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Abstract 

Background:  Increased chloride in the context of intravenous fluid chloride load and serum chloride levels (hyper‑
chloremia) have previously been associated with increased morbidity and mortality in select subpopulations of 
intensive care unit (ICU) patients (e.g patients with sepsis). Here, we study the general ICU population of the Medical 
Information Mart for Intensive Care III (MIMIC-III) database to corroborate these associations, and propose a super‑
vised learning model for the prediction of hyperchloremia in ICU patients.

Methods:  We assessed hyperchloremia and chloride load and their associations with several outcomes (ICU mortal‑
ity, new acute kidney injury [AKI] by day 7, and multiple organ dysfunction syndrome [MODS] on day 7) using regres‑
sion analysis. Four predictive supervised learning classifiers were trained to predict hyperchloremia using features 
representative of clinical records from the first 24h of adult ICU stays.

Results:  Hyperchloremia was shown to have an independent association with increased odds of ICU mortality, new 
AKI by day 7, and MODS on day 7. High chloride load was also associated with increased odds of ICU mortality. Our 
best performing supervised learning model predicted second-day hyperchloremia with an AUC of 0.76 and a number 
needed to alert (NNA) of 7—a clinically-actionable rate.

Conclusions:  Our results support the use of predictive models to aid clinicians in monitoring for and preventing 
hyperchloremia in high-risk patients and offers an opportunity to improve patient outcomes.
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Background
Intravenous (IV) fluids are commonplace in the critical 
care setting for good reason—they are low-risk, go-to 
interventions for patients with fluid deficits and elec-
trolyte imbalances. Recent studies have reexamined the 
effects of these fluids, however, and mounting evidence 
cautions that aggressive doses that are still within refer-
ence therapeutic ranges may lead to adverse outcomes 
ranging from organ damage to in-hospital mortality [1]. 
Particular concern has been raised regarding chloride, 
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an oft-unnoticed component of many standard IV fluids 
such as normal saline. Higher rates of in-hospital mortal-
ity were observed with elevated IV fluid chloride content 
during resuscitation with large fluid volumes [2] as well 
as in patients with sepsis [3]. Additionally, hyperchlo-
remia in patients with sepsis has been linked to higher 
rates of acute kidney injury (AKI) [4] and mortality [5]. 
Conversely, low-chloride strategies demonstrated reduc-
tions in AKI and renal replacement therapy [6]. These 
findings warrant further investigation into the merits of 
shifting from the traditional approach of chloride-liberal 
fluid administration to a chloride-restrictive one, which 
could be of benefit to critically ill patients.

Electronic health records (EHRs) collect and store 
countless data points for each intensive care unit (ICU) 
patient [7] and contain a wealth of information on demo-
graphics, medical interventions, measurements, out-
comes, and more. By mining EHR data from the general 
ICU population of the Medical Information Mart for 
Intensive Care III (MIMIC-III) [8], we retrospectively 
studied hyperchloremia and high chloride load in IV flu-
ids and evaluated their associations with patient mortality 
and organ dysfunction. As there have been many prom-
ising developments in clinical event prediction using 
machine learning, we also propose a predictive model 
for hyperchloremia using this EHR data. This model can 
alert clinicians to patients at high risk for hyperchloremia 
and provide opportunities for improved chloride man-
agement, which may in turn improve patient outcomes.

MIMIC-III is a well-studied dataset for good reason—
it contains a sizeable ICU population of over 40,000 
patients and spans over 10 years of data from 2001 to 
2012. As such, numerous predictive models have been 
built on specific subgroups of interest, such as patients 
with kidney injury [9], pneumonia [10], myocardial 
infarction [11], sepsis [12], and more. Existing models 
typically predict outcomes such as mortality [9, 13–15], 
ICU readmission [16–18], AKI [19–21], and other com-
plications [22], with varying AUCs ranging from 0.65 to 
0.9.

In light of the specific focus of these studies, there still 
exists a knowledge gap for predictive modeling in general 
ICU populations, especially modeling focused on treat-
ment management. A focus on treatment management 
is important for clinical decision-making as outcome-
focused predictions may be of limited clinical utility 
despite high prognostic value. Mortality, for example, can 
result from any number of potential factors, and a pre-
diction that mortality is likely to occur is difficult to act 
upon without a clear contributing cause.

Our study thus aims to expand on existing research by 
analyzing hyperchloremia and its associations with sev-
eral key outcomes in the general adult ICU population 

of MIMIC-III and then predicting hyperchloremia for 
this population. Chloride administration in the ICU is 
actively managed via IV fluids, and thus these predic-
tions can prompt immediate interventions to reduce 
chloride load and limit hyperchloremia. If chloride load 
and hyperchloremia are indeed causally linked to poor 
outcomes, this framework has potential for improving 
patient care.

This manuscript is an extension of our previously pub-
lished work on predicting hyperchloremia [23]. Here, 
we extend our analysis to further evaluate associations 
between chloride load and patient outcomes, assess the 
impact of individual features, and examine the implica-
tions of false positive and false negative predictions. 
Additionally, the methods and results sections have been 
extended to elaborate on nuances in data preprocessing, 
feature selection, and hyperparameter tuning.

Methods
Statistical analysis
With a focus on the first 7 days of critical illness, we eval-
uated the relationship between chloride and patient out-
comes in the ICU using retrospective data extracted from 
MIMIC-III. In particular, we evaluated the associations 
between chloride load and outcomes as well as the asso-
ciations between hyperchloremia and outcomes.

Chloride load was represented as the average daily 
chloride input given to a patient. Hyperchloremia was 
represented as a binary variable—whether or not hyper-
chloremia occurred in the first 7 days, which we defined 
as any serum chloride measurement of 110 mEq/L or 
greater. We also represented hyperchloremia as two 
quantitative variables: the number of days in which 
hyperchloremia occurred and the maximum serum chlo-
ride measured over the first 7 days.

A seven-day time span provides a sufficiently large win-
dow in which measurable adverse outcomes can develop. 
We used several objective measures of morbidity and 
mortality:

•	 Mortality during the ICU stay (ICU mortality)
•	 New AKI by day 7
•	 Multiple Organ Dysfunction Syndrome (MODS) [24] 

on day 7

MODS was considered positive if two or more Sequential 
Organ Failure Assessment (SOFA) [25] sub-scores were 2 
or greater. New AKI was considered positive if AKI stage 
[26] ever increased (i.e. worsened) from baseline within 
the first 7 days. In other words, a patient who presented 
to the ICU with stage 3 AKI (the highest possible stage) 
would not be considered to have new AKI, whereas a 
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patient that presents with stage 2 AKI and progresses to 
stage 3 would be considered to have new AKI.

We utilized Kruskal-Wallis H tests and chi-squared 
tests to assess differences in chloride status between 
patients who were negative for each outcome and 
patients who were positive for them. We also modeled 
chloride-outcome associations using multivariate logistic 
regression to control for demographics and severity of ill-
ness on admission (Fig. 1).

Prediction modeling
Feature selection
Using feature data aggregated from the initial 24 h (“day 
1”) of patient ICU stays, we trained supervised learning 
models to predict the likelihood that hyperchloremia 
would occur in the following 24 h (“day 2”). Our feature 
set included chloride-related data (net fluid balance, total 
chloride load, maximum serum chloride), comorbidi-
ties on admission, demographics, interventions, labora-
tory test results, medications, and vitals. Chloride load 
included any fluid with chloride (e.g. normal saline, 

potassium chloride, etc.), converted into milliequiva-
lent (mEq) quantities using standard ratios. Cutoffs were 
chosen based on clinical intuition to exclude nonsensi-
cal values (e.g. serum chloride ≥ 160 mEq/L, daily chlo-
ride input ≥ 5000 mEq, net fluid balance of ≥ 30,000 mL, 
negative values, out-of-order start/end times). We identi-
fied comorbidities of interest using the Elixhauser Index 
[27] and ICD-9 codes. Of note, comorbidities are not 
timestamped in MIMIC-III and are instead only tied to 
the hospital admissions in which they were recorded, and 
thus comorbidity features were limited to those assigned 
in prior hospital admissions—comorbidities already 
known at the time of the current admission.

These variables were chosen based on clinical expertise 
and prior literature and were only included if statistical 
significance could be demonstrated using two-sample 
t-tests and chi-squared tests. 34 features were ultimately 
fed into our models, each with statistically significant dif-
ferences (p  value < 0.05) between hyperchloremic and 
non-hyperchloremic patients on day 2. We standardized 
non-binary variables by subtracting means and scaling to 

Fig. 1  Study design. Data was extracted from MIMIC-III and organized into feature sets and outcome measures based on clinical guidelines and 
expertise. Statistical analysis determined the significance of associations. Imputation and standardization of both training and testing set data were 
performed using only training set medians and means
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unit variance. Only training set data was used to deter-
mine statistical significance for feature selection, and 
only training set data was used to calculate means and 
standard deviations for feature standardization.

Our study focuses on initial adult ICU admissions 
based on the expectation that pediatric patients and 
ICU re-admissions exhibit uniquely different physiologic 
behaviors. Thus, ICU stays were excluded if the patient 
was below 18 years of age or in the ICU for a readmis-
sion within a hospitalization. Of the remaining 49,696 
ICU stays, we further excluded 16,366 (32.9%) records 
as these patients were either already hyperchloremic or 
did not have chloride data on day 1 (we did not impute 
serum chloride measurements on day 1). The resulting 
33,330 rows of unique ICU stays were then divided on a 
70:30 train:test split and the testing set was held out for 
performance evaluation.

Imputing missing data
EHRs inherently tend to lack records for events that do 
not occur. For example, a patient that did not receive 
chloride would have no record of chloride administra-
tion, and vice versa. Thus, for features that would not be 
present at a “healthy” baseline—interventions (chloride 
administration, fluid input/output), medications, and 
comorbidities on admission—a zero value was inferred in 
the absence of data.

For imputation of measurements that are non-zero at 
a “healthy” baseline—vitals, laboratory tests—we deter-
mined the median of each feature using training set 
records limited to the 24 h prior to ICU discharges (i.e. 
the calculation did not include patients who did not sur-
vive). The final 24 h in the ICU of patients who survive 
are generally representative of a “healthier” state com-
pared to earlier stages in the ICU.

Patients with no records of serum chloride measure-
ments throughout day 2 were presumed non-hyper-
chloremic for that day. Of note, the vast majority of 
such patients also had no recorded chloride measure-
ments beyond day 2—we assumed that this would not 
be the case had their clinicians been concerned for 
hyperchloremia.

Machine learning classifiers
We evaluated four classifiers: ridge regression, random 
forest, XGBoost [28], and multi-layer perceptron. Each 
classifier predicts probabilities of hyperchloremia ( ≥ 110 
mEq/L) occurring on day 2 for each patient. These prob-
abilities were then converted into binary classifications 
using thresholds that maximized the Youden’s J statistic 
of training set predictions.

The low prevalence of day 2 hyperchloremia in our 
dataset (Table  1) necessitated additional compensatory 

steps. We configured the ridge regression and XGBoost 
classifiers to assign weights based on prevalence. For the 
random forest and multi-layer perceptron classifiers, we 
chose to down-sample our training set by removing, at 
random, 90% of patients who did not develop hyperchlo-
remia on day 2. This resulted in a final training set size 
of 3,560 rows for these classifiers with a prevalence of 
38.29%, which was sufficiently large and balanced.

Performance evaluation
Classifier performance was represented via precision, 
recall, F1-scores, and receiver operating characteristic 
(ROC) curves  (Fig.  1). We also plotted precision-recall 
curves to illustrate the trade-offs that can be made 
between precision and recall. These metrics are sensitive 
to imbalanced outcomes, which is important for our use 
case as the prevalence of hyperchloremia is low.

Feature analysis
We inspected the coefficients of our fitted regression 
model to identify features that were most predictive of 
and/or protective against hyperchloremia. Compar-
ing the relative magnitudes allows us to corroborate our 
baseline understanding of features that we expect to be 
significant, and perhaps more importantly it also high-
lights features that are unexpectedly significant. This 
could, in turn, yield new clinical insight into associations 
that are important for clinical consideration.

Error analysis
We also analyzed patient records for several incorrect 
predictions to identify characteristics that are prone to 
misclassification. Insight into commonalities within the 
false positive cohort can help us better understand the 
assumptions and limitations of our models.

Results
Statistical analysis
Table  2 lists characteristics and outcomes pertinent to 
our study population.

Univariate statistical analysis demonstrated that 
increased maximum serum chloride level, hyperchlo-
remia ( ≥ 110 mEq/L), increased number of days in which 
hyperchloremia occurred, and increased chloride load in 

Table 1  Prevalence of hyperchloremia on day 2 by dataset

Dataset Hyperchloremic Non-
hyperchloremic

Total Prevalence (%)

Training 1363 21,968 23,331 5.84

Testing 629 9370 9999 6.29

Whole 1992 31,338 33,330 5.98
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IV fluids each demonstrated increases in ICU mortality, 
new AKI by day 7, and MODS on day 7 that had statisti-
cal significance (p value < 0.001).

Multivariate regression analysis results are presented 
in Table 3. Odds ratios for the outcomes of interest were 
determined after adjusting for potentially confound-
ing demographic variables (age, gender, ethnicity) and 
severity of illness on admission (represented using the 
SOFA score). As detailed in Table  3, all three measures 
of hyperchloremia were independently associated with 
increased ICU mortality, new AKI by day 7, and MODS 
on day 7. Chloride load was only independently associ-
ated with increased ICU mortality and had an inverse 
relationship with MODS on day 7.

Prediction modeling
Selected features
All chloride-related features that we initially selected 
were included by default. The following features were 
also included as they showed statistical significance:

•	 Demographics: Age, Ethnicity, Gender
•	 Comorbidities:

•	Cardiovascular (Congestive Heart Failure, Hyper-
tension, Pulmonary Circulation Disease)

•	Chronic Obstructive Pulmonary Disease
•	Complicated Diabetes, Uncomplicated Diabetes
•	Renal Failure

Table 2  Clinical characteristics and outcomes by occurrence of hyperchloremia in days 1–7

Hyperchloremic Non-hyperchloremic All patients
(n = 18181) (n = 29893) (n = 48074) p value

Demographics
 Age, median (IQR) 66.9 (53.8–78.5) 65.0 (52.4–77.4) 65.7 (52.9–77.8) < 0.001

 Female, n (%) 8324 (45.8) 12684 (42.4) 21008 (43.7) < 0.001

Race, n (%)

 Asian 518 (2.8) 603 (2.0) 1121 (2.3) < 0.001

 Black 1614 (8.9) 3006 (10.1) 4620 (9.6)

 Hispanic 598 (3.3) 1053 (3.5) 1651 (3.4)

 White 12930 (71.1) 21477 (71.8) 34407 (71.6)

 Other (unreported) 2521 (13.9) 3754 (12.6) 6275 (13.1)

Comorbid conditions, n (%)

 Cancer 1488 (8.2) 3088 (10.3) 4576 (9.5) < 0.001

 Cardiovascular 9838 (54.1) 16385 (54.8) 26223 (54.5) 0.137

 Diabetes 4625 (25.4) 8436 (28.2) 13061 (27.2) < 0.001

 Hepatic 1989 (10.9) 2960 (9.9) 4949 (10.3) < 0.001

 Renal 2589 (14.2) 5279 (17.7) 7868 (16.4) < 0.001

 Respiratory 3434 (18.9) 7263 (24.3) 10697 (22.2) < 0.001

 Multiple comorbidities 15304 (84.2) 24819 (83.0) 40123 (83.5) 0.001

Outcome, n (%)

 ICU mortality 1855 (10.2) 1703 (5.7) 3558 (7.4) < 0.001

 New AKI by day 7 7788 (42.8) 9445 (31.6) 17233 (35.8) < 0.001

 MODS on day 7 1109 (6.1) 781 (2.6) 1890 (3.9) < 0.001

Table 3  Adjusted odds ratios for chloride-outcome associations

Adjusted odds ratios [95% confidence interval]

ICU Mortality New AKI by day 7 MODS on day 7

Over days 1–7

Max. serum chloride (per mEq/L) 1.035 [1.029, 1.040] 1.049 [1.046, 1.053] 1.056 [1.048, 1.063]

Hyperchloremia 1.376 [1.280, 1.481] 1.680 [1.615, 1.747] 1.823 [1.652, 2.012]

Hyperchloremic days 1.186 [1.161, 1.211] 1.154 [1.137, 1.170] 1.402 [1.369, 1.436]

Avg. daily chloride load (per 100 mEq) 1.144 [1.122, 1.165] 0.995 [0.983, 1.007] 0.920 [0.894, 0.946]
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•	Alcohol Abuse, Depression
•	Paralysis

•	 Vitals:

•	Max. Heart Rate, Min. Systolic Blood Pressure, 
Min. Diastolic Blood Pressure

•	Max. Respiratory Rate, Min. SpO2
•	Min. Glasgow Coma Score
•	Weight, Max. Temperature ( ◦C)

•	 Laboratory measurements:

•	Max. Sodium, Potassium, International Normal-
ized Ratio (INR)

•	Min. Potassium, Bicarbonate, Total Calcium

•	 Interventions:

•	Norepinephrine
•	Airway Ventilation (Expiratory Positive Airway 

Pressure, Inspiratory Positive Airway Pressure, 
Non-positive Pressure, Mean Airway Pressure)

Selected hyperparameters
GridSearchCV from the scikit-learn [29] library selected 
hyperparameters for all classifiers though some variables, 
increments, and boundaries were manually fixed to con-
strain the search space. For the ridge regression classifier, 
it chose an inverse regularization strength (C) of 0.01 on 
the LIBLINEAR solver. For the multi-layer perceptron 
classifier with a single hidden layer of size 10, it chose a 
rectified linear unit (ReLU) function for the hidden layer, 
the Adam solver for weight optimization, and an alpha 
(L2 penalty) of 1.0. For the random forest classifier, it 
chose to use 120 trees, a maximum depth of 12 for each 
tree, a minimum of 5 samples per leaf node, and a maxi-
mum of 5 features per split. For the XGBoost classifier, 
it chose to use 180 estimators, a maximum depth of 2, a 
learning rate of 0.1, and a gamma (minimum loss reduc-
tion for each partition) of 0.

Classifier performance
Performance was similar across all four classifiers. The 
multi-layer perceptron had the highest AUC (0.76) and 
highest area under the precision-recall curve (0.19). 
With the threshold determined by Youden’s J statistic, 
the multi-layer perceptron achieved a precision of 0.1424 
and F1-score of 0.2351. As shown in Fig. 2 and Table 4, 
ridge regression performed similarly in all metrics, espe-
cially when recall is high and clinically meaningful. Given 
comparable performance, regression classifiers may be 

preferable for clinical interpretation as regression coeffi-
cients are generated for each feature.

Table 4 demonstrates a trade-off in which recall is pre-
ferred over precision. This prioritization is desirable for 
our use case as a high detection rate (recall) for patients 
at risk of hyperchloremia is useful, whereas false positive 
alerts (precision) are generally tolerable.

These results can also be represented using the num-
ber needed to alert (NNA = 1/precision) [30]. In the case 
of a baseline “model” in which all patients are flagged for 
next-day hyperchloremia, the precision would equal the 
prevalence (0.06), which then translates to a NNA of 17. 
In comparison, based on a precision of 0.14, our mod-
els perform considerably better with a NNA of 7. While 
an even lower NNA may be needed to justify high-risk 
interventions with stringent cost-benefit considerations, 
this improvement could provide reasonable justification 
for low-risk, low-cost chloride-reducing adjustments. For 
example, a clinician could switch to low-chloride fluids 
and/or administer loop diuretics sooner—generally safe 
and predictable chloride-reducing actions.

Feature analysis
Ridge regression coefficients with magnitude greater 
than 0.2 are reported in Table  5. As we can see, maxi-
mum serum chloride on day 1 had the largest influence. 
This is understandable as one would expect that serum 
chloride on day 1 is a strong predictor of serum chloride 
on day 2. Chloride load also had a relatively large posi-
tive coefficient and follows a similar line of reasoning. 
Interestingly, paralysis, mean airway pressure ventilation, 
female gender, Asian ethnicity, and increased age were 
each associated with greater likelihoods of developing 
hyperchloremia.

Error analysis
We selected 10 ICU stays that were incorrectly classified 
by ridge regression to investigate by hand. Specifically, 
we identified from the training set the five false positives 
with the highest predicted probabilities of hyperchlo-
remia on day 2 and the five false negatives with the lowest 
predicted probabilities.

Table 4  Precision, Recall, and  F1-scores of  the  testing 
set using thresholds set by the maximal Youden’s J statistic

Model Precision Recall F1-score

Multi-layer perceptron 0.1424 0.6741 0.2351

Random forest 0.1423 0.6741 0.2350

Ridge regression 0.1431 0.6169 0.2323

XGBoost 0.1405 0.6550 0.2314
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The five false positives were each predicted to develop 
hyperchloremia with greater than 98% probability. Two 
of the five cases were in fact on the cusp of our cutoff for 
hyperchloremia on day 1, with maximum serum chloride 
measurements of 109 mEq/L, but did not develop hyper-
chloremia ( ≥ 110 mEq/L) on day 2. Another two also had 
high measurements on day 1, 108 mEq/L and 107 mEq/L. 
All five patients received a significant amount of chlo-
ride load and net fluid input, averaging more than 1500 
mEq and 17 L respectively over the first day. Given the 
large coefficients for serum chloride and chloride load, 
these borderline measurements and large inputs most 
likely account for the misclassifications. Addressing 
these discrepancies would likely require the addition of 
more discerning features or a change to our definition of 
hyperchloremia. Interestingly, all five patients had abnor-
mally low minimum serum bicarbonate, ranging from 

20 mEq/L to 6 mEq/L, and all five were on mean airway 
pressure ventilation.

In contrast, the five false negatives were each predicted 
to develop hyperchloremia with lower than 10% prob-
ability. All five cases had relatively low serum chloride on 
day 1, each with maximum serum chloride of 102 mEq/L 
or lower. Other features (e.g. chloride load, fluid balance) 
are quite unremarkable for these patients, with no nota-
ble trends or large values. Further examination of these 
patient records revealed that one patient began receiving 
a high chloride load on day 2 before developing hyper-
chloremia on the same day. Records for another patient 
suggested a measurement error or very sudden and sharp 
hyperchloremia, demonstrating consistently low serum 
chloride measurements ( ≤ 103 mEq/L) throughout day 2 
with the exception of one measurement that was not pre-
cipitated by chloride administration and was well above 
our cutoff (121 mEq/L). The other three patients exhib-
ited gradual variations in serum chloride that briefly and 
slightly crossed our cutoff on day 2 without the admin-
istration of significant amounts of chloride. This analysis 
demonstrates the limitations of assumptions made dur-
ing model development and the consequences of noisy 
clinical data.

The confusion matrix for our ridge regression classi-
fier’s training set predictions is reported in Table 6, which 
shows that this model ultimately predicted 5,460 false 

Fig. 2  Receiver operating characteristic (ROC) and precision-recall curves of the testing set

Table 5  Ridge regression coefficients (magnitude > 0.2)

Binary features: (C)=comorbidity, (I)=intervention

Feature Coefficient

Max. chloride 0.6332

Chloride load 0.4064

Paralysis (C) 0.3353

Mean airway pressure (I) 0.2961

Female 0.2665

Max. sodium 0.2621

Asian 0.2609

Age 0.2210

Max. potassium −  0.2537

Min. bicarbonate −  0.2705

Renal failure (C) −  0.2946

Complicated diabetes (C) −  0.3409

Non-positive pressure (I) −  0.4681

Table 6  Confusion matrix for the ridge regression training 
set

Predicted non-
hyperchloremic

Predicted 
hyperchloremic

True non-hyperchloremic 16,508 5460

True hyperchloremic 464 899
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positives among 21,968 patients that did not develop 
hyperchloremia.

Regression analysis of this false positive subgroup 
revealed increased odds of ICU mortality, new AKI by 
day 7, and MODS on day 7 that were statistically sig-
nificant when compared to the true negative subgroup 
(Table 7).

Discussion
After adjusting for confounders, we observe that elevated 
serum chloride and increased chloride load are both 
associated with higher mortality rates in a general ICU 
population. Patients with increased measures of serum 
chloride also demonstrate increased adjusted odds of 
new AKI by day 7 and MODS on day 7. These findings 
are consistent with the existing literature on ICU subpop-
ulations, which have reported increased mortality with 
high chloride levels as well as reductions in kidney injury 
with low-chloride treatment strategies [2, 3, 6]. Our study 
corroborates these findings in a broad ICU population of 
48,074 patients, further generalizing what is understood 
about the potential effects of elevated chloride.

Using information available from the first day of ICU 
stays, we constructed a set of 34 features and trained 
classifier models to predict the occurrence of hyper-
chloremia on the second day. As far as we know, this is 
the first implementation of hyperchloremia prediction 
using machine learning models. Performance was similar 
across the multi-layer perceptron, random forest, ridge 
regression, and XGBoost models, with typical AUCs of 
approximately 0.76 and NNAs of approximately 7.

As we grow our understanding of how chloride load 
and hyperchloremia may affect morbidity and mortality, 
these prediction classifiers produce alerts that are clini-
cally actionable. Clinicians can provide targeted care to 
high-risk patients by modifying chloride administration 
and elimination strategies, via the use of low-chloride flu-
ids, diuretics, or other interventions. Implementing these 
strategies in all ICU patients could be cost-prohibitive 
and cumbersome, and thus identifying high-risk patients 
offers an opportunity for a more directed and efficient 
approach. With the relatively low number needed to alert 

seen in our models, there is potential for significant cost 
reductions if such changes are implemented.

While false positive alerts may be technically incor-
rect when evaluating classifier performance, we do 
observe higher rates of ICU mortality, new AKI by day 
7, and MODS on day 7 in this group when compared to 
the true negative cohort. Given their higher risk of poor 
outcomes, this subgroup of false positive alerts may also 
benefit from closer consideration and modified treatment 
strategies.

Limitations and future work
Since we have taken a focused approach on aggregated 
data from the first day of ICU care, there is much poten-
tial in expanding our features to include longitudinal 
trends in patient data and make continuous, rolling pre-
dictions. Additionally, MIMIC-III contains a considerable 
amount of information that we have yet to explore—its 
clinical notes, for example, contain much textual data 
that was not considered in this study. More complex and 
subtle feature engineering could improve performance 
and discern interesting subgroups of patients, including 
those that may not fit well under our current model.

Further work should also evaluate other ICU cohorts 
including those of specialized ICUs (e.g. pediatric ICUs) 
so that comparisons and generalizations can be made 
across different datasets while accounting for unique 
clinical considerations and feature constraints.

Lastly, our findings are ultimately drawn from cor-
relations, and continued research should probe for 
causal links and evaluate the efficacy of interventions for 
improving outcomes. Interventions should also be con-
sidered for false positive patients, who exhibit patterns 
of poor outcomes and thus could also benefit from closer 
observation. Evaluation of such interventions can then 
lead to evidence-based changes in clinical care.

Conclusions
Our regression analysis has shown hyperchloremia dur-
ing the acute phase of critical illness to be independently 
associated with increased ICU mortality, new AKI by 
day 7, and MODS on day 7 in a general ICU popula-
tion. In addition, we demonstrate an independent asso-
ciation between chloride load in IV fluids and increased 
ICU mortality. These findings warrant closer attention to 
chloride management in critically ill patients.

Our supervised learning classifiers are able to pre-
dict next-day hyperchloremia at clinically-actionable 
performance levels using features from the first days 
of patient ICU stays. These classifiers yield a number 
needed to alert of 7 while maintaining acceptable levels 
of recall—a helpful rate considering the low prevalence 
of new hyperchloremia in the ICU. Furthermore, error 

Table 7  Comparing false positive patient outcomes to true 
negative patient outcomes under  the  ridge regression 
model

Outcome χ
2 p value Odds ratio [95% CI]

ICU mortality < 0.001 2.218 [1.984, 2.481]

New AKI by Day 7 < 0.001 1.570 [1.473, 1.673]

MODS on Day 7 < 0.001 1.741 [1.495, 2.027]
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analysis reveals a familiar trend of increased morbidity 
and mortality among false positive predictions.

With the potential to help prevent hyperchloremia, 
these predictive models are stepping stones towards 
supporting clinicians as we optimize clinical care and 
improve patient outcomes. There is also much potential 
in future work, which should validate these models in 
additional ICU cohorts, broaden the scope of features 
used, and evaluate potential interventions for at-risk 
patients to translate this progress into clinical action.
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