-the-art baseline for biomarker pri-
oritization. It was originally proposed to rank cell lines 
for drugs and won the DREAM 7 challenge [32]. In our 

study, BMTMKL uses the multi-task and multi-kernel 
learning within kernelized regression to predict cogni-
tive feature values and learns parameters by conducting 
Bayesian inference. We use the patient similarity matrix 
calculated from FreeSurfer features as the kernels in 
BMTMKL.

Kernelized rank learning ( KRL)
KRL represents another state-of-the-art baseline for bio-
marker prioritization. In our study, KRL uses kernelized 
regression with a ranking loss to learn the ranking struc-
ture of patients and to predict the cognitive feature val-
ues. The objective of KRL is to maximize the hits among 
the top k of the ranking list. We use the patient similarity 
matrix calculated from FreeSurfer features as the kernels 
in KRL.
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Training‑testing data splits
Following the protocol in our preliminary study [8], we 
test our methods in two different settings: cross valida-
tion ( CV ) and leave-out validation ( LOV ). In CV , we ran-
domly split each patient’s cognitive tasks into 5 folds: all 
the features of a cognitive task will be either split into 
training or testing set. We use 4 folds for training and the 
rest fold for testing, and do such experiments 5 times, 
each with one of the 5 folds as the testing set. The overall 
performance of the methods is averaged over the 5 test-
ing sets. This setting corresponds to the goal to prioritize 
additional cognitive tasks that a patient should complete. 
In LOV , we split patients (not patient tasks) into training 
and testing sets, and a certain patient and all his/her cog-
nitive features will be either in the training set or in the 
testing set. This corresponds to the use scenario to iden-
tify the most relevant cognitive tasks that a new patient 
needs to take, based on the existing imaging information 
of the patient, when the patient has not completed any 
cognitive tasks. Figures 1 and 2 demonstrate the CV and 
LOV data split processes, respectively.

Please note that as presented in “Data normalization” 
section, for normalized cognitive features, smaller val-
ues always indicate more AD possibility. Thus, in both 
settings, we use the ranking list of normalized cognitive 
features of each patient as ground truth for training and 
testing.

Parameters
We conduct grid search to identify the best parameters 
on each evaluation metric for each model. We use 0.3 
and 0.1 as the value of tp and to , respectively. In the 
experimental results, we report the combinations of 
parameters that achieve the best performance on evalu-
ation metrics. We implement PLTR and PLTRh using 
Python 3.7.3 and Numpy 1.16.2, and run the experi-
ments on Xeon E5-2680 v4 with 128G memory.

Evaluation metrics

Metrics on cognitive feature level
We use a metric named average feature hit at k (QH@k) 
as in our preliminary study [8] to evaluate the ranking 
performance,

where τ q is the ground-truth ranking list of all the fea-
tures in all the tasks, τ q(1 : k) is the top k features in the 
list, τ̃ q is the predicted ranking list of all the features, and 
τ̃
q
i  is the ith ranked features in τ̃ q . That is, QH@k cal-

culates the number of features among top k in the pre-
dicted feature lists that are also in the ground truth (i.e., 
hits). Higher QH@k values indicate better prioritization 
performance.

We use a second evaluation metric weighted average 
feature hit at k (WQH@k) as follows:

that is, WQH@k is a weighted version of QH@k that cal-
culates the average of QH@j ( j = 1, · · · , k ) over top k. 
Higher WQH@k indicates more feature hits and those 
hits are ranked on top in the ranking list.

Metrics on cognitive task level
In in Peng et al. [8], we use the mean of the top-g nor-
malized ground-truth scores/predicted scores on the 
features of each cognitive task for a patient as the score 
of that task for that patient. For each patient, we rank 
the tasks using their ground-truth scores and use the 
ranking as the ground-truth ranking of these tasks. 
Thus, these scores measure how much relevant to AD 
the task indicates for the patients. We use the predicted 
scores to rank cognitive tasks into the predicted rank-
ing of the tasks. We define a third evaluation metric 

(10)QH@k(τ q , τ̃ q) =

k∑

i=1

I(τ̃
q
i ∈ τ q(1 : k)),

(11)WQH@k(τ q , τ̃ q) =

k∑

j=1

QH@j(τ q , τ̃ q)/k ,
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Fig. 1  Data split for cross validation ( CV)
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Fig. 2  Data split for leave-out validation ( LOV)
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task hit at k ( NHg@k) as follows to evaluate the ranking 
performance in terms of tasks,

where τng /τ̃ng  is the ground-truth/predicted ranking list of 
all the tasks using top-g question scores.

Experimental results
Overall Performance on CV
Table  1 presents the performance of PLTR , PLTRh and 
two baseline methods in the CV setting. Note that overall, 
PLTR and PLTRh have similar standard deviations; KRL 
and BMTMKL have higher standard deviations compared 
to PLTR and PLTRh . This indicates that PLTR and PLTRh 
are more robust than KRL and BMTMKL for the prioritiza-
tion tasks.

Comparison on cognitive feature level
For cognitive features from all tasks, PLTR is able to 
identify on average 2.665± 0.07 out of the top-5 most 
relevant ground-truth cognitive features among its 
top-5 predictions (i.e., QH@5  =  2.665  ±  0.07). PLTRh 
achieves similar performance as PLTR , and identi-
fies on average 2.599± 0.09 most relevant ground-
truth cognitive features on its top-5 predictions (i.e., 
QH@5  = 2.599± 0.09 ). PLTR and PLTRh significantly 
outperform the baseline methods in terms of all the 

(12)NHg@k(τng , τ̃
n
g ) =

k∑

i=1

I(τ̃ngi ∈ τng (1 : k)),

evaluation metrics on cognitive feature level (i.e., QH@5 
and WQH@5). Specifically, PLTR outperforms the best 
baseline method BMTMKL at 9.1± 3.7 % and 22.1± 9.5 % 
on QH@5 and WQH@5, respectively. PLTRh also outper-
forms BMTMKL at 6.4 ± 4.3 % and 19.2± 10.1 % on QH@5 
and WQH@5, respectively. These experimental results 
demonstrate that among the top 5 features in the ranking 
list, PLTR and PLTRh are able to rank more relevant fea-
tures on top than the two state-of-the-art baseline meth-
ods and the positions of those hits are also higher than 
those in the baseline methods.

Comparison on cognitive task level
For the scenario to prioritize cognitive tasks that 
each patient should take, PLTR and PLTRh are able to 
identify the top-1 most relevant task for 72.5± 6.0 % 
and 74.3± 4.0 % of all the patients when using 3 fea-
tures to score cognitive tasks, respectively (i.e., 
NH3 = 0.725± 0.06 for PLTR and NH3 = 0.743± 0.04 
for PLTRh ). This indicates the strong power of PLTR and 
PLTRh in prioritizing cognitive features and in recom-
mending relevant cognition tasks for real clinical appli-
cations. We also find that PLTR and PLTRh are able to 
outperform baseline methods on most of the metrics 
on cognitive task level (i.e., NHg@1 ). PLTR outperforms 
the best baseline method at 11.6± 5.6 %, 16.7± 6.1 % and 
14.2± 6.6 % on NH1@1 , NH2@1 and NH3@1 , respec-
tively. PLTRh performs even better than PLTR on NH1@1 
and NH3@1 , in addition to that it outperforms the 

Table 1  Overall performance in CV

The column “d” corresponds to the latent dimension. The numbers in the form of x ± y represent the mean (x) and standard deviation (y). The best performance of 
each method is in italic. The best performance under each evaluation metric is underlined

Method Parameters Feature level Task level

d � QH@5 WQH@5 NH1@1 NH2@1 NH3@1 NH5@1 NHall@1

PLTR 10 – 2.665± 0.07 3.136± 0.12 0.605± 0.03 0.701± 0.04 0.713± 0.05 0.725± 0.05 0.683± 0.04

10 – 2.647± 0.08 3.191± 0.14 0.599± 0.03 0.677± 0.04 0.707± 0.04 0.725± 0.05 0.677± 0.04

10 – 2.569± 0.08 2.957± 0.11 0.635±0.03 0.707± 0.04 0.689± 0.05 0.719± 0.04 0.653± 0.04

10 – 2.623± 0.06 3.073± 0.09 0.623± 0.03 0.713± 0.05 0.707± 0.04 0.719± 0.04 0.671± 0.04

50 – 2.467± 0.07 2.992± 0.11 0.605± 0.03 0.695± 0.04 0.725± 0.06 0.725± 0.04 0.653± 0.04

30 – 2.491± 0.07 3.080± 0.14 0.563± 0.04 0.689± 0.05 0.713± 0.04 0.749± 0.04 0.689± 0.03

PLTRh 10 – 2.599 ± 0.09 3.111 ± 0.12 0.623 ± 0.02 0.671 ± 0.03 0.713 ± 0.03 0.719 ± 0.04 0.707 ± 0.03

10 – 2.575± 0.08 3.115 ± 0.13 0.623 ± 0.03 0.677 ± 0.03 0.737 ± 0.04 0.749 ± 0.03 0.695 ± 0.03

10 – 2.419± 0.09 2.827± 0.12 0.647 ± 0.03 0.695 ± 0.03 0.671 ± 0.03 0.707 ± 0.03 0.635 ± 0.03

30 – 2.138± 0.10 2.583± 0.18 0.629± 0.02 0.701± 0.02 0.695 ± 0.03 0.695 ± 0.04 0.593 ± 0.05

50 – 2.102± 0.07 2.470± 0.10 0.533± 0.03 0.677± 0.03 0.743 ± 0.04 0.754 ± 0.03 0.629 ± 0.05

30 – 2.281± 0.07 2.768± 0.18 0.563± 0.03 0.689± 0.03 0.707 ± 0.04 0.760 ± 0.05 0.701 ± 0.05

KRL – 2 2.102 ± 0.26 2.167 ± 0.37 0.569 ± 0.03 0.611 ± 0.05 0.635 ± 0.04 0.683 ± 0.03 0.689 ± 0.07

– 1.5 2.078 ± 0.15 2.143 ± 0.25 0.503 ± 0.04 0.575 ± 0.05 0.617 ± 0.05 0.677 ± 0.04 0.760 ± 0.06

BMTMKL – – 2.443 ± 0.12 2.614 ± 0.20 0.413 ± 0.07 0.491 ± 0.08 0.593 ± 0.05 0.784 ± 0.05 0.749 ± 0.05
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best performance of baseline methods at 13.7± 5.3 %, 
14.7± 4.8 % and 17.0± 8.8 % on NH1@1 , NH2@1 and 
NH3@1 , respectively. PLTR and PLTRh perform slightly 
worse than baseline methods on NH5@1 and NHall@1 
( 0.760± 0.05 vs 0.784 ± 0.05 on NH5@1 and 0.707± 0.03 
vs 0.760± 0.06 on NHall@1 ). These experimental results 
indicate that PLTR and PLTRh are able to push the most 
relevant task to the top of the ranking list than baseline 
methods when using a small number of features to score 
cognitive tasks. Note that in CV , each patient has only a 
few cognitive tasks in the testing set. Therefore, we only 
consider the evaluation at the top task in the predicted 
task rankings (i.e., only NHg@1 in Table 1).

Table  1 also shows that PLTRh outperforms PLTR on 
most of the metrics on cognitive task level (i.e., NHg@1 ). 
PLTRh outperforms PLTR at 1.9  ±  0.5%, 2.5  ±  1.2%, 
1.5 ± 0.3% and 2.6 ± 0.9% on NH1@1, NH3@1, NH5 @1 
and NHall@1, respectively. This indicates that generally 
PLTRh is better than PLTR on ranking cognitive tasks in 
CV setting. The reason could be that the hinge-based loss 
functions with pre-defined margins can enable significant 
difference between the scores of relevant features and 
irrelevant features, and thus effectively push relevant fea-
tures upon irrelevant features.

Overall performance on LOV
Tables  2 and 3 present the performance of PLTR , 
PLTRh and two baseline methods in the LOV setting. 
Due to space limit, we did not present the standard 
deviations in the tables, but they have similar trends as 
those in Table  1. We first hold out 26 (Table  2) and 52 
(Table 3) AD patients as testing patients, respectively. We 

determine these hold-out AD patients as the ones that 
have more than 10 similar AD patients in the training set 
with corresponding patient similarities higher than 0.67 
and 0.62, respectively.

Comparison on cognitive feature level
Tables 2 and 3 show that PLTR and PLTRh significantly 
outperform the baseline methods in terms of all the 
evaluation metrics on cognitive feature level (i.e., QH@5 
and WQH@5), which is consistent with the experimen-
tal results in CV setting. When 26 patients are hold out 
for testing, with parameters α = 0.5 , β = 1.5 , γ = 1.0 and 
d = 30 , PLTR outperforms the best baseline method KRL 
at 13.4% and 1.3% on QH@5 and WQH@5, respectively. 
The performance of PLTRh is very comparable with that 
of PLTR ” PLTRh outperforms KRL at 13.4% and 0.5% on 
QH@5 and WQH@5, respectively. When 52 patients are 
hold out for testing, with parameters α = 0.5 , β = 0.5 , 
γ = 1.0 and d = 50 , PLTR outperforms the best baseline 
method KRL at 18.1% and 7.8% on QH@5 and WQH@5, 
respectively. PLTRh even performs better than PLTR in 
this setting. In addition, PLTRh outperforms KRL at 19.7% 
and 9.5% on QH@5 and WQH@5, respectively. These 
experimental results demonstrate that for new patients, 
PLTR and PLTRh are able to rank more relevant features 
to the top of the ranking list than the two baseline meth-
ods. They also indicate that for new patients, ranking 
based methods (e.g., PLTR and PLTRh ) are more effective 
than regression based methods (e.g., KRL and BMTMKL ) 
for biomarker prioritization.

Table 2  Overall performance in LOV on 26 testing patients

The column “n” corresponds to the number of hold-out testing patients. The bset performance of each method is in italic.The best performance under each evaluation 
metric is underlined

Method Feature level Task level

QH@5 WQH@5 NH1@1 NH1@5 NH2@1 NH2@5 NH3@1 NH3@5 NH5@1 NH5@5 NHall@1 NHall@5

PLTR 1.615 1.906 0.846 3.231 0.577 3.385 0.231 3.654 0.308 3.346 0.808 3.692

1.500 1.778 0.846 3.269 0.577 3.538 0.269 3.654 0.269 3.269 0.808 3.577

1.538 1.856 0.846 3.192 0.577 3.423 0.308 3.731 0.346 3.346 0.808 3.615

1.577 1.851 0.846 3.192 0.577 3.462 0.308 3.654 0.346 3.462 0.808 3.654

1.615 1.906 0.846 3.231 0.577 3.385 0.231 3.654 0.308 3.346 0.808 3.692

PLTRh 1.615 1.836 0.846 3.192 0.577 3.500 0.269 3.731 0.346 3.731 0.808 4.154

1.538 1.891 0.846 3.192 0.577 3.500 0.269 3.731 0.346 3.615 0.808 4.038

1.538 1.856 0.769 3.308 0.577 3.462 0.269 3.615 0.308 3.385 0.808 3.500

1.538 1.712 0.846 3.115 0.577 3.423 0.154 3.731 0.308 3.808 0.808 4.269

KRL 1.423 1.656 0.615 2.615 0.577 3.308 0.038 3.577 0.346 3.962 0.808 4.269

1.346 1.881 0.577 2.615 0.577 3.308 0.038 3.577 0.346 3.962 0.808 4.269

1.346 1.435 0.808 3.423 0.538 3.500 0.346 3.731 0.154 3.423 0.808 3.538

BMTMKL 0.423 0.212 0.846 2.615 0.577 3.308 0.038 3.577 0.346 3.769 0.808 4.269
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Comparison on cognitive task level
Table 2 also shows that when 26 patients are hold out 
for testing, PLTR and PLTRh are both able to identify 
the top most relevant questionnaire for 84.6% of the 
testing patients (i.e., 22 patients) under NH1@1 . Table 3 
shows that when 52 patients are hold out for testing, 
PLTR and PLTRh are both able to identify for 80.8% of 
the testing patients (i.e., 42 patients) under NH1@1 . 
Note that the hold-out testing patients in LOV do not 
have any cognitive features. Therefore, the performance 
of PLTR and PLTRh as above demonstrates their strong 
capability in identifying most AD related cognitive fea-
tures based on imaging features only. We also find that 
PLTR and PLTRh are able to achieve similar or even 
better results compared to baseline methods in terms 
of the evaluation metrics on cognitive task level (i.e., 
NHg @1 and NHg@5). When 26 patients are hold out 
for testing, PLTR and PLTRh outperform the baseline 
methods in terms of NHg @1 (i.e., g = 1, 2 . . . 5 ). They 
are only slightly worse than KRL on ranking relevant 
tasks on their top-5 of predictions when g = 1 or g = 5 
(3.308 vs 3.423 on NH1 @5 and 3.808 vs 3.962 on NH5

@5). When 52 patients are hold out for testing, PLTR 
and PLTRh also achieve the best performance on most 
of the evaluation metrics. They are only slightly worse 
than KRL on NH2@1, NH5 @5 (0.423 vs 0.481 on NH2 @1 
and 3.712 vs 3.808 on NH5@5). These experimental 

results demonstrate that among top 5 tasks in the rank-
ing list, PLTR and PLTRh rank more relevant task on 
top than KRL.

It’s notable that in Tables  2 and 3, as the number of 
features used to score cognitive tasks (i.e., g in NHg@k ) 
increases, the performance of all the methods in NHg@1 
first declines and then increases. This may indicate that 
as g increases, irrelevant features which happen to have 
relatively high scores will be included in scoring tasks, 
and thus degrade the model performance on NHg@1 . 
However, generally, the scores of irrelevant features are 
considerably lower than those of relevant ones. Thus, as 
more features are included, the scores for tasks are more 
dominated by the scores of relevant features and thus the 
performance increases.

We also find that BMTMKL performs poorly on NH3@1 
in both Tables  2 and 3. This indicates that BMTMKL , a 
regression-based method, could not well rank relevant 
features and irrelevant features. It’s also notable that gen-
erally the best performance for the 26 testing patients is 
better than that for 52 testing patients. This may be due 
to that the similarities between the 26 testing patients 
and their top 10 similar training patients are higher than 
those for the 52 testing patients. The high similarities 
enable accurate latent vectors for testing patients.

Tables  2 and 3 also show that PLTRh is better than 
PLTR on ranking cognitive tasks in LOV setting. When 

Table 3  Overall Performance in LOV on 52 testing patients

The column “n” corresponds to the number of hold-out testing patients. The best performance of each model is in italic. The best performance under each evaluation 
metric is upon underline.

Method Feature level Task level

QH@5 WQH@5 NH1@1 NH1@5 NH2@1 NH2@5 NH3@1 NH3@5 NH5@1 NH5@5 NHall@1 NHall@5

PLTR 1.385 1.668 0.788 3.212 0.423 3.654 0.115 3.750 0.288 3.423 0.788 3.423

1.327 1.616 0.808 3.269 0.423 3.654 0.115 3.731 0.173 3.423 0.788 3.404

1.327 1.652 0.788 3.212 0.423 3.712 0.115 3.750 0.269 3.423 0.788 3.404

1.308 1.616 0.788 3.154 0.423 3.654 0.115 3.712 0.288 3.481 0.788 3.615

1.288 1.581 0.808 3.173 0.423 3.596 0.115 3.750 0.192 3.519 0.788 3.635

1.269 1.616 0.808 3.115 0.423 3.635 0.115 3.731 0.250 3.481 0.788 3.635

PLTRh 1.404 1.656 0.750 2.827 0.404 3.250 0.173 3.481 0.385 3.596 0.788 4.154

1.365 1.695 0.731 2.808 0.365 3.308 0.173 3.462 0.365 3.596 0.788 4.154

1.327 1.562 0.808 3.077 0.404 3.365 0.135 3.577 0.250 3.673 0.788 4.115

1.327 1.605 0.769 3.154 0.385 3.596 0.135 3.712 0.212 3.519 0.788 3.577

1.308 1.609 0.769 2.904 0.385 3.308 0.192 3.442 0.365 3.654 0.788 4.154

1.327 1.605 0.769 3.154 0.385 3.596 0.135 3.712 0.212 3.519 0.788 3.577

1.288 1.545 0.788 3.000 0.404 3.385 0.154 3.558 0.308 3.712 0.788 4.154

KRL 1.173 1.548 0.096 2.577 0.385 3.231 0.077 3.385 0.346 3.808 0.788 4.154

1.173 1.534 0.154 2.615 0.250 3.192 0.077 3.385 0.346 3.712 0.788 4.154

1.096 1.437 0.077 2.577 0.462 3.231 0.077 3.385 0.346 3.808 0.788 4.154

0.423 0.504 0.019 2.019 0.038 2.500 0.115 2.481 0.115 2.712 0.019 2.673

BMTMKL 0.403 0.255 0.808 2.577 0.481 3.231 0.077 3.385 0.346 3.596 0.788 4.154
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26 patients are hold out for testing, PLTRh outperforms 
PLTR on NH1@5, NH5 @5 and NHall @5 and achieves very 
comparable performance on the rest metrics. When 52 
patients are hold out for testing, PLTRh is able to achieve 
better performance than PLTR on QH@5, WQH@5, 
NH3@1, NH5@1, NH5 @5 and NHall @5 and also achieves 
very comparable performance on the rest metrics. Gen-
erally, PLTRh outperforms PLTR in terms of metrics on 
cognitive task level. This demonstrates the effectiveness 
of hinge loss-based methods in separating relevant and 
irrelevant features during modeling.

Discussion
Our experimental results show that when NH1@1 
achieves its best performance of 0.846 for the 26 test-
ing patients in the LOV setting (i.e., the first row block 
in Table  2), the task that is most commonly prioritized 
for the testing patients is Rey Auditory Verbal Learning 
Test (RAVLT), including the following cognitive features: 
(1) trial 1 total number of words recalled; (2) trial 2 total 
number of words recalled; (3) trial 3 total number of 
words recalled; (4) trial 4 total number of words recalled; 
(5) trial 5 total number of words recalled; (6) total Score; 
(7) trial 6 total number of words recalled; (8) list B total 
number of words recalled; (9) 30 min delay total; and (10) 
30 min delay recognition score. RAVLT is also the most 
relevant task in the ground truth if tasks are scored cor-
respondingly. RAVLT assesses learning and memory, and 
has shown promising performance in early detection of 
AD [33]. A number of studies have reported high correla-
tions between various RAVLT scores with different brain 
regions [34]. For instance, RAVLT recall is associated 
with medial prefrontal cortex and hippocampus; RAVLT 
recognition is highly correlated with thalamic and cau-
date nuclei. In addition, genetic analysis of APOE ε 4 
allele, the most common variant of AD, reported its asso-
ciation with RAVLT score in an early-MCI (EMCI) study 
[26]. The fact that RAVLT is prioritized demonstrates 
that PLTR is powerful in prioritizing cognitive features to 
assist AD diagnosis.

Similarly, we find the top-5 most frequent cog-
nitive tasks corresponding to the performance at 
NH3@5  =  3.731 for the 26 hold-out testing patients. 
They are: Functional Assessment Questionnaire (FAQ), 
Clock Drawing Test (CDT), Weschler’s Logical Memory 
Scale (LOGMEM), Rey Auditory Verbal Learning Test 
(RAVLT), and Neuropsychiatric Inventory Questionnaire 
(NPIQ). In addition to RAVLT discussed above, other 
top prioritized cognitive tasks have also been reported 
to be associated with AD or its progression. In an MCI 
to AD conversion study, FAQ, NPIQ and RAVLT showed 
significant difference between MCI-converter and MCI-
stable groups [35]. We also notice that for some testing 

subjects, PLTR is able to very well reconstruct their rank-
ing structures. For example, when NH3@5 achieves its 
optimal performance 3.731, for a certain testing subject, 
her top-5 predicted cognitive tasks RAVLT, LOGMEM, 
FAQ, NPIQ and CDT are exactly the top-5 cognitive 
tasks in the ground truth. These evidences further dem-
onstrate the diagnostic power of our method.

Conclusions
We have proposed a novel machine learning paradigm to 
prioritize cognitive assessments based on their relevance 
to AD at the individual patient level. The paradigm tai-
lors the cognitive biomarker discovery and cognitive 
assessment selection process to the brain morphomet-
ric characteristics of each individual patient. It has been 
implemented using newly developed learning-to-rank 
method PLTR and PLTRh . Our empirical study on the 
ADNI data has produced promising results to identify 
and prioritize individual-specific cognitive biomarkers as 
well as cognitive assessment tasks based on the individu-
al’s structural MRI data. In addition, PLTRh shows better 
performance than PLTR on ranking cognitive assessment 
tasks. The resulting top ranked cognitive biomarkers and 
assessment tasks have the potential to aid personalized 
diagnosis and disease subtyping, and to make progress 
towards enabling precision medicine in AD.
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