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Abstract 

Background:  Summarization networks are compact summaries of ontologies. The “Big Picture” view offered by sum-
marization networks enables to identify sets of concepts that are more likely to have errors than control concepts. For 
ontologies that have outgoing lateral relationships, we have developed the "partial-area taxonomy" summarization 
network. Prior research has identified one kind of outlier concepts, concepts of small partials-areas within partial-area 
taxonomies. Previously we have shown that the small partial-area technique works successfully for four ontologies (or 
their hierarchies).

Methods:  To improve the Quality Assurance (QA) scalability, a family-based QA framework, where one QA tech-
nique is potentially applicable to a whole family of ontologies with similar structural features, was developed. The 
373 ontologies hosted at the NCBO BioPortal in 2015 were classified into a collection of families based on structural 
features. A meta-ontology represents this family collection, including one family of ontologies having outgoing lateral 
relationships. The process of updating the current meta-ontology is described. To conclude that one QA technique is 
applicable for at least half of the members for a family F, this technique should be demonstrated as successful for six 
out of six ontologies in F. We describe a hypothesis setting the condition required for a technique to be successful for 
a given ontology. The process of a study to demonstrate such success is described. This paper intends to prove the 
scalability of the small partial-area technique.

Results:  We first updated the meta-ontology classifying 566 BioPortal ontologies. There were 371 ontologies in 
the family with outgoing lateral relationships. We demonstrated the success of the small partial-area technique for 
two ontology hierarchies which belong to this family, SNOMED CT’s Specimen hierarchy and NCIt’s Gene hierarchy. 
Together with the four previous ontologies from the same family, we fulfilled the “six out of six” condition required to 
show the scalability for the whole family.

Conclusions:  We have shown that the small partial-area technique can be potentially successful for the family of 
ontologies with outgoing lateral relationships in BioPortal, thus improve the scalability of this QA technique.

Keywords:  Biomedical ontologies, Ontology quality assurance, Auditing BioPortal ontologies, Ontology auditing 
scalability, Summarization network, Ontology error concentration, Meta-ontology

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Biomedical ontologies are essential for biomedical infor-
mation systems and for their interoperability [1–5]. They 
are also critical for biomedical research, e.g., phenotyp-
ing with EHR text [3, 6–9]. The size of an ontology may 
be defined as the number of its concepts. The complex-
ity of an ontology is measured by the ratio of the number 
of relationships connecting the concepts to the number 
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of concepts. Most widely used ontologies are large and 
complex. This is apparent when looking at the most 
accessed ontologies in the BioPortal [10] of the National 
Center for Biomedical Ontologies (NCBO) [11] at Stan-
ford University. For example, the National Cancer Insti-
tute Thesaurus (NCIt) [12], a cancer-focused ontology, 
has 138,291 concepts and 569,810 relationships in the 
March 2018 release, which results in an approximate 
complexity of 4.12. The most accessed ontologies include 
SNOMED CT [13], GO [14] and ChEBI [15].

Due to the size and complexity of ontologies, modeling 
errors and inconsistencies are unavoidable. It is impor-
tant to correct errors in ontologies to prevent their prop-
agation into the biomedical information systems using 
these ontologies. There is extensive research on quality 
assurance (QA) of ontologies [16–18], resulting in vari-
ous automatic/semi-automatic methods to improve the 
quality of ontologies. Due to limited human resources, it 
is not practical to audit all the concepts of an ontology. 
Thus, one approach in QA of ontologies is to identify sets 
of concepts with a higher likelihood of errors than con-
trol samples. An example of such a methodology is based 
on identifying non-lattice structures in the hierarchy of 
an ontology [19–22]. Another framework, comprising 
several methodologies, was developed based on summa-
rization networks. The Structural Analysis of Biomedical 
Ontologies Center (SABOC) [23] team has developed 
different summarization network-based QA techniques 
for many biomedical ontologies, e.g., for GO [24, 25], 
SNOMED CT [26–32], and NCIt [33–36] (Please refer to 
Table 1 for the terms used in the following writing).

Summarization network-based QA techniques start 
with the derivation of summarization networks for ontol-
ogies. Such networks are composed of nodes and hierar-
chical links connecting them, in which a node represents 
a set of similar concepts. Hierarchical links are derived 

based on the hierarchical is-a relationships between 
concepts. Hence, summarization networks are compact 
summaries of ontologies. Summarization networks are 
derived by algorithms based on structural features of the 
ontologies.

Different ontologies may have different structural fea-
tures, thus they will have different kinds of summari-
zation networks and different definitions of similarity 
among concepts. For example, concepts in eight of the 19 
hierarchies of SNOMED CT have outgoing lateral rela-
tionships, while concepts in the remaining 11 hierarchies 
only serve as targets of lateral relationships from eight 
other hierarchies. Two kinds of summarization networks 
have been developed for these two different kinds of hier-
archies: partial-area taxonomies [30] and Tribal Abstrac-
tion Networks (TANs) [27] respectively. In a partial-area 
taxonomy, the nodes are partial-areas, which summarize 
sets of concepts with exactly the same set of lateral rela-
tionships that are all hierarchically under one specific 
root concept. The root concept provides the partial-area 
its name and semantics [37].

The “Big Picture” ontology view offered by summariza-
tion networks enables users to identify sets of concepts 
that are more likely to have errors than control concepts. 
Such sets can be utilized to guide curators of ontologies 
to concentrate on concepts for which a better QA yield 
can be achieved. The yield is measured by the ratio of the 
number of identified errors to the number of reviewed 
concepts. Two themes that have been shown to typi-
cally indicate higher concentrations of errors than found 
in control samples are complex concepts [33, 38] and 
uncommonly modeled concepts [26, 38].

Most research on QA techniques has been dem-
onstrated to be effective for individual ontologies. To 
improve QA scalability, He et al. [39] and Ochs et al. [40] 
developed a family-based QA framework where one QA 

Table 1  Glossary

Term Definition Example

is-a relationship The subsumption relationship underlying the hierarchy of an 
ontology is called is-a relationship

A hierarchical is-a relationship connecting the concept Regula-
tory Gene to the concept Gene in Fig. 1a

Lateral relationship The non-hierarchical semantic relationship is called lateral rela-
tionship, in contrast to the hierarchical is-a relationship. It is 
called “role” in NCIt and “attribute relationship” in SNOMED CT

The NCIt concept Antigen Gene in Fig. 1a is defined by its lateral 
relationship (or role) Gene Plays Role In Process with the value 
Immune Response Process

Area An area is a group of all the concepts having exactly the same 
set of lateral relationship types

Figure 1b has an area colored in blue and labeled as Gene Plays 
Role In Process, summarizing four concepts

Partial-area A partial-area is a subunit in an area defined by a root concept 
describing the semantic of the partial-area, including also its 
all descendant concepts within the area sharing the same 
semantic

Figure 1c has a partial-area labeled as Antigen Gene (4) in the 
right blue area

Small partial-area A partial-area is small if its size is not larger than a bound b, 
where b is a small number, typically lower or equal to 10

The partial-area MicroRNA Gene (2) in the left blue area in Fig. 1c 
is a small partial-area with size 2
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technique is potentially applicable to a whole family of 
ontologies with similar structural features. They classi-
fied the 373 ontologies hosted at that time at the NCBO 
BioPortal [10], the largest existing ontology repository, 
into a collection of families based on structural features. 
A meta-ontology [40] was used to represent this family 
collection. For example, there were 279 ontologies in the 
family where concepts have outgoing lateral relation-
ships. Lateral relationships are an essential feature to 
derive partial-area taxonomies.

In order to conclude that one QA technique is poten-
tially applicable for a family F, this technique should be 
demonstrated as successful on six out of six ontologies in 
family F [40]. Then this technique will be applicable to at 
least half of the ontologies in F. For example, if a family F 
has 20 ontologies and one technique is successful for six 
of its ontologies, then it is guaranteed to be applicable for 
at least 10 ontologies of F.

One of the techniques falling under the above theme 
of complex concepts is the set of overlapping concepts. 
Overlapping concepts are concepts which belong to mul-
tiple partial-areas in a partial-area taxonomy of an ontol-
ogy. The exact specification of overlapping concepts is 
complex and required the definition of a refinement of 
the partial-area taxonomy summarization network into 
the disjoint partial-area taxonomy summarization net-
work [41]. We have shown that the overlapping complex 
concepts-based technique is potentially applicable to a 
family of 76 ontologies with two features, (1) having out-
going lateral relationships and (2) [some] concepts having 
multiple parents [33].

In a long-range research program, the SABOC team 
has repeatedly demonstrated that one specific kind of 
uncommonly modeled concepts, namely concepts in 
small partials-areas within partial-area taxonomies, are 
statistically significantly more likely to have errors than 
sets of concepts in large partial-areas. The small partial-
area technique was previously shown to work success-
fully for four ontologies (or hierarchies in ontologies). 
They are the NCIt’s Neoplasm subhierarchy [35], the 
Biological Process hierarchy [37], SNOMED CT’s Proce-
dure hierarchy [29], and the Chemical Entities of Biologi-
cal Interest (ChEBI) [42] ontology [43]. Note that since 
different hierarchies in SNOMED CT and NCIt were 
developed and maintained by different teams with differ-
ent features, we cannot assume that if a technique works 
for one hierarchy in such an ontology, it will necessarily 
work for another hierarchy. Thus, we have considered 
each hierarchy in these two ontologies as an individual 
ontology.

Can this technique be potentially successful for the 
whole family of ontologies with outgoing lateral rela-
tionships? For an affirmative answer, we need to show its 

success on six out of six ontologies. Hence, in this paper, 
we investigate this technique on two more ontologies: 
SNOMED CT’s Specimen hierarchy and NCIt’s Gene 
hierarchy, which belong to the same family as the previ-
ous four ontologies.

In the time passed since the previous research [40], 
the number of ontologies in the NCBO BioPortal has 
increased as of August 2019 to 796. Thus, we will update 
the meta-ontology of the families of BioPortal ontolo-
gies [40] to the current situation. This will increase the 
impact of the applicability of the small partial-areas and 
the overlapping concepts techniques beyond the 279 
ontologies (now 371) and 76 ontologies of the previous 
study [40], according to the newer collection of ontolo-
gies in BioPortal. Finally, we received queries from read-
ers of previous papers [33] and [40] requesting the details 
of the statistical analysis leading to the result of six out of 
six. Thus, we include in this paper the detailed analysis 
which did not appear before.

The two ontologies analyzed in this paper are 
SNOMED CT [13] and the National Cancer Institute 
Thesaurus (NCIt) [12]. Before providing the background 
for each of them, we first describe their common proper-
ties. SNOMED CT and NCIt are arguably the two most 
important and frequently used clinical ontologies in bio-
medicine. Both are modeled by a version of description 
logic, thus the basic building blocks are concepts that are 
connected by is-a relationships forming a hierarchy.

In a hierarchy, a concept may have multiple parent con-
cepts, i.e., multiple is-a relationships pointing upward. 
(We are using the simpler term "hierarchy," as opposed 
to other terms in use in the community, such as "heterar-
chy.") Hence, the hierarchy can be presented as a directed 
acyclic graph (DAG). In contrast to the is-a hierarchi-
cal relationship, a lateral semantic relationship connects 
two concepts, which may be in different hierarchies to 
specify a defining characteristic of the source concept. 
Each lateral relationship has a specified domain (i.e., the 
source hierarchy in which a lateral relationship can be 
applied) and a corresponding range (i.e., the target hier-
archy to which the lateral relationship can point). Note 
that not every hierarchy serves as domain (i.e., not every 
hierarchy has been defined with lateral relationships); 
instead, some hierarchies serve only as ranges of lateral 
relationships.

Lateral relationships are inherited from parent con-
cepts to child concepts. For example, the concept Neo-
plasm of digestive system in SNOMED CT  has an is-a 
relationship to the concept Disorder of digestive system 
and a lateral relationship named Finding site pointing to 
the target concept Structure of digestive system. The lat-
eral relationship is inherited by the concept Malignant 
neoplasm of digestive system which is a child concept of 
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Neoplasm of digestive system. Both SNOMED CT and 
the NCIt have an asserted and an inferred release. The 
asserted release contains assertions explicitly defined by 
the curator team, while the inferred release is obtained by 
running a reasoner on the former one. In this paper, we 
used the inferred releases of SNOMED CT and NCIt.

SNOMED CT
SNOMED CT [44] is the most comprehensive, multilin-
gual clinical healthcare ontology in the world, which is in 
use in more than eighty countries and is now accepted as 
a common global standard for health terms. It includes 
terms for a wide range of clinical specialties, disciplines 
and requirements. Thus, it enables the accurate record-
ing and sharing of clinical and health information and 
facilitates the semantic interoperability of Electronic 
Health Records [45]. It is maintained and distributed by 
SNOMED International [46]. There are two new releases 
of the SNOMED CT International Edition in each year, 
released in January and in July, respectively. SNOMED 
CT is released in tab-delimited flat files. In this paper, 
we utilized the January 2018 release of the SNOMED CT 
International Edition.

SNOMED CT’s concepts are divided into 19 hierar-
chies (e.g., Clinical Finding and Specimen). Lateral rela-
tionships are called attribute relationships in SNOMED 
CT. Among the 19 hierarchies, eight hierarchies are 
defined with attribute relationships and the other 11 
hierarchies serve only as ranges of attribute relationships, 
e.g., Organism. In the January 2018 release, there were 
341,105 concepts connected by 511,767 is-a hierarchical 
relationships and 550,307 attribute relationships. For the 
Specimen hierarchy considered in this study, there were 
1696 concepts defined by five types of attribute relation-
ships, i.e., Specimen source topography (1334 concepts), 
Specimen procedure (902 concepts), Specimen substance 
(774 concepts), Specimen source morphology (147 con-
cepts), and Specimen source identity (118 concepts).

National Cancer Institute Thesaurus (NCIt)
The National Cancer Institute Thesaurus (NCIt) [12] 
is an ontology focused on cancer related information, 
including clinical care, translational and basic research, 
and public and administrative information. It is widely 
used by various information systems at the National 
Cancer Institute (NCI) and outside of NCI, nationally 
and internationally. NCIt facilitates interoperability and 
data sharing in the cancer research community [47]. NCI 
manages and publishes the NCIt monthly through NCI 
Enterprise Vocabulary Services (EVS) in OWL and flat 
file formats. The NCIt can be accessed through the NCI 
Term browser [48]. Lateral relationships are called roles 

in NCIt. We will use "relationships" from this point on to 
refer to lateral relationships for both ontologies.

The NCIt’s March 2018 release used in this paper had 
138,291 concepts organized into 191 disjoint IS-A hier-
archies and connected by 148,460 is-a hierarchical rela-
tionships and 421,350 roles. Examples of the hierarchies 
are Disease Disorder or Finding; Gene; Biological Process; 
Molecular Abnormality; and Abnormal Cell. There are 
11 hierarchies defined with relationships, e.g., Gene and 
Biological Process, and eight hierarchies serving only as 
targets of relationships, e.g., Organism and Biochemical 
Pathway. The Gene hierarchy investigated in this research 
had 10,117 concepts at the time, which was almost six 
times the number of concepts in the Specimen hierarchy 
of SNOMED CT.

The Gene hierarchy is defined with 16 types of relation-
ships, including the following five most frequent relation-
ships Gene Plays Role In Process (9325 concepts), Gene In 
Chromosomal Location (3722 concepts), Gene Found In 
Organism (3359 concepts), Gene Is Element In Pathway 
(2457 concepts), and Gene Associated With Disease (1365 
concepts).

Partial‑area taxonomy
In a long-range research program by the Structural Anal-
ysis of Biomedical Ontologies Center (SABOC), sum-
marization networks have been developed and applied 
to QA of ontologies. They enable to characterize subsets 
of concepts that are statistically significantly more likely 
to have errors [38] than concepts in a random control 
group. A summarization network is a network of nodes 
connected by hierarchical child-of links. Each node sum-
marizes a group of similar concepts. Compared to an 
ontology itself, the summarization network, derived 
from it, is more compact. Two typical summarization 
networks are called area taxonomy and the partial-area 
taxonomy [30].

The nodes in an area taxonomy, automatically derived 
from an ontology, are called areas. An area is a group of 
all the concepts having exactly the same set of relation-
ship types. Each concept can be summarized by exactly 
one area, according to its type(s) of relationships. Hence, 
areas are disjoint. Areas are labeled by their set of rela-
tionship types with the number of concepts that they 
summarize. A root concept of an area is a concept such 
that all its parent concept(s) are not in this same area. An 
area may have multiple root concepts. Child-of links con-
necting areas are derived from the hierarchical is-a rela-
tionships between concepts in the ontology. Namely, if a 

1  The fact that both ontologies have 19 hierarchies is coincidental.
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root concept of an area A has a parent concept in another 
area B, then area A is child-of area B.

Figure  1b shows the area taxonomy derived for an 
excerpt of 12 concepts from NCIt’s Gene hierarchy in 
Fig. 1a. For example, in Fig. 1a, the two concepts Micro-
RNA Gene and its child concept MIR1243 Gene enclosed 
in the left blue rectangle have only one relationship type 
Gene Found In Organism. Hence, they are represented 
as the left blue area in Fig. 1b, labeled as Gene Found In 
Organism (2 concepts). The concept MicroRNA Gene is 
the root concept of the area, because its parent concept 
Gene is in another area. The latter area has no relation-
ships and hence is labeled as Ø (= the empty set). As a 
result, the area Gene Found In Organism (2 concepts) 
has a child-of link (indicated by the bold upward arrow) 
pointing to the area Ø, which is called the root area of 
this area taxonomy.

If an area has multiple root concepts, then it includes 
concepts with different semantics, represented by the dif-
ferent root concepts. For example, in Fig. 1a there are two 
root concepts GAGE6 wt Allele and CAGE1 wt Allele in 
the right green area, representing two different genes.

To obtain groups of concepts having both similar struc-
ture and similar semantics, an area is divided into par-
tial-area(s). A partial-area consists of a root concept 

and all its descendant concepts in the same area, which 
are sharing the same semantics represented by the root 
concept. Thus, a partial-area is labeled by its root con-
cept and the number of concepts in the partial-area. 
Partial-areas are connected by child-of links to form a 
partial-area taxonomy. Similar as in the area taxonomy, 
if the root concept of partial-area A has a parent concept 
in partial-area B, then A is child-of B. Figure  1c shows 
the partial-area taxonomy for Fig.  1a. For example, the 
right green area is divided into two partial-areas and the 
partial-area GAGE6 wt Allele (1) is child-of the partial-
area Antigen Gene (4). Gene is the only root concept of 
the area Ø and the partial-area Gene (2) is the root of the 
partial-area taxonomy.

Related partial‑area taxonomy‑based quality assurance 
studies
The SABOC team has conducted and published many 
QA studies [49] successfully utilizing summarization net-
works of ontologies to identify characterizations of con-
cepts more likely to have errors. Two repeated themes 
among these studies are (1) complex concepts and (2) 
uncommonly modeled concepts. Examples of complex 
concepts are overlapping concepts [32, 33] and concepts 
with many relationship types [50, 51]. Concepts in small 

Ø 
(2 concepts)

Gene Plays Role In Process
(4 concepts)

Gene In Chromosomal Location, 
Gene Plays Role In Process

(2 concepts)

Gene Associated With Disease, 
Gene Found In Organism

(2 concepts)

Ø 

Gene Found In Organism

MicroRNA Gene (2)

Gene (2)

Gene In Chromosomal Location, 
Gene Plays Role In Process

CAGE1 wt Allele 
(1)

b

c

Gene Associated With Disease, 
Gene Found In Organism

MIR125A Gene (2) GAGE6 wt Allele 
(1)

Gene Plays Role In 
Process

a

Gene Associated 
With Disease, Gene 
Found In Organism

MIR125A Gene

Ø Gene

Regulatory Gene

MicroRNA Gene

MIR1243 Gene

Antigen Gene

Tumor Antigen Gene

GAGE6 wt Allele

GAGE6 Gene

Gene In Chromosomal Location, 
Gene Plays Role In Process

CAGE1 Gene

CAGE1 wt Allele

Gene Found In 
Organism

MIR125A wt Allele

Gene Found In Organism 
(2 concepts)

Gene Plays Role In Process

Antigen Gene (4)

Fig. 1  a An excerpt of 12 concepts from NCIt’s Gene hierarchy. Concepts are denoted by round-corner boxes and are connected by is-a 
relationships represented by upward arrows. Colored rectangles enclose concepts with the same set of relationship types (in bold). Root concepts 
are shown as bold boxes. b The area taxonomy for a. Areas are presented as colored boxes based on the number of relationship types, i.e., 
areas with the same number of relationship types have the same color. An area is labeled by the set of its relationship types and the number of 
concepts that it summarizes in parentheses. Areas are connected by child-of links shown as bold upward arrows. c The partial-area taxonomy for a. 
Partial-areas are shown as white boxes inside areas. A partial-area is labeled by its root concept and the number of concepts that it summarizes in 
parentheses. Partial-areas are connected by child-of links represented as bold arrows, as in the area taxonomy
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partial-areas of partial-area taxonomies [37] and con-
cepts forming a large area without any relationships [34] 
are two examples of uncommonly modeled concepts. 
Some of these concepts, e.g., overlapping concepts and 
concepts in small partial-areas, can only be seen through 
"the lens" of a partial-area taxonomy. The previous four 
successful QA studies on concepts in small partial-areas 
are described as follows.

In the study on NCIt’s Neoplasm subhierarchy [35], we 
found that the error rates of concepts in small partial-
areas (size ≤ 10) are twice as big as error rates for large 
partial-areas. This was shown with statistical significance 
(the p value of Fisher’s exact test is less than 0.05). Hua 
et  al. [37] reported a study on NCIt’s Biological Pro-
cess hierarchy, in which the percentage of erroneous 
concepts in partial-areas with three or fewer concepts 
(12%) is higher than for other concepts (5%). Although 
they did not report the p value, based on their reported 
data, we calculated the p value of Fisher’s exact test as 
0.0011 (< 0.05), meaning concepts in small partial-areas 
(size ≤ 3) have statistically significantly more errors than 
concepts in partial-areas with sizes greater than three.

In the study on SNOMED CT’s Procedure hierarchy 
by Ochs et al. [29], the small partial-areas (size ≤ 3) were 
reported to harbor more errors than large partial-areas, 
with statistical significance (p = 0.019 < 0.05). Liu et  al. 
[43] investigated the small partial-area error concentra-
tion of the chemical ontology ChEBI and obtained statis-
tical significance (p = 0.0003) for the comparison of error 
rates between small (size ≤ 2) and large partial-areas. 
For all four cases, concepts of small partial-areas have 
statistically significantly more errors than concepts of 
large partial-areas, although the interpretation of “small” 
varies.

BioPortal ontologies
BioPortal, a website maintained by the National Center 
for Biomedical Ontology located at Stanford, is widely 
considered to be the world’s most comprehensive reposi-
tory of biomedical ontologies (https​://biopo​rtal.bioon​
tolog​y.org/). Since its inception it has been growing on a 
regular basis, reaching 860 ontologies with over 11 mil-
lion classes (~ concepts) as of May 2020. In addition, Bio-
Portal provides tools such as an annotator program (in 
beta release) and an ontology recommender and usage 
statistics for individual ontologies. The latter include 
monthly visits and individual projects using a specific 
ontology. BioPortal is regularly updated with the most 
recent release of an ontology, with earlier releases being 
archived. As to the exact definition of what qualifies as a 
biomedical ontology, BioPortal is agnostic. Terminologies 
that are of relevance to biomedicine are included, even if 

they do not pass muster according to diverse definitions 
of what it means to be an ontology.

Methods
Updating the meta‑ontology for BioPortal ontologies
Ochs et  al. [40] introduced a meta-ontology describing 
various structure-based families of ontologies appear-
ing in BioPortal. These families covered 373 out of 439 
ontologies hosted in BioPortal at a point in 2015. Mean-
while the collection of ontologies in the BioPortal grew 
to 796 (as of 8/29/2019). We are presenting in this paper 
a meta-ontology updated to reflect the current situation. 
This update will enable us to report the current number 
of ontologies in the family of ontologies with relationships 
for which the QA methodology of small partial-areas is 
applicable. Similarly, we will be able to update the num-
ber of ontologies in the family of DAG ontologies with 
relationships for which the overlapping concepts QA 
methodology [33] is applicable.

The BioPortal-based meta-ontology [40] categorizes 
the stored ontologies into families based on the structural 
features of the ontologies, namely (1) object-properties 
(OP) (~ relationships), (2) data-properties (DP) (~ attrib-
utes), and (3) hierarchy structure (Is it a tree or a DAG?). 
Since our current QA methodologies do not involve data-
properties, we will present the meta-ontology without 
the DP category, thus simplifying the diagram (Fig.  2). 
This diagram will incorporate the numbers of ontologies 
for which the small partial-area QA methodology and 
the overlapping concepts QA methodology are applicable.

According to previous work [40], out of 373 ontolo-
gies in BioPortal in 2015, there were 279 ontologies 
having the structural feature "outgoing lateral relation-
ships," including the six ontologies analyzed in this paper. 
Establishing the success of the QA methodology based 
on small partial-areas (which relies on outgoing lateral 
relationships) for two more ontology hierarchies in this 
paper implies that the small partial-area-based QA tech-
nique can be applied to this whole ontology family. QA 
for large, existing ontologies is considered beyond the 
available resources of most organizations. Thus, curators 
of the ontologies in this family could concentrate their 
available, limited auditing resources on concepts in small 
partial-areas within partial-area taxonomies, so that they 
would get a better QA yield than auditing a random sam-
ple of concepts of the same size.

Is the small partial‑area‑based QA methodology applicable 
for a family of BioPortal ontologies?
To claim that a QA technique is potentially applicable 
to a whole family of ontologies, this technique should 
be demonstrated being successful on six out of six 

https://bioportal.bioontology.org/
https://bioportal.bioontology.org/
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ontologies or on eight out of nine ontologies. The ration-
ale of this statement is as follows.

We consider whether a QA technique is working for 
an ontology or not as an independent experiment. The 
experiments on a list of ontologies from the same fam-
ily have a series of binary outcome, i.e., working (success) 
with a probability p or not working (failure) with a prob-
ability (1 ̵ p), following a binomial distribution.

The reason is that for a specific sequence with i suc-
cesses and (n ̵ i) failures the probability is pi(1− p)n−i . 

There are 
(

n
i

)

=
n!

i!(n−i)!
 ways to select a specific 

sequence with i successes and (n ̵ i) failures yielding 
(
n
i
)pi(1− p)n−i . We need to test whether the observed 

experimental results are likely to have been generated by 
chance alone, assuming equal probability for each state 
and using 0.05 as our threshold for statistical 
significance.

Given the small numbers of ontologies in each family, 
we calculate exact confidence intervals (as opposed to 
normal approximations) and—to be conservative—we 
use central confidence intervals (as opposed to Stern’s 
narrower but asymmetric confidence intervals). Spe-
cifically, we use the exact binomial central confidence 
intervals defined by Clopper and Pearson [52]. In 
experiments where all the items are in the same state 

(

n
i

)

pi(1− p)n−i

(i.e., success), six is the minimum number to achieve 
statistical significance. That is, with six out of six suc-
cesses, the 95% confidence interval on the underlying 
probability is 0.541–1, which excludes chance or 0.5. 
That means, if a QA technique is demonstrated suc-
cessful on six out of six ontologies, it will also be suc-
cessful for other ontology members in the same family 
with a probability between 0.541 and 1. That is, for at 
least half of the ontologies in this family, this QA tech-
nique is likely to be successful.

In experiments where one differs, nine is the mini-
mum number to achieve statistical significance. That 
is, with eight out of nine successes, the 95% confidence 
interval on the underlying probability is 0.518 to 0.997, 
again excluding 0.5. Twelve (10 out of 12) achieves sig-
nificance if two differ from the others, and so on. In all 
these cases, the technique is likely to be successful for 
at least half of the ontologies in this family.

As described in Background, we already have four 
successful studies showing that concepts in small par-
tial-areas are statistically significantly more likely to 
have errors than concepts in large partial-areas. The 
definition of “small” varies for different ontologies in 
this paper. In order to achieve six successes, we con-
ducted QA studies on SNOMED CT’s Specimen hierar-
chy and NCIt’s Gene hierarchy, since they belong to the 
same structural family as the previous four successful 
ontologies. The following hypothesis was investigated 
in the two QA studies.

0-1. Ontology
(566)

1-1. ∃ OP
(371)

1-2.  ¬∃ OP
(195)

1-4. Tree
(225)

1-3.  DAG
(341)

Level 0

Level 1

1-5. ∃ OP
with domain

(231)

1-6. ∃ OP in
restriction

(289)

1-7. ∃ only OP
with domain

(82)

1-8. ∃ OP with domain and 
∃ OP in restriction

(149)

1-9. ∃ only OP in
restriction

(140)

2-1. DAG & ∃ only
OP with domain

(32)

2-2. Tree & ∃ only
OP with domain

(50)

2-4. Tree & ∃ only
OP in restriction

(37)

2-3. DAG & ∃ only
OP in restriction

(103)

2-6. Tree
& ¬∃ OP
(116)

2-5. DAG 
& ¬∃ OP

(79)

2-7. DAG & ∃ OP with
domain and ∃ OP in

restriction
(127)

2-8. Tree & ∃ OP with
domain and ∃ OP in

restriction
(22)

Level 2

LEGEND:
OP: object properties

: there exists
¬ : there does not exist
DAG: Directed Acyclic Graph

Fig. 2  The structured-based meta-ontology for BioPortal ontologies in August 2019
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Hypothesis 1  Concepts in small partial-areas of the 
partial-area taxonomy derived from an ontology have 
statistically significantly more errors than concepts in 
large partial-areas.

Concepts in a partial-area share similar structure and 
semantics. The reason why small partial-areas harbor 
more errors is that the concepts in small partial-areas 
probably appear there due to uncommon modeling. 
These concepts are considered as outlier concepts, since 
in the whole ontology there are only a few concepts with 
the combination of the specific structure and semantics 
as of this small partial-area. This uncommon modeling 
may have resulted from modeling errors in the ontology. 
Once these errors are corrected, concepts in small par-
tial-areas will likely be merged into big(ger) partial-areas.

Consider, for example, the concept Tendon biopsy sam-
ple. In the January 2018 SNOMED CT release, it has two 
parent concepts, Tendon sample and Biopsy sample, thus 
Tendon biopsy sample itself is a partial-area of one single 
concept. However, in the January 2019 release, its parent 
concept Biopsy sample was replaced by the concept Soft 
tissue biopsy sample, resulting in Tendon biopsy sample 
being moved into the partial-area Soft tissue biopsy sam-
ple containing 22 concepts. We consider this change as a 
correction of a modeling error that existed in the January 
2018 release. Through this example it becomes clear that 
corrections of modeling errors can simplify the structure 
of ontologies, which is reflected in a reduced number 
of concepts in small partial-areas, i.e., outlier concepts. 
Similar simplifications were shown in previous work [33, 
53].

The following flow chart (Fig. 3) summarizes the pro-
cess of the study to show success of applying the small 
partial-area based QA methodology on an ontology.

QA methodology for the SNOMED CT Specimen hierarchy
To investigate Hypothesis 1 on the Specimen hierarchy 
of SNOMED CT, we conducted a randomized control 
trial on a sample of specimen concepts in SNOMED 

CT. In order to obtain the sample, the partial-area 
taxonomy was first automatically derived from the 
Specimen hierarchy of the SNOMED CT January 2018 
release using the software tool Ontology Abstraction 
Framework (OAF) [54] developed by the SABOC team. 
One kind of concepts named “overlapping concepts” in 
partial-area taxonomies have been demonstrated prone 
to have more errors than non-overlapping concepts 
[33]. To avoid biasing the results, overlapping concepts 
were excluded from this study. According to our pre-
vious experience, the exact threshold to distinguish 
between “small” and “large” for different ontologies var-
ies and is determined by the study’s results. Thus, we 
initially consider partial-areas with the number of con-
cepts (i.e., size) ranging from 1 to 10 as small partial-
areas and partial-areas with more than 10 concepts as 
large partial-areas.

Utilizing the derived partial-area taxonomy, we col-
lected a random sample of 100 specimen concepts, 
consisting of 50 concepts from small partial-areas and 
50 concepts from large partial-areas. To investigate 
the preferred threshold of “small” partial-areas for the 
Specimen hierarchy, for each size ranging from 1 to 10, 
the number of chosen concepts was proportional to 
the total number of concepts with this size. The small 
partial-area concepts and large partial-area concepts 
were mixed into a list with a random order. The domain 
expert, YC, who has medical and ontological training 
and extensive QA experience on biomedical ontolo-
gies, reviewed this list of 100 random concepts to check 
whether there are modeling issues for each one and 
recorded the suggested corrections.

The study hypothesis was unknown to YC. YC also 
had no idea which concept is from a small partial-
area and which concept is from a large partial-area. 
Based on her error report, we first determined the best 
threshold of partial-area size to distinguish between 
small partial-areas and large partial-areas for the Speci-
men hierarchy. Then we calculated the two-tailed p 
value of Fisher’s exact test [55] to investigate whether 

Mix the two samples randomly and 
submit for review by domain experts

Identify a random sample of small 
partial-area concepts and a same size 
random sample of large partial-area 
concepts

Pick a size range for 
small partial-areas 
based on the histogram

Create a histogram for 
partial-areas by size

Create a partial-area
taxonomy

Calculate the error rate 
found for each sample

Check the statistical 
significance

Fig. 3  The flow chart summarizing the process of the small partial-area based QA study
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there is a statistically significant difference between the 
error rates of small partial-area concepts and large par-
tial-area concepts.

QA methodology for the NCIt Gene hierarchy
The QA methodology for the NCIt Gene hierarchy is 
similar as that for the SNOMED CT Specimen hierarchy. 
First, we derived the partial-area taxonomy for the Gene 
hierarchy of the NCIt March 2018 release using the OAF 
software tool. Then we randomly chose 50 concepts from 
small partial-areas and 50 concepts from large partial-
areas. At this step, overlapping concepts in the partial-
area taxonomy were excluded to avoid bias.

The difference between the two studies is the sampling 
technique from the small partial-area concepts due to the 
large difference between the numbers of concepts in the 
two hierarchies. As mentioned in the Background sec-
tion, the Gene hierarchy of NCIt is six times larger than 
the Specimen hierarchy of SNOMED CT. For the Gene 
hierarchy, for each size of small partial-area, ranging 
from 2 to 10, five concepts were randomly picked. Since 
the number of partial-areas with size = 1 is much larger 
than that of other small partial-areas, 10 concepts were 
randomly chosen. The reason for this approach to sam-
pling is the need to represent different sizes fairly.

The randomly mixed 100 concepts were presented 
to the domain expert, HM, who is trained in medicine 
and biomedical ontologies and has conducted extensive 
QA studies on NCIt. Similar to the study on the Speci-
men hierarchy, HM was blinded to the study hypoth-
esis to avoid bias. Furthermore, she did not know which 
concepts are from small partial-areas. After reviewing 
the sample, HM submitted an error report on observed 
modeling issues with suggested corrections. Again, the 
preferred threshold for the size of small partial-areas was 
selected based on the error percentages. Then the two-
tailed p value of Fisher’s exact test was calculated to eval-
uate the statistical significance of the hypothesis.

Results
Updated meta‑ontology for BioPortal ontologies in August 
2019
The theory underlying the structure-based meta-ontol-
ogy is complex and was described at great length before 
[40]. The meta-ontology presented in Fig.  2 should be 
self-explanatory with the help of the legend. In this 
meta-ontology only 566 ontologies out of 796 ontolo-
gies in the BioPortal collection in August 2019 are pre-
sented. The remaining ontologies did not qualify for 
inclusion in the meta-ontology due to the following 
reasons. There are 74 ontologies without a submission 
file and 12 ontologies had license restrictions. No active 

URL existed for 21 ontologies and the rest of the ontol-
ogies that are not represented in the meta-ontology 
could not be parsed by the OWL API.

In the meta-ontology, in node 1–1., 371 ontologies 
have OPs (~ relationships), and therefore small partial-
areas can be determined (if they exist). We note that 
the number of ontologies specified in the two children 
of 1–1. (1–5. and 1–6.) add up to more than 371. The 
reason is that those two families are not disjoint. A par-
tition into disjoint families is achieved at the grandchil-
dren of 1–1. (1–7., 1–8., and 1–9.).

Results of the QA study on the SNOMED CT Specimen 
hierarchy
The partial-area taxonomy derived from the Specimen 
hierarchy with 1696 concepts in the SNOMED CT Jan-
uary 2018 release has 23 areas and 530 partial-areas. 
The sample of 100 concepts in the study was randomly 
selected from 1463 concepts, excluding overlapping 
concepts, as noted before.

Among the 100 reviewed concepts, the domain 
expert YC found 14 concepts (14%) having modeling 
issues. Table  2 shows the partial-area distribution and 
the concept distribution of the complete hierarchy, 
and the numbers of sample concepts and erroneous 
concepts for different partial-area sizes. For exam-
ple, there are 345 partial-areas with only one concept. 
Among them, we randomly selected 22 concepts for 
review. The domain expert found that three of them 
(13.6% = 3/22) had modeling issues. Although there is 
a large error rate difference between the partial-areas 
with sizes smaller than 10 and those with sizes larger 
than or equal to 10, there is no trend of the error rates 
among partial-areas with sizes smaller than 10 discern-
ible. Table 3 shows four example errors identified by the 
domain reviewer.

According to the erroneous concept percentage dis-
tribution in Table  2, we selected the partial-area size 
nine as the threshold to distinguish small partial-areas 
from large partial-areas, to achieve the maximum sta-
tistical significance of error rates (22.4% vs. 5.9%). The 
contingency table for the p value calculation between 
erroneous concepts from small partial-areas and from 
large partial-areas is shown in Table  4. The two-tailed 
p value of Fisher’s exact test is 0.0226, meaning that the 
difference of error rates between small partial-areas 
(size ≤ 9) and large partial-areas has statistical signifi-
cance. In addition, the threshold 10 also has statistical 
significance with p value 0.0407. Hence, Hypothesis 1 
was confirmed for the SNOMED CT Specimen hierar-
chy, resulting in the fifth successful study in the family 
of ontologies with outgoing lateral relationships.
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Results of the QA study on the NCIt Gene hierarchy
The partial-area taxonomy derived from the Gene hierar-
chy with 10,117 concepts in the NCIt March 2018 release 
has 5594 partial-areas within 143 areas. The random 
sample of 100 gene concepts in this study was selected 
from 10,005 concepts excluding overlapping concepts in 
the partial-area taxonomy.

During the review on the 100 gene concepts, the 
domain expert HM found 62 concepts (62%) having 

modeling issues. Table  5 presents the results including 
the partial-area distribution and the concept distribution 
of the complete hierarchy, and the sample concept and 
erroneous concept distributions based on partial-area 
sizes. For example, in the partial-area taxonomy for the 
Gene hierarchy, there are 90 partial-areas with size = 2, 
that is, a total of 180 concepts. Five concepts out of them 
were randomly selected for review. The domain expert 
found four concepts (80% = 4/5) had modeling issues. 
As the partial-area size increases beyond two, there is no 
significant trend of error rates. However, the error rate 
for partial-area sizes one and two, is higher than that for 
the other sizes. Table 6 shows five example errors identi-
fied by the reviewer.

As before, we evaluated the statistical significance of 
error rate differences between small and large partial-
areas by calculating the two-tailed p value of Fisher’s 
exact test using different thresholds. The results show 
that the partial-area size two is the threshold to distin-
guish between small and large partial-areas with the 
maximum statistical significance of error rates (86.7% vs. 

Table 2  The distribution of  complete SNOMED CT specimen concepts, sample concepts and  erroneous concepts 
by partial-area size

Partial-area size # of partial-areas # of concepts # of sample concepts # of erroneous concepts Error 
percentage 
(%)

1 345 345 22 3 13.6

2 72 120 8 1 12.5

3 25 61 4 2 50.0

4 12 40 3 1 33.3

5 11 39 2 1 50.0

6 10 51 3 0 0

7 7 36 2 1 50.0

8 4 28 2 0 0

9 6 52 3 2 66.7

10 2 10 1 0 0

 > 10 36 681 50 3 6.0

Total 530 1463 100 14 14

Table 3  Four examples of errors for SNOMED CT specimen concepts identified in the review

Concept Partial-
area 
size

Error Suggested correction

Urethra biopsy sample 1 The target body tissue material of the attribute Specimen substance should be 
specific

Replace with Urinary tract material

Bursa tissue sample 2 Incorrect parent concept Synovial tissue sample Change to Tissue specimen

Tissue specimen from eye 9 The target body tissue material of the attribute Specimen substance should be 
specific

Replace with Eye tissue material

Extradural lesion sample 22 The target Morphologically abnormal structure of the attribute Specimen 
source morphology should be specific

Replace with lesion

Table 4  The 2 × 2 contingency table for  erroneous small 
partial-area concepts and  erroneous large partial-area 
concepts in  the  SNOMED CT Specimen hierarchy (with 
a two-tailed p value = 0.0226 < 0.05 by Fisher’s exact test)

# Erroneous 
concepts

# Concepts 
w/o errors

Error 
percentage 
(%)

Small partial-areas (1–9) 11 38 22.4

Large partial-areas (≥ 9) 3 48 5.9
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57.6%). Table 7 illustrates the contingency table for the p 
value calculation using the threshold two, obtaining the 
two-tailed p value 0.043. That means that the error rate 
difference between small partial-areas (size ≤ 2) and large 
partial-areas has statistical significance. Thus, Hypothesis 
1 was again confirmed for NCIt’s Gene hierarchy, result-
ing in the sixth successful study in the family.

Discussion
Quality assurance of ontologies is an essential part 
of their life cycle [37]. Various techniques have been 
introduced to help with the auditing of ontologies. QA 

techniques are usually developed for individual ontolo-
gies. However, according to the family-based QA frame-
work, it is possible that one technique is potentially 
applicable for a whole family of ontologies with similar 
structures. The condition for this is that such a technique 
is applied successfully to six out of six ontology members 
or eight out of nine ontology members of the same fam-
ily. We had previously demonstrated that the technique 
of overlapping concepts in partial-area taxonomies, auto-
matically derived from ontologies, can be applied to a 
whole family of 76 BioPortal ontologies [33].

In four ontologies (or hierarchies in ontologies), the 
concepts in small partial-areas of partial-area taxono-
mies have been shown more likely to have errors than 
concepts in large partial-areas. In order to demonstrate 
that this technique could be applied to the family of 
ontologies with outgoing lateral relationships, we pre-
sented studies on two more hierarchies of ontologies, 
SNOMED CT’s Specimen hierarchy and NCIt’s Gene 
hierarchy in this paper. The results of the two studies 
confirmed again the success of the small partial-area 
technique. Thus, this technique has achieved suc-
cess for six out of six ontologies in this family with 
371 ontologies. That means, the small partial-area 

Table 5  The distribution of complete NCIt Gene concepts, sample concepts and erroneous concepts by partial-area size

Partial-area size # of partial-areas # of concepts # of sample concepts # of erroneous concepts Error 
percentage 
(%)

1 5450 5450 10 9 90

2 90 180 5 4 80

3 4 12 5 1 20

4 5 20 5 3 60

5 2 10 5 3 60

6 1 6 5 3 60

7 2 14 5 2 40

8 2 16 5 1 20

10 1 9 5 3 60

> 10 37 4288 50 33 66

Total 5594 10,005 100 62 62

Table 6  Five examples of errors for NCIt Gene concepts identified in the review

Concept Partial-
area size

Error Suggested correction

RBM5 wt Allele 1 Missing the relationship Gene Associated With Disease with the target Lung Carcinoma Add the relationship

NUP98 Gene 1 Missing the relationship Gene Plays Role In Process with the target DNA Replication Add the relationship

ZNF365 Gene 2 Missing the relationship Gene Plays Role In Process with the target telomere maintenance Add the relationship

BCAR4 wt Allele 5 Missing the relationship Gene Associated With Disease with the targets Breast Carcinoma 
and Cervical Carcinoma

Add the two relationships

BRS3 Gene 654 Missing the relationship Gene Associated With Disease with the target Lung Carcinoma Add the relationship

Table 7  The 2 × 2 contingency table for  erroneous small 
partial-area concepts and  erroneous large partial-area 
concepts in the NCIt’s Gene hierarchy (with a two-tailed p 
value = 0.043 < 0.05 by Fisher’s exact test)

# Erroneous 
concepts

# Concepts 
w/o errors

Error 
percentage 
(%)

Small partial-areas (1–2) 13 2 86.7

Large partial-areas (≥ 3) 49 36 57.6
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technique can be applied successfully to at least half of 
the ontologies in this family, providing curators a QA 
methodology for these ontologies by focusing the lim-
ited QA resources on the small partial-area concepts in 
partial-area taxonomies.

Reviewing the six studies on small partial-area con-
cepts, it becomes evident that the threshold of “small” 
partial-areas is different for various ontologies. This is 
not surprising, because both the size and the number of 
defined relationship types for each ontology differ. For 
example, the NCIt’s Gene hierarchy has five times more 
concepts than the SNOMED CT’s Specimen hierarchy. 
For the latter hierarchy, there are only five types of rela-
tionships while the former hierarchy has 16 relation-
ship types. Furthermore, in the Gene hierarchy, there 
are many leaf concepts that represent a specific gene or 
its alleles. Since new relationships are defined for these 
leaves, each is represented in the partial-area taxonomy, 
as a partial-area of one concept. According to our long-
term research, we did not encounter a threshold higher 
than 10 for the distinction between small and large 
partial-areas. Thus we defined a broad range from 1 
to 10 as the boundary size to experiment with and find 
which value best distinguishes between small and large 
partial-areas.

Hence, while the phenomena of higher error rates for 
small partial-areas is broadly discernible, the border 
between small and large is flexible and needs to be deter-
mined by experimentation. For use with new ontologies 
in this family, curators are advised to mimic our research 
by experimenting first with a small sample of concepts 
from partial-areas of sizes 1–10. Based on the results, 
they can choose the threshold for this specific ontology 
and then audit the small partial-areas accordingly. Of 
course, if more QA resources are available, they should 
continue to audit (selected) large partial-areas also.

Furthermore, sometimes even within the sizes of the 
small partial-areas, there is a meaningful difference in the 
error rates. For example, for the Specimen hierarchy, the 
error rates for partial-area sizes 1 and 2 are about 13%, 
while for partial-area sizes 3–9, they are much higher. In 
this case, the curators are advised to start auditing with 
concepts in the partial-areas with sizes 3–9 before con-
tinuing with the concepts in partial-areas with sizes 1 
and 2, as much as the available resources allow. Such an 
approach is expected to optimize the number of errors 
found for a given number of review hours.

Another way of prioritizing the review of the concepts 
in small partial-areas is by giving priority to those that 
also should have priority according to another technique 
such as "overlapping concepts" [33] or "high number of 
lateral relationships" [50]. For example, curators should 
first audit the overlapping concepts that belong to small 

partial-areas before advancing to the remaining small 
partial-area concepts.

In the Gene hierarchy more than half of the concepts 
are in partial-areas of one concept. Typically, there are no 
resources to audit about 5000 concepts. The challenge is 
to identify the most promising subset of these concepts 
for auditing with the available resources. From the deri-
vation of the partial-area taxonomy in the Background 
section, we can see that when there are more defined 
relationship types for a hierarchy (or ontology), there are 
more possible combinations of relationship types. That 
means that there are more areas and more partial-areas 
in the derived partial-area taxonomy. Thus, the ratio of 
small partial-area concepts to all concepts is high. Deal-
ing with this problem is left to future work and a poten-
tial solution is described below.

Limitation
In this work we show that Hypothesis 1 is true for six out 
of six ontologies of the family of ontologies with lateral 
relationships. However, there is a problem in claiming 
that this condition implies that the hypothesis is true for 
at least half of the ontologies in the family. The problem 
is that the “success” of the hypothesis is defined as “have 
statistically significantly more errors.” The problem is 
with the need for statistical significance. To show statis-
tical significance, the samples are required to have some 
minimum size.

If the number of lateral relationships in an ontology is 
very small, say two or three relationships, then typically 
the number of small partial-area concepts will be too 
small for a sample to show statistical significance. Also, if 
the total number of concepts in an ontology is not above 
some threshold, then again it would not be possible to 
show statistical significance even if the number of rela-
tionships is not small. Because the two samples, the study 
sample and the control sample, are not large enough to 
show statistical significance.

Thus, the conclusion of using the fact we show the 
truth of Hypothesis 1 for six out of six ontologies of this 
large family is only valid for the ontologies whose size 
and number of lateral relationships is large enough to 
enable to demonstrate statistical significance. Namely, at 
least half of ontologies having such conditions are guar-
anteed to satisfy Hypothesis 1.

Future research
In previous work we have utilized the subtaxonomy 
constructed with a subset of relationship types to dis-
cover more overlapping concepts when the original 
partial-area taxonomy does not have enough over-
lapping concepts [36]. Here, we can utilize this kind 
of subtaxonomy technique to obtain fewer small 
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partial-area concepts, i.e., to lower the ratio of small 
partial-area concepts to all concepts.

For example, if we use only the most frequent rela-
tionship type in the NCIt’s Gene hierarchy Gene Plays 
Role In Process (92.2% of gene concepts are defined with 
this relationship) to derive a subtaxonomy, there are 
only two areas and 686 partial-areas in the subtaxon-
omy. As a result, there are only 1105 concepts (10.9%) 
in partial-areas with sizes one and two, in contrast with 
the partial-area taxonomy with all relationship types 
where the number is considerably larger. For exam-
ple, one of the concepts named ENV has been defined 
with two relationship types Gene Found In Organism 
and Gene Plays Role In Process. In the partial-area tax-
onomy considering all relationships this concept is in a 
partial-area containing only itself. However, if we use 
only the Gene Plays Role In Process relationship to cre-
ate a subtaxonomy, it will be in the partial-area rooted 
at Viral Gene with 28 other concepts. Hence, the sub-
taxonomy is a promising technique to limit the number 
of small partial-areas if their number is quite large. In 
the future, we will conduct further research to experi-
ment with such subtaxonomy technique for large hier-
archies with many small partial-area concepts.

Another future direction will be to investigate the 
possibility of demonstrating success for six out of six 
ontologies for two other area taxonomy-related tech-
niques. One is that concepts with larger number of 
relationship types have higher error rates than concepts 
with fewer number of relationship types [50]. Another 
is that if the top area has a large number of concepts, 
then a relatively large number of concepts are missing 
relationships [34]. An explanation of these two tech-
niques is well beyond the scope of this paper.

Conclusions
There is a need to achieve scalability in quality assur-
ance of biomedical ontologies. We showed in this 
paper that for the large family of BioPortal ontologies 
with outgoing lateral relationships, concepts in small 
partial-areas of a partial-area taxonomy of an ontol-
ogy have statistically significantly more errors than 
concepts of large partial-areas, for at least half of the 
ontologies in this family. To achieve this, we have 
shown this property for two hierarchies, the Specimen 
hierarchy of SNOMED CT and the Gene hierarchy of 
the NCIt in this paper. These two were added to the 
four other ontologies for which this property was estab-
lished in previous research. Together they demonstrate 
the property for six out of six of the ontologies of this 
family.
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