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Abstract 

Background:  Automated summarization of scientific literature and patient records is essential for enhancing clini-
cal decision-making and facilitating precision medicine. Most existing summarization methods are based on single 
indicators of relevance, offer limited capabilities for information visualization, and do not account for user specific 
interests. In this work, we develop an interactive content extraction, recognition, and construction system (CERC) that 
combines machine learning and visualization techniques with domain knowledge for highlighting and extracting 
salient information from clinical and biomedical text.

Methods:  A novel sentence-ranking framework multi indicator text summarization, MINTS, is developed for extrac-
tive summarization. MINTS uses random forests and multiple indicators of importance for relevance evaluation and 
ranking of sentences. Indicative summarization is performed using weighted term frequency-inverse document fre-
quency scores of over-represented domain-specific terms. A controlled vocabulary dictionary generated using MeSH, 
SNOMED-CT, and PubTator is used for determining relevant terms. 35 full-text CRAFT articles were used as the training 
set. The performance of the MINTS algorithm is evaluated on a test set consisting of the remaining 32 full-text CRAFT 
articles and 30 clinical case reports using the ROUGE toolkit.

Results:  The random forests model classified sentences as “good” or “bad” with 87.5% accuracy on the test set. Sum-
marization results from the MINTS algorithm achieved higher ROUGE-1, ROUGE-2, and ROUGE-SU4 scores when 
compared to methods based on single indicators such as term frequency distribution, position, eigenvector central-
ity (LexRank), and random selection, p < 0.01. The automatic language translator and the customizable information 
extraction and pre-processing pipeline for EHR demonstrate that CERC can readily be incorporated within clinical 
decision support systems to improve quality of care and assist in data-driven and evidence-based informed decision 
making for direct patient care.

Conclusions:  We have developed a web-based summarization and visualization tool, CERC (https​://newto​n.isye.
gatec​h.edu/CERC1​/), for extracting salient information from clinical and biomedical text. The system ranks sentences 
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Background
Implementation of electronic health record systems 
(EHRs) across healthcare institutions and growing 
information in biomedical databases provides a unique 
opportunity to enhance clinical decision-making by link-
ing patient-specific information with scientific literature 
to support clinicians’ needs [1]. However, this is a chal-
lenging task due to the rapid and exponential growth of 
data and information sources. The burden of “informa-
tion overload” demand that intelligent informatics tools 
and algorithms be advanced to automate the processing 
of large amounts of text to uncover knowledge [2, 3]. 
According to a recent review, almost half of the questions 
related to patient care raised by clinicians are not pur-
sued due to limited amount of time at point of care and 
doubts about availability of information [4]. Although 
most scientific articles include abstracts, recent studies 
have shown the advantages of using full-text for sum-
marization since not all relevant information can be 
reported in abstracts [5]. Moreover, different readers may 
find different pieces of information in the text useful [6].

The problem of information overload is also associ-
ated with EHRs since the amount of stored clinical infor-
mation per patient could be excessive, particularly for 
patients suffering from chronic illness and multi-mor-
bidities [2, 7, 8]. A cognitive study of the thought pro-
cess of eight physicians during the EHR review process 
showed that majority of their time is spent reviewing the 
“Notes” section to identify problems, medical history, 
medications, etc. [7]. Text mining and natural language 
processing techniques have the potential to enhance 
clinical-decision making and improve the quality of 
healthcare [9–15]. For instance, studies have shown their 
utilization can facilitate detection of adverse drug events 
and comorbidities in EHRs [11, 12]. It has also been 
shown that high-information clinical findings appear 
in the medical records of patients before the high-risk 
diagnosis is determined [13]. Furthermore, automated 
summarization of patient information to extract salient 
information can improve decision-making and reduce 
the risk of information overload [7, 14, 64].

In this work, we develop machine learning based 
automated text summarization techniques to address 
the challenges of “salient detection” and “information 

overload” in healthcare and biomedical domains [2, 16]. 
Automated summarization aims to extract important 
information from the original text and present it in a con-
densed form [16–18]. Summarization methods can be 
classified as extractive versus abstractive [17]. Extractive 
summarization involves extracting important sentences 
from the input text according to a scoring or ranking 
criteria, while abstractive methods use natural language 
processing techniques to construct new sentences [5, 18]. 
The two categories can be further classified as indica-
tive versus informative where indicative summaries 
only provide an overview of the underlying information, 
while informative summaries provide enough details to 
replace the original text [16]. Various extractive summa-
rization methods have been developed over the last dec-
ade [19–23]. These methods utilize a variety of sentence 
ranking strategies such as intermediate topic represen-
tation, graph-based methods based on Google PageR-
ank algorithm and UMLS semantic relations in UMLS 
(http://www.nlm.nih.gov/resea​rch/umls/), MeSH terms, 
sentence position, and semantic relations of biomedical 
concepts [23]. For example, Bhattacharya et  al. demon-
strated that usage of MeSH terms improves summariza-
tion results, Fiszman et  al. used semantic relationships 
for summarization of Medline citations, Reeve et al. used 
the concept frequency for summarization, Jonnalagadda 
et  al. used UMLS concepts and TextRank algorithm for 
extracting sentences related to a particular topic from 
Medline abstracts, and Mishra et  al. used clinically rel-
evant sentences from UpToDate [17–25]. Most existing 
extractive summarization methods utilize single indica-
tors of relevance for sentence ranking that might not be 
relevant for all types of clinical and biomedical use cases. 
Human knowledge can enhance the effectiveness of data 
mining and exploration process. Users can interact with 
summarization system via visualization tools that pro-
vide insight into the underlying information [26–28].

In this paper, we present CERC, a content extraction, 
recognition, and construction visualization tool that uses 
a multi-stage sentence evaluation and ranking framework 
for extracting salient information from the input text. A 
random forests classifier is used in stage one for evalu-
ating worthiness (“important” versus “not important” 
for summarization) of each sentence in the input text. In 

by relevance and includes features that can facilitate early detection of medical risks in a clinical setting. The interac-
tive interface allows users to filter content and edit/save summaries. The evaluation results on two test corpuses show 
that the newly developed MINTS algorithm outperforms methods based on single characteristics of importance.
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stage two, a rank aggregation scheme based on multiple 
indicators is used for identifying the best set of sentences 
to be included in the final summary. The performance 
of CERC was evaluated against existing summarization 
techniques using a subset of articles from the Colorado 
Richly Annotated Full Text (CRAFT) corpus and a cor-
pus of full-text clinical case reports obtained from Med-
line [29]. Indicative summarization is performed using 
an interactive topic cloud based on over-represented 
biomedical terms in the input text. The topic cloud pro-
vides a visual overview of the content in the input text 
and allows interactive filtering of the sentence extraction 
results based on users’ interests. A keyword-based filter-
ing allows users to generate a summary based on the top-
ranked sentences and edit and save the selected summary 
for future review or additional processing such as lan-
guage translation [41, 42, 64]. Finally, related articles in 
PubMed are presented based on the topic cloud to incor-
porate external knowledge.

The main objectives of this research are: (1) develop-
ment of extractive and indicative summarization algo-
rithms to address information challenges related to 
precision medicine; (2) development of a web-based 
interactive summarization tool that accounts for user 
specific interests and can facilitate clinicians in sum-
marizing clinical/biomedical text by highlighting key 
information both at the level of individual terms and 
sentences. We also demonstrate the integration of CERC 
within clinical decision support systems for direct patient 
care.

Materials and methods
Figure 1 shows the overall design of CERC. Input text is 
first preprocessed via segmentation, tokenization, stem-
ming, and controlled dictionary filtering. Extractive sum-
marization is performed using a new algorithm, MINTS, 
a multi-stage algorithm for sentence extraction and rank-
ing. A word-cloud based visualization method is used 
to represent term/concept distribution. Below, we detail 
each of the components in CERC.

Preprocessing: segmentation, tokenization, and stemming
Segmentation of input text into individual sentences is 
performed using the LingPipe tool kit (http://alias​-i.com/
lingp​ipe/). The input text is segmented into word tokens 
using regular expression rules. Porter stemmer algorithm 
is used to reduce all inflected forms of a word to the same 
text string, eg: {densities, density} -> densiti [30].

Indexed database of Medline abstracts [44]
Apache Lucene [31] is used to generate an indexed data-
base of Medline abstracts published between 1975 and 

2015. Lucene, a text search engine written in Java, facili-
tates efficient querying and document retrieval.

Dictionary of controlled vocabulary and stop words [44]
A controlled dictionary of 3.2 million words was gener-
ated using MeSH terms, SNOMED-CT, and PubTator, 
which includes terms related to genes, proteins, genetic 
variants, taxonomy, diseases/disorders, and chemicals 
from biomedical literature [32–34]. In addition to the 121 
stop words used by PubMed (https​://www.ncbi.nlm.nih.
gov/books​/NBK38​27/table​/pubme​dhelp​.T.stopw​ords/), 
any word in the input text that is not present in the con-
trolled dictionary is considered a stop word.

Extractive summarization: MINTS: a multi‑stage algorithm 
for sentence extraction and ranking
Machine learning techniques such as decision trees, hid-
den Markov Model, and Naïve Bayes classifier, etc. have 
been implemented for sentence extraction [17, 18]. Some 
of the common importance indicators utilized by previ-
ous machine learning methods include sentence length, 
position, term frequency–inverse document frequency 
(TF-IDF), and parts of speech [18]. In this work, we 
developed a three-stage procedure to extract relevant 
sentences using a random forests classifier and various 
indicators of relevance such as: sentence length, posi-
tion in the input text, number and percentage of clini-
cal/biomedical terms, normalized degree centrality, and 
overlap with global term frequency distribution deter-
mined using the Sørensen–Dice-coefficient/index (DS) as 
similarity metric [20, 35, 45, 46]. We called this new algo-
rithm the multi indicator text summarization algorithm, 
MINTS (Fig. 2).

In stage one, a sentence-feature matrix is generated 
where each row corresponds to an individual sentence 
and the columns represent the indicators of relevance. 
The number of domain-specific terms is determined 
using the controlled dictionary. A TF-IDF based cosine 
similarity matrix is used to determine the degree cen-
trality of each sentence, which is normalized by the total 
number of sentences in the input text [18]. According to 
Luhn’s theory, the most frequent terms/concepts are the 
most important ones and can be used to determine the 
significance of individual sentences [5, 35]. The over-
lap between the term frequency distribution of the cur-
rent sentence and the global frequency distribution is 
determined using Sørensen-Dice-coefficient, Eq.  (1), as 
similarity metric, which has been previously shown to 
outperform other similarity function metrics for deter-
mining the overlap between a candidate summary and 
the source text [21].

http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/
https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/
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where s = index of current sentence, |A| = number of rele-
vant terms/concepts in the frequency distribution model 
of the entire document, |B|= number of relevant terms/
concepts in the frequency distribution model of sen-
tence s, |A ∩ B|= number of overlapping terms/concepts 
between the global frequency distribution model and the 
distribution model of sentence s.

In stage two, a random forests classifier is used to 
predict the “worthiness” of a sentence. Random forests 
is a non-parametric supervised classification technique 
that uses an ensemble of decision trees for learning a 
model [36]. Each tree in the forest is generated using 
a random set of variables (relevance indicators) and by 
sampling a random set of training samples (bagging). 

(1)DS(s) = 2∗

∣

∣A ∩ B
∣

∣

∣

∣A
∣

∣+ |B|

The trees are grown until the leaves/terminal nodes 
contain samples belonging to the same class. After the 
forest is constructed, every tree casts a vote for the 
class assignment of the new sample. The class of the 
new sample is determined using the majority vote. The 
randomForest package in R is used in CERC.

We used CRAFT to evaluate the performance quality 
of the system. These 67 articles have each been anno-
tated with nine biomedical concepts and syntactics. The 
biomedical concepts include cell, protein, and sequence 
ontologies, the entries of the Entrez Gene database, and 
the 3 gene subontologies (biological processes, cellular 
components and molecular functions), the Chemical 
Entities of Biological Interest ontology, and the NCBI 
Taxonomy. Each sentence has been marked up to sen-
tence segmentation, tokenization, part-of-speech tag-
ging, and coreference. The syntactic parses, manually 

Fig. 1  CERC system diagram. This shows the overall design of CERC. Input text is first preprocessed via segmentation, tokenization, stemming, 
and controlled dictionary filtering. Extractive summarization is performed using a new algorithm, the MINTS algorithm, a multi-stage algorithm for 
sentence extraction and ranking. A word-cloud based visualization method is used to represent term/concept distribution
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curated for each sentence, are represented in Penn 
Treebank format.

Thirty-five full-text articles from the CRAFT cor-
pus were used to build the random forests model. The 
remaining 32 articles were used during the blind eval-
uation stage as described later. The two sets will be 
termed as CRAFTtrain and CRAFTtest, respectively. 
All articles were preprocessed to remove stop words. 
Since it is challenging to manually annotate each sen-
tence in full-text articles, a data-driven approach was 
used to annotate the 9,779 sentences in the CRAFT-
train corpus. Each sentence was annotated as “good” or 
“bad” using the DS index (Eq. 1) which is based on the 
amount of overlapping terms between the sentence and 
the article abstract. The maximum DS index values per 
article ranged from 0.046 to 0.358 in CRAFTtrain cor-
pus with a median value 0.038 and 25th percentile value 
of 0.01 across all sentences Sentences with a DS index 
less than 0.01 were annotated as “bad” or not important 
for summary. This resulted in 7,498 out of 9,779 sen-
tences being annotated as “good” for summarization. 
A random forests model was trained using 60% of the 
sentences (N = 5867; Ngood = 4401; Nbad = 1466), and its 
performance being evaluated using the remaining 40% 
of the sentences (N = 3912; Ngood = 3,097; Nbad = 815). 

The trained classifier is used to evaluate the importance 
of every sentence in the new text. And only those sen-
tences that are predicted as “good” are used in the rank-
ing stage. This facilitates document compression/data 
reduction.

The last stage involves selection of “good” sentences 
for generating summaries based on aggregated rank-
ing and redundancy evaluation. The scores based on m 
indicators for every sentence are converted to ranks, 
Rim = [1…N], where i is the sentence index, m is the 
indicator of importance (e.g. degree centrality, position, 
etc.), and N is the number of sentences. Each sentence is 
assigned an aggregated rank, calculated as the average of 
rankings from different indicators. The top ranked sen-
tences are used for summaries after evaluating the cosine 
similarity (a threshold of 0.4 is used based on empirical 
evaluation) between the previously selected sentences in 
the summary set and the incoming sentence to reduce 
redundancy [18]. A normalized score ranging between 
0 (least important) to 1 (most important) is assigned to 
each sentence. Users can input the maximum number of 
sentences to be selected. The default is set at 5 sentences.

For comparison purposes, topic-based and graph-
based extraction summarization techniques were also 
included during the evaluation process:

Fig. 2  MINTS workflow for extracting salient sentences. MINTS uses a multi-stage framework that combines supervised learning techniques, 
individual characteristics of sentences (position, length, relevant terms) and network level characteristics (degree centrality) for extracting salient 
sentences
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i	 topicDist: This method evaluates the relevance of a 
sentence term/concept frequency based on the over-
lap with the most frequent terms/concepts in the 
entire text [5, 21, 35].

j	 LexRank: LexRank is a graph based extractive sum-
marization approach that uses the cosine similarity 
matrix to determine similarity between sentences 
and uses eigenvector centrality to extract relevant 
sentences [37]. A network of sentences is generated 
where each sentence corresponds to a node, and the 
edges represent the cosine similarity between pairs of 
sentences. The LexRank algorithm implemented in 
the MEAD toolkit was used for evaluation [38].

Indicative summarization
A word-cloud based visualization method is used to rep-
resent term/concept distribution. This provides a con-
cept-oriented summarization of the over-represented 
relevant terms and concepts in the input text. A weighted 
scoring scheme is used to prioritize terms correspond-
ing to diseases/disorders, genes, mutations, and chemical 
names.

where i = 1 if the term is found in the controlled vocabu-
lary, 0 otherwise, WC = 1000 if the term is a disease/dis-
order, chemical, mutation, gene; 1 otherwise, 
tf = frequency of term t in the input text, 
IDF = 1+ log

(

(total number of indexed Medline abstracts)
(number of abstracts with term t)

)

.
The weight, Wc, is selected to reflect the user-chosen 

term emphasis on certain clinical and disease character-
istics for the summarization. Other values can be used 
depending on the type of summarization purpose and 
emphasis. IDF, the inverse document frequency, meas-
ures how common/rare a term is in the corpus.

Interactiive user‑guided summarization
Visual data exploration provides insights into the data 
and makes the data mining process more effective by 
incorporating human perception and intelligence [26]. 
CERC facilitates visual mining by means of an interactive 
word cloud. The word cloud represents the distribution 
of the relevant terms in the input text and can be used 
to interactively filter the ranked list of sentences to gen-
erate keyword-based summaries. Alternatively, users can 
manually define the keywords for filtering the ranked 
sentences to generate query-specific summaries.

Evaluation
The CRAFTtest corpus (consists of 32 full text articles 
from CRAFT) and a set of 30 randomly selected full-text 

(2)Score(t) = i ∗ (Wc) ∗ tf ∗ IDF ,

clinical case reports from BMC Ophthalmology, BMC 
Neurology, BMC Pulmonary Medicine, BMC Cancer, 
and New England Journal of Medicine were used to 
measure the performance of the three sentence rank-
ing methods: MINTS, LexRank, and topicDist. For the 
clinical case-reports, the criteria for inclusion included 
availability of both abstract and full-text from journals 
focusing on different clinical conditions. No other anno-
tations were available for the clinical case reports. Posi-
tion-based ranking and random selection were used as 
baseline. In the position-based selection, sentences were 
assigned scores according to their position in the docu-
ment with the earlier the higher. An extractive summary 
was generated using each method from the full text of the 
articles using the top five sentences. The summaries gen-
erated by each method were compared with the human 
generated summaries (abstracts) using Recall-Oriented 
Understudy for Gisting Evaluation (ROUGE), a software 
package for evaluating and comparing summaries based 
on the n-gram co-occurrence statistics. using a recall 
based approach [39]. ROUGE-1 and ROUGE-2 evaluate 
the overlap of unigrams and bigrams between the system 
generated and reference summaries, while ROUGE-SU4 
evaluates the bigrams and allows a maximum skip dis-
tance of 4 between bigrams.

A one-sided paired Wilcoxon signed-rank test was used 
to evaluate the significance of differences between the 
ROUGE scores for randomly generated summaries and 
different summarization algorithms. The average perfor-
mance of three randomly generated summaries was used 
for comparison.

Results
Content summarization
The random forests model achieved an out-of-bag classi-
fication accuracy of 87.78% on the training set. An overall 
classification accuracy of 87.5% and a balanced error rate 
(group-specific accuracy) of 79.4% (94.6% for “good” cat-
egory and 64.2% for “bad” category) was achieved for the 
blinded test set of 3,812 sentences. The ROUGE evalua-
tion scores of extractive summaries generated using dif-
ferent methods are shown in Fig. 3. MINTS gave the best 
performance in both experiments. For the CRAFTtest 
corpus of 32 full-text articles, MINTS gave ROUGE-1, 
ROUGE-2, and ROUGE-SU4 scores of 0.414, 0.136, and 
0.171, respectively, with p-values from the one-sided 
Wilcoxon signed rank test ranging from 10–13 to 10–8 
for the three scores (Fig. 3a). MINTS performed the best 
with 15% and 38% improvement in ROUGE-1 scores 
when compared to the topicDist and LexRank, respec-
tively. Both topicDist and LexRank methods performed 
better than the baseline.
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Similar ranking pattern was observed for the differ-
ent extraction methods using the clinical case reports 
corpus as evaluation set (Fig. 3b). However, the p-values 
were higher when compared to the CRAFTtest evalua-
tion (0.001 to 0.01), which is likely due to the differences 
in the lengths of the documents in the two corpuses. The 
number of sentences in the clinical case reports corpus 
ranged from 18 to 72, while the number of sentences 
in the CRAFTtest corpus ranged from 101 to 455. As 
described in “Methods”, users have the option to specify 
the number of sentences to be used for generating the 
document summary.

Advancing clinical translational research [41, 42]
An automated language translation system
We apply CERC within an automated language transla-
tion system for clinical usage [42]. Language barriers 
hinder communication and interaction between patients 
and clinicians. Yet, proper communication is critical for 
optimal patient care and best outcomes [41]. In the year 
2014, Children’s Healthcare of Atlanta (CHOA) cared for 
approximately 27,000 patients (77,000 visits) with limited 
English proficiency (LEP). To improve patient-provider 
communication for patients with LEP, it is necessary to 
interpret spoken language and translate written clini-
cal documents that need to be shared with the patients, 
to their primary language of communication. Currently, 
there is a gap in the standard of care with patients with 
LEP not getting the discharge summaries in the language 

they can comprehend. Mounting evidence has shown 
that LEP is a risk factor for reduced healthcare acces-
sibility, reduced quality of care, decreased patient satis-
faction, poor understanding of provider’s instructions, 
increased length of hospital stays, and increased adverse 
events and misdiagnoses.

People with LEP are also less likely to take advantage 
of preventive care such as immunizations, eye and den-
tal care, cancer screening and other services [47–49]. 
Thus, limited patient–provider communication due to 
the language barriers can negatively impact and burden 
payers, providers and the community as a whole. It has 
been shown that utilization of professional language 
interpreter services by healthcare providers reduces the 
risks associated with poor communication due to lan-
guage barriers [50]. The quality of care for patients with 
LEP can be improved with qualified interpreters, includ-
ing reduction of communication errors and disparities of 
care, and improvement in clinical outcomes, and patient 
satisfaction [50–52]. Further, research indicates that it is 
cost-effective to provide interpreter translation services 
as it reduces unnecessary testing, shortens visit times, 
and improves compliance with treatment and follow-up 
instructions [53, 54].

Despite the above facts, professional language inter-
preters are under-used by providers, especially physicians 
with inadequate second language skills [51]. The provid-
ers often instead use family members, friends, and other 
staff or manage with their own limited language skills for 

Fig. 3  ROUGE evaluation scores for different extractive summarization methods using abstracts as gold standard summaries. a Performance 
comparison of different summarization approaches on CRAFTtest corpus (32 full-text scientific articles); b Performance comparison of different 
summarization approaches using ROUGE evaluation toolkit on clinical case reports corpus. The p-values for ROUGE-1, ROUGE-2, and ROUGE-SU4 
scores for each method were compared against respective baseline scores using a one-sided Wilcox text. The MINTS algorithm outperformed other 
methods in both cases
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interpretations during patient care [55, 56]. But, use of 
such ad-hoc interpreters has been linked to communica-
tion errors thus compromising privacy, quality and safety 
of healthcare services [57, 58].

As a pilot, we sought to integrate translation within 
the day-to-day care process of healthcare providers. We 
translated Emergency Department discharge summaries 
using computer-assisted translation and machine transla-
tion, from English to two of the most spoken other lan-
guages by the CHOA LEP population.

We designed an automatic language translator that uti-
lizes a machine learning environment that incorporates 
CERC, Google Translate, a “self-learning translator,” and 
“a language library” (Fig. 4). CERC first processes narra-
tive text from de-identified discharge summaries, Google 
Translate then translates the resulting summary from 
English into different languages. Professional language 
experts correct the translated text and the self-learning 
translator takes in the processed discharge text as well as 
the expert corrected content, learns adaptively from the 
corrections and retains that knowledge in its self-learn-
ing library.

We evaluate the performance using the bilingual evalu-
ation understudy (BLEU) algorithm [43]. Scores are cal-
culated for individual translated segments (sentences) 
by comparing them with a set of good quality reference 

translations. This approximates the human judgement at 
a corpus level. The output BLEU value is between 0 and 
1, with values closer to 1 indicating more similar (thus a 
better translation).

Table  1 shows that the performance of the language 
translator is significantly better for Spanish (0.864 vs 
0.293) and Vietnamese (0.568 vs 0.199) using CERC when 
compared to without using CERC for initial summariza-
tion. This demonstrates CERC is a promising summariza-
tion tool, and that the training set can produce clinically 
acceptable results.

The translator can be generalized across a broad 
range of clinical settings and patient populations where 

Fig. 4  The automatic language translator design schema. The system utilizes a machine learning environment that incorporates CERC, Google 
Translate, a “self-learning translator,” and “a language library”. CERC first processes narrative text from de-identified discharge summaries, Google 
Translate then translates the resulting summary from English into different languages. Professional language experts correct the translated text and 
the self-learning translator takes in the processed discharge text as well as the expert corrected content, learns adaptively from the corrections and 
retains that knowledge in its self-learning library

Table 1  shows that  the  performance of  the  language 
translator is  significantly better for  Spanish (0.864 vs 
0.293) and  Vietnamese (0.568 vs 0.199) using CERC 
when  compared to  without  using CERC for  initial 
summarization

With CERC Without CERC

Strep Throat Document 
(English- > Spanish)

0.864 0.293

Strep Throat Document 
(English- > Vietnamese)

0.568 0.199
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language barriers are of concern, demonstrating the clini-
cal value of CERC for patient care. As a large corpus is 
fed, both the self-learning translator and the language 
library will expand their vocabulary and related content. 
We will continue to refine CERC using a larger train-
ing set which can lead to better sentence evaluation and 
summarization results.

Facilitating clinical decision making
The system has several additional features to enhance 
clinical decision-making:

i	 Document-driven search to retrieve related litera-
ture from Medline: CERC uses the clinically/biologi-
cally relevant terms to find related articles in Pub-
Med. This allows users to gain additional information 
about the key diseases or medications that are men-
tioned in the input text.

j	 Visualization of over-represented terms using con-
trolled dictionary (PubTator, MeSH and SNOMED 
CT): The system uses the term-frequency criteria to 
identify clinically/biologically relevant terms in the 
input text. A word cloud representation of the top 
clinically/biologically relevant terms is generated. 
This could facilitate detection of high-risk findings

k	 Interactive interface and visualization: The web inter-
face allows users to generate and edit automated 
summaries from the ranked sentences. Users have 
the option to filter sentences by keywords and gen-
erate a summary of the document based on the rel-
evant sentences.

l	 Library of summaries: The system allows the users to 
automatically generate, edit, and save summaries for 
downstream pattern mining.

Figure  5 shows an illustration of the system. Users 
can use the copy/paste option or upload a Word docu-
ment with input text. A table with relevance scores for 
each sentence is returned based on the newly developed 
MINTS algorithm. Users can filter the sentences based 
on keywords, e.g. “diabetes”. Alternatively, the interac-
tive word cloud can be used for filtering the sentences by 
clicking on the term of interest. An extractive summary 
can be generated using the top N sentences, where N is a 
user-defined parameter.

Users have the option to edit and save the generated 
summary for future analysis such as temporal track-
ing of clinically relevant indicators or medication usage. 
The system also provides a list of related PubMed arti-
cles based on the top over-represented terms in the input 
text.

Fig. 5  CERC demonstration. Users can upload or paste the input document and select the clustering and summarization options. The output 
includes a word cloud of over-represented clinical/biomedical terms, ranked sentences within each cluster, and related articles in Medline. Users 
can filter the list of ranked sentences based on keywords
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A customizable information extraction and pre‑processing 
pipeline for EHR
We demonstrate the use of CERC within a customiz-
able information extraction and pre-processing pipeline 
for EHRs which extracts, anonymizes, and encrypts data 
directly from EHRs [63, 64]. Specifically, CERC is used 
for information extraction from extracted narrative clini-
cal texts. Below is a short excerpt from our paper [64].

Prostate cancer is the most frequently diagnosed can-
cer in 105 countries and the fifth leading cause of can-
cer death in men [59]. The American Cancer Society 
estimated that there will be 191,930 new cases of pros-
tate cancer in the U.S. in 2020 with an associated 33,330 
deaths. Early prostate cancer detection has been achieved 
through prostate-specific antigen (PSA) test and biopsy 
of tissue removed during prostatectomy or at autopsy 
[59]. Through mathematical modelling [60], concluded 
that under the assumption that stage shift implies sur-
vival shift–which motivates early detection of cancer, 
PSA screening likely explains half or more of the mortal-
ity reduction observed in the U.S. since the early 1990s. 
EHR provides long-term tracking of patient PSA test 
results. These longitudinal data can be extracted using 
the lab component IDs or names of the test procedure. 
The rate of increase in PSA level, often represented using 
PSA doubling time or PSA velocity, has been widely used 
in the management of prostate cancer [61, 62].

Information extraction from EPIC EHR database
The extracted dataset covers 98,806 patients with the 
ICD-9 code 790.93 or ICD-10 code 97.20, “elevated 
prostate specific antigen (PSA)”. This dataset spans the 
years 1997–2018 and is composed of patient-level data 
(70  Mb), problem lists (384  Mb), medications (7.3  Gb), 
billing (167  Mb), laboratory orders (10  Gb), and clini-
cal notes (46.1 Gb), totaling 64.02 Gigabytes. Patient IDs 
were successfully encrypted using SHA-256 encryption. 
PHI including patient names, addresses, institutions, age, 
phone numbers, and email addresses were detected and 
encrypted into dummy tokens.

We applied CERC and clinical concept extraction sys-
tem on a subset of patients treated with radioactive seed 
implants. An additional 2,194 standardized clinical fea-
tures were extracted from their clinical notes, including 

“Chronic pain syndrome”, “Placement of stent”, “Nerve 
conduction testing”, “Vascular Calcification”, “Over-
weight”, “Obstructive sleep apnea syndrome”, “Neoplasm, 
metastatic”, and “Lithotripsy”, etc.

Patient PSA laboratory test results were used as indi-
cators of disease severity. PSA records were retrieved by 
the following method: (1) component IDs for lab records 
matching the query string “%PSA%” were retrieved; (2) 
PSA-irrelevant lab components were discarded, leav-
ing 10 unique component IDs corresponding to “PSA-
screening”, “PSA-monitoring”, “PSA”, “PSA FREE”, “PSA 
% FREE”, “PSA, external result”, “PSA, MHS”, “PSA with 
reflex FPSA, external result”, “PSA, screening”, and “PSA, 
cancer monitoring”; (3) “PSA FREE” and “PSA % FREE” 
were removed from the list of candidate components 
since free PSA is reported as a percentage of the total that 
is not protein bound, i.e., free. The higher the free PSA, 
the lower the likelihood of cancer; (4) PSA lab records 
were then retrieved by patient IDs and the filtered com-
ponent IDs; (5) Missing, erroneous, and duplicated 
records were removed, and the remaining records were 
sorted by date and transformed into time series format 
for each patient.

Data standardization to SNOMED‑CT Using SNOMED‑CT
ontology as the mapping standard, we successfully 
mapped 22,842 out of the 39,570 unique clinical con-
cepts. These 22,842 concepts were mapped to 4,673 
unique SNOMED- CT concepts. Table  2 shows the 
number of unique concepts before mapping, with avail-
able mapping, and the number of SNOMED-CT con-
cepts mapped to. Through this process, we significantly 
reduced the feature dimension, removed data redun-
dancy and inconsistency, and lowered the likelihood of 
data collinearity. This establishes an interoperable cohort 
of patients. Users can apply clustering and machine 
learning for evidence-based treatment planning discov-
ery or other comparative effectiveness and personalized 
treatment advances [64].

Discussion
The success of new healthcare initiatives such as the 
Precision Medicine Initiative relies critically on the 
ability of computational tools and algorithms to address 

Table 2  Mapping results for labs, medications, and procedures data using the extracted content from CERC

Lab Procedure Medication

Total unique concepts (39,570) 3662 2760 33,148

Number of unique concepts with direct mapping 1267 696 952

Number of unique concepts with indirect mapping 1588 1284 17,055

Number of unique SNOMED-CT concepts mapped to 1100 1170 2403
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challenges related to efficient and impactful usage of 
information existing in different data sources. The vast 
amount of information in electronic health records and 
scientific literature has the potential to enhance clini-
cal decision-making and improve the quality of health-
care as more informed decisions can be made at the 
patient level by integrating knowledge in the biomedi-
cal domain with patient characteristics and medical 
history [2, 7, 8]. However, the growing sizes of biomedi-
cal and clinical databases have created the problem of 
“information overload” [3]. A large amount of informa-
tion in the healthcare domain such as clinical notes, 
discharge summaries, radiology reports etc. is stored 
in the form of text. Most existing text summarization 
tools for clinical/biomedical domain utilize single indi-
cators of relevance such as concept distribution, posi-
tion, and rely upon UMLS as the main vocabulary for 
identifying concepts and semantic relations between 
concepts, which limits the incorporation of specialized 
biomedical terminology such as genetic variants [5]. In 
addition to natural language processing, visualization 
techniques are essential for representation of informa-
tion in a form that facilitates pattern recognition and 
large volumes of data [27, 28].

We developed a web-based content recognition and 
summarization tool, CERC (https​://newto​n.isye.gatec​
h.edu/CERC1​/), for clinical and biomedical text that 
includes features such as extractive summarization to 
identify relevant sentences, indicative summarization of 
the overrepresented biomedical terms and concepts in 
the input text using word cloud visualization, interac-
tive concept-oriented summarization, and retrieval of 
biomedical literature relevant to the input text (Fig. 4). A 
controlled vocabulary dictionary generated using MeSH, 
SNOMED-CT, and PubTator is used for determining rel-
evant terms.

Extractive summarization is performed using a new 
algorithm, the MINTS algorithm. MINTS uses a multi-
stage framework that combines supervised learning tech-
niques, individual characteristics of sentences (position, 
length, relevant terms) and network level characteristics 
(degree centrality) for extracting salient sentences. A ran-
dom forests classifier trained on a set of 9779 sentences 
from 35 full-text articles from the CRAFT corpus is used 
for evaluating sentence worthiness for summarization, 
“good” vs “bad”. Multiple indicators of importance such 
as degree centrality, presence and number of relevant 
terms, and position are used during relevance evaluation 
and ranking stages. An aggregated ranking scheme and 
cosine similarity-based redundancy evaluation is used 
for selecting top sentences. Redundancy detection is per-
formed using cosine similarity between potential candi-
dates and already selected sentences.

The performance evaluation results on full-text sci-
entific articles and clinical case reports demonstrate 
improved summarization process that is achieved by 
combining machine learning, text mining, network 
analysis techniques with domain knowledge as opposed 
to using single characteristics of relevance [16, 17]. Fur-
thermore, the results suggest that the length of the input 
text does not affect the performance of the MINTS algo-
rithm. The two corpuses varied in their sizes as well as 
structure and content as the clinical case reports focus 
on diagnosis, treatment, and management of clinical 
cases and are targeted towards clinical audience, while 
the scientific articles focus on basic science or biomedi-
cal research. These results demonstrate the promise of 
“intelligent” algorithms like MINTS in addressing the 
issue of information overload in both the clinical and 
biomedical domains.The automatic language translator 
and the customizable information extraction and pre-
processing pipeline for EHR demonstrate that CERC can 
readily be incorporated within clinical decision support 
systems to improve quality of care and to assist in data-
driven and evidence-based informed decision making for 
direct patient care.

Limitations
First, although the evaluation was performed on differ-
ent types of full-text articles from both biomedical and 
clinical domain, further validation is required including 
extrinsic assessment by clinicians. Second, the terms in 
the topic cloud are currently not mapped to their corre-
sponding concepts leading to ambiguity and redundancy 
if a concept is represented in different forms in the input 
text. Third, the random forests classifier was built using 
only a subset of all possible indicators of relevance leav-
ing room for improvement at the initial sentence evalua-
tion level [17]. Furthermore, the classifier was built using 
an imbalanced dataset which led to a low balanced accu-
racy of 79.4% and a lower accuracy for the “bad” group 
(64.2%) compared to the “good” group (94.6%). Evalua-
tion of performance of different classification algorithms 
[63] or using a larger training set can lead to better sen-
tence evaluation and summarization results. Fourth, the 
algorithms used for indicative and extractive summa-
rization do not utilize lexical or semantic relationships 
between terms/concepts. A more detailed natural lan-
guage analysis could further improve the performance of 
the summarization algorithms. Finally, the system cur-
rently supports only English language.

Future work
Extrinsic evaluation of the system and further validation 
of the summarization strategies using different types of 
clinical text such as operative notes and radiology reports 

https://newton.isye.gatech.edu/CERC1/
https://newton.isye.gatech.edu/CERC1/
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will be performed in a patient care setting. The evaluation 
will focus on the ability of the system for high-risk find-
ings in patient records and the impact on patient care and 
clinical decision-making. The functionality of the system 
will be further extended by providing automated graph-
based summarization of the input text as demonstrated 
in our previous work, SEACOIN, which was designed for 
topic-based summarization of Medline abstracts [40, 44]. 
The terms in the interactive cloud will be mapped to con-
cepts in PubTator and SNOMED-CT [33, 34].

Conclusion
Intelligent tools and techniques are required to extract 
information from rapidly growing data in healthcare 
and biomedical domain to facilitate precision medicine. 
In this work, we have developed CERC (https​://newto​
n.isye.gatec​h.edu/CERC1​/), an interactive content rec-
ognition and summarization tool for extracting sali-
ent information from clinical and biomedical text. The 
system includes both indicative and informative sum-
marization strategies that allow the users to retrieve 
and visualize important content from the input text in 
an interactive manner. A novel multi-stage procedure, 
MINTS, is introduced. The algorithm uses a random for-
ests classifier to evaluate the “worthiness” of individual 
sentences for summarization prior to scoring based on 
multiple domain specific, sentence-level, and network-
level characteristics. The ROUGE evaluation results on 
two independent test corpuses show that MINTS pro-
vides better summarization results when compared to 
methods based on single indicators (topic/concept fre-
quency distribution and LexRank). ROUGE evaluation 
scores for the MINTS algorithm were significantly differ-
ent when compared to random selection at a significance 
level of 0.01: ROUGE-1 (0.41 vs 0.22), ROUGE-2 (0.14 
vs 0.06), and ROUGE-SU4 (0.17 vs 0.07) on CRAFTtest; 
and ROUGE-1 (0.33 vs 0.28), ROUGE-2 (0.11 vs 0.07), 
and ROUGE-SU4 (0.14 vs 0.1). The word cloud visuali-
zation provides a concept-oriented summary of the text 
and allows users to retrieve salient content according to 
their specific interests and requirements. The system can 
be used for summarizing and identifying relevant con-
tent from full-text articles from a variety of information 
sources such as Medline, Cochrane, UpToDate (http://
www.uptod​ate.com/), and from clinical text such as clini-
cal notes, radiology reports, etc. The system incorpo-
rates several features to address the challenges related 
to extracting information from large volumes of text. 
The automatic language translator and the customizable 
information extraction and pre-processing pipeline for 
EHR demonstrate that CERC can readily be incorporated 
within clinical decision support systems to improve qual-
ity of care and to assist in data-driven and evidence-based 

informed decision making for direct patient care. Future 
work will focus on extrinsic evaluation of the system in 
both patient care and research settings.
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