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Abstract 

Background:  The increasing adoption of ontologies in biomedical research and the growing number of ontologies 
available have made it necessary to assure the quality of these resources. Most of the well-established ontologies, 
such as the Gene Ontology or SNOMED CT, have their own quality assurance processes. These have demonstrated 
their usefulness for the maintenance of the resources but are unable to detect all of the modelling flaws in the ontolo‑
gies. Consequently, the development of efficient and effective quality assurance methods is needed.

Methods:  Here, we propose a series of quantitative metrics based on the processing of the lexical regularities exist‑
ing in the content of the ontology, to analyse readability and structural accuracy. The readability metrics account for 
the ratio of labels, descriptions, and synonyms associated with the ontology entities. The structural accuracy metrics 
evaluate how two ontology modelling best practices are followed: (1) lexically suggest locally define (LSLD), that is, if 
what is expressed in natural language for humans is available as logical axioms for machines; and (2) systematic nam‑
ing, which accounts for the amount of label content of the classes in a given taxonomy shared.

Results:  We applied the metrics to different versions of SNOMED CT. Both readability and structural accuracy metrics 
remained stable in time but could capture some changes in the modelling decisions in SNOMED CT. The value of the 
LSLD metric increased from 0.27 to 0.31, and the value of the systematic naming metric was around 0.17. We analysed 
the readability and structural accuracy in the SNOMED CT July 2019 release. The results showed that the fulfilment of 
the structural accuracy criteria varied among the SNOMED CT hierarchies. The value of the metrics for the hierarchies 
was in the range of 0–0.92 (LSLD) and 0.08–1 (systematic naming). We also identified the cases that did not meet the 
best practices.

Conclusions:  We generated useful information about the engineering of the ontology, making the following contri‑
butions: (1) a set of readability metrics, (2) the use of lexical regularities to define structural accuracy metrics, and (3) 
the generation of quality assurance information for SNOMED CT.
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Background
Recently, ontologies and terminologies, such as the 
SNOMED CT [1], the Gene Ontology (GO) [2, 3], or 
the Disease Ontology (DO) [4], have demonstrated their 

usefulness for supporting biomedical research, thus mak-
ing their quality and maintenance critical. In general, 
ontologies have been defined as ‘a formal, explicit speci-
fication of a shared conceptualization’ [5], and their use 
in biomedicine is mostly because ontologies facilitate 
knowledge and data sharing and interoperability. For 
instance, GO is used in biological sciences for predict-
ing gene functions [6] or protein locations [7–9], whereas 
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SNOMED CT is a key component to enable interopera-
bility across different healthcare systems [10–13]. Ontol-
ogies must be friendly for both humans and machines. 
Practically speaking, the human-oriented content is 
expressed in natural language and the machine-oriented 
one as axioms.

In general, the quality assurance process ensures that 
the design requirements are met. Hence, this process 
must include methods for identifying flaws and, ide-
ally, for proposing corrective actions. When approach-
ing the ontology quality evaluation or quality assurance, 
the first problem is the lack of a standardised view in 
the community about these processes. In the literature, 
the measurement and analysis of characteristics, such as 
consistency, coverage, completeness, structural accuracy, 
functional adequacy, or readability, among others, have 
been identified as relevant [14–17]. Once the character-
istics have been identified, the second aspect is to define 
the qualitative or quantitative metrics to measure them. 
A variety of metrics dealing specially with the structural 
aspects of the ontology have been proposed in the last 
few years. For example, the metrics ‘lack of cohesion in 
methods’ [18], ‘tangledness’ [15], ‘semantic variance’ [19], 
or those related to ‘ontology richness’ defined in [20, 21] 
use the semantic information stored in the ontology for 
quantifying structural aspects. Other examples are the 
metrics defined in [22, 23], which use an extra corpora of 
domain-related documents for measuring the coverage of 
ontologies in a specialised domain, or metrics based on 
semiotics [24].

Given that the content of the ontology has to be 
friendly for both humans and machines, our hypothesis 
in this work is that the analysis of the correspondence 
between the content for humans and machines should 
provide relevant information for the quality assurance 
of the ontology. Therefore, in this study, we addressed 
two specific ontology features, namely, readability and 
structural accuracy. The first one was defined as the 
existence of human readable descriptions in the ontol-
ogy, such as comments, labels, or captions [20]; thus, it is 
related to the amount of content in natural language for 
humans, whereas the second one is defined as the abil-
ity to appropriately represent semantics as understood 
by society [19], hence being related to the content for the 
machines.

Readability has been traditionally measured in 
terms of the average number of names, synonyms, 
and descriptions per ontology entity, namely classes 
and properties. Here, we propose metrics based on 
the annotation properties that are mostly used by the 
semantic web community. This will be done by analys-
ing the content of BioPortal ontologies. In contrast, 

structural accuracy has been mostly evaluated by 
domain experts. We propose to process the content 
in the natural language as a way for increasing the 
automation of this evaluation, which will simplify the 
quality assurance processes. For this purpose, we will 
exploit the notion of ‘hidden semantics’ [25], which 
states that a considerable amount of the semantics of 
the ontology entities is encoded in the content in the 
natural language but not in the axioms. Concretely, we 
propose metrics that will exploit the content of the class 
labels, which have been presumably written by domain 
experts. We propose two metrics related to the struc-
tural accuracy: (1) systematic naming, which measures 
the lexical similarity between the labels of classes and 
their descendant classes; and (2) lexically suggest logi-
cally define, which measures how aligned the label and 
the axioms of a class are, as this principle implies that 
what is expressed in the natural language for humans 
should be available for the machines as axioms.

We will illustrate the usefulness of these metrics 
for ontology quality assurance by evaluating all of the 
SNOMED CT versions from 2011 to 2019. We will pay 
special attention to the most recent version available 
at the time of this study. The readability metrics will 
provide a quantitative description of the content in the 
natural language. The structural accuracy metrics not 
only provide a quantitative description of the struc-
tural aspects of the ontology but also permit to detect 
the possible missing semantic relations in the ontol-
ogy, in cases in which a lexical relation between classes 
is not logically formulated as an axiom. We selected 
SNOMED CT for this study because of its relevance in 
health informatics, its maturity, and its continuous evo-
lution by SNOMED International.

We believe that our work will contribute by providing 
readability metrics based on the most frequently used 
annotation properties, and structural accuracy metrics 
based on the analysis of both the lexical and the logical 
content of the ontology by the study of lexical regulari-
ties among the ontology classes. We believe that these 
metrics can help to make quality assurance processes 
more efficient and effective. Moreover, they can help 
ontology content editors to make informed decisions.

The rest of the article is structured as follows. First, 
we will discuss some state-of-the-art solutions in the 
field of ontology quality assurance. Then, in the ‘Meth-
ods’ section, we will propose different metrics covering 
readability and structural accuracy. In the ‘Results’ sec-
tion, these metrics are applied to different SNOMED 
CT versions from 2011 to 2019. These results are dis-
cussed in the ‘Discussion’ section. Finally, some conclu-
sions are presented in the last section.
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State of the art
The ontology engineering community has proposed dif-
ferent features that should be measured for assessing the 
quality of ontologies. Gangemi et al. [16] proposed three 
main types of measures for evaluation: structural meas-
ures that are typical of ontologies represented as graphs; 
functional measures that are related to the intended 
use of an ontology and its components; and usability-
profiling measures that depend on the level of annota-
tion of the considered ontology. Rogers  [17] identified 
four broad properties in ontologies that may be quality 
assured: philosophical validity, compliance with meta-
ontological commitments, content correctness, and 
fitness for purpose. For example, Cui et  al.  [14] stated 
that ontology quality assurance attempts to assess and 
improve the overall quality of ontologies in the follow-
ing aspects: (1) consistency of the ontological structure 
with respect to the explicit and implicit knowledge that 
they capture; (2) coverage and completeness of the ontol-
ogy in terms of the classes and the properties needed 
to support specific applications; (3) non-redundancy of 
classes and properties; and (4) clarity of class and rela-
tionship definitions to enable accurate machine read-
ability and human interpretation. In Lantow  [26], three 
dimensions for ontology quality were proposed: domain 
scope, which refers to how well the ontology represents 
the real world; conceptual scope, which assesses the qual-
ity of the ontology in terms of software quality character-
istics; and application scope, which evaluates how useful 
the ontology is as a component of a larger system. Our 
research group has contributed to this area of knowledge 
with OQuaRE [15], which provides an ontology quality 
model based on SQuaRE [27], which is a standard qual-
ity model used for software quality. The OQuaRE quality 
model proposes the following characteristics: structural, 
functional adequacy, reliability, efficiency, operability, 
compatibility, maintainability, transferability, and quality 
in use.

The community has proposed quantitative approaches 
based on metrics, which provide information about the 
engineering of the ontology [15, 18, 20, 21, 24, 28–34]. 
For example, Yao et al. [18], Tartir and Arpinar [20, 21], 
and Lantow and Birger [26] defined a series of metrics 
for evaluating the structural properties in the ontology. 
Works such as [28, 29, 35] evaluate the ontology from 
a realism-based perspective that demands the manual 
judgement of users.

In this work, we are interested in measuring read-
ability, which has been targeted by the community in the 
past. Protégé [36], which is one of the most used ontol-
ogy editors, provides the basic metrics related to read-
ability, such as the annotation property count and the 
number of annotation assertions in the ontology. Other 

works use these counts to calculate a metric over the 
number of classes, such as OQuaRE [15], which defines 
the annotation richness as the mean number of annota-
tions per class. Nonetheless, annotation properties can 
be used for representing elements that are not directly 
related to the readability, such as version information 
(owl:priorVersion, owl:versionInfo), dep-
recation information (owl:deprecated), or source 
definition information (rdfs:isDefinedBy). In this 
sense, projects such as OntoQA  [20] or OntoMet-
rics [26] measure the readability for a class by counting 
the number of annotations of the types rdfs:label 
and rdfs:comment that the class has. Nonetheless, 
there exist other well-known annotation properties 
related to readability that are not taken into account. 
For example, Simple Knowledge Organization System 
(skos)  [37] or Dublin Core Terms (dcterms)  [38] pro-
vides readability-related annotation properties, such as 
skos:prefLabel, for setting a preferred label for a 
concept, or dc:description, for describing concepts.

Different methods have been proposed for measuring 
the structural accuracy of ontologies, which can be clas-
sified as semantic-based or lexical-based approaches. An 
example of a semantic-based method is presented in [39], 
where the authors identify structural ontology character-
istics which are usually observed in high-quality ontolo-
gies. They used twelve different topological metrics and 
concluded that the ontologies that presented higher val-
ues of depth and breadth variance could provide better 
semantic relations, although the results did not reach 
statistical significance. On the basis of this work, the 
authors of [19] introduced the concept of semantic vari-
ance, which is a mathematically coherent extension of 
the standard numerical variance to measure the semantic 
dispersion of the taxonomic structure of ontologies. This 
semantic variance is defined as the average of the squared 
semantic distance between each ontology class to the 
ontology root. This measure was proposed as a good 
predictor of the ontological accuracy. In contrast, other 
works rely on the lexical part of the ontologies, aiming to 
discover new semantic definitions taking into account the 
hints that the lexicon provides  [25]. Although we found 
useful works for enriching and correcting ontologies by 
using this approach, we did not find metrics for measur-
ing this aspect. For example:

•	 In [40], the authors introduced the ‘lexically suggest, 
logically define’ principle, which states that the lexical 
content should also be represented as logical axioms. 
This principle was applied in  [41] to suggest logical 
axioms based on an analysis of the lexical content.

•	 In  [42–44], the authors grouped concepts accord-
ing to a lexical similarity measure, forming similar-
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ity sets, whose members had at least five words, and 
they only differed from the other members at the 
most in one word. Then, they analysed the semantics 
of each similarity set in order to propose hierarchical, 
attribute related, or role-group related inconsisten-
cies.

•	 In  [45], the authors introduced a structural-lexical 
approach for auditing SNOMED CT by using a com-
bination of non-lattice subgraphs of the underlying 
hierarchical relations and enriched lexical attributes 
of fully specified concept names. In this approach, 
new is-a relationships were suggested by means of 
the study of the lexicon along with the concept hier-
archy.

Methods
This section describes the metrics that we developed for 
measuring readability and structural accuracy, as well as 
the method we propose to evaluate their application to 
the quality assurance of a given ontology. The metrics 
were implemented in our OntoEnrich framework  [46], 
which offers a number of ontology quality assurance 
tasks based on the lexical analysis of ontologies.

Lexical regularities
The structural accuracy metrics defined in this work 
make use of lexical regularities (LR) [46], which are text 
patterns that appear recurrently along the class labels. In 
order to detect the LRs, we processed the rdfs:label 
annotations of the classes. In the case of SNOMED CT, 
these labels were derived from the Fully Specified Name 
(FSN), and we removed the semantic category from them 
in order to avoid the appearance of the extra LRs. Then, 
we used the OntoEnrich NLP algorithms to extract the 
LRs. OntoEnrich was executed with the following config-
uration: the blank character as the token delimiter, case 
insensitive strategy, and a coverage of 0.1, which implied 
that only patterns that appeared in the label of at least 
10% of the ontology classes were considered LRs. When 
the full label of a class corresponded to an LR found in 
the ontology, we called this class an LR class. For exam-
ple, oral was an LR in SNOMED CT, as it was exhibited 
in the labels of many classes. Moreover, it was an LR 
class, as there was a class in SNOMED CT whose full 
label was ‘oral’.

Readability metrics
Readability has usually been measured in terms of the 
number of names, synonyms, and descriptions per 
entity (classes and properties) in the ontology. These 
metrics measure the human-friendly content of the 
ontology. In OWL ontologies, such content is defined 

in the annotation properties. Ontology developers can 
create their own annotation properties in OWL2. We 
inspected the use of annotation properties in BioPor-
tal [47]. For each annotation property, we obtained 
their global usage ratio per entity in Bioportal, which 
was calculated by taking the number of uses of the 
annotation property in the repository and dividing it 
by the total number of entities. Table  1 shows the 50 
most used annotation properties. Finally, we selected 
the annotation properties associated with names, syno-
nyms, and descriptions (see Table 2).

Hence, our readability metrics were defined and cal-
culated using these annotation properties:

•	 Names per class: ratio of the number of names asso-
ciated with classes to the total number of classes.

•	 Names per object property: ratio of the number of 
names associated with object properties to the total 
number of object properties.

•	 Names per datatype property: ratio of the number 
of names associated with datatype properties to the 
total number of datatype properties.

•	 Names per annotation property: ratio of the num-
ber of names associated with annotation properties 
to the total number of annotation properties.

•	 Synonyms per class: ratio of the number of syno-
nyms associated with classes to the total number of 
classes.

•	 Synonyms per object property: ratio of the number 
of synonyms associated with object properties to 
the total number of object properties.

•	 Synonyms per datatype property: ratio of the num-
ber of synonyms associated with datatype proper-
ties to the total number of datatype properties.

•	 Synonyms per annotation property: ratio of the 
number of synonyms associated with annotation 
properties to the total number of annotation prop-
erties.

•	 Descriptions per class: ratio of the number of descrip-
tions associated with classes to the total number of 
classes.

•	 Descriptions per object property: ratio of the number 
of descriptions associated with object properties to 
the total number of object properties.

•	 Descriptions per datatype property: ratio of the num-
ber of synonyms associated with datatype properties 
to the total number of datatype properties.

•	 Descriptions per annotation property: ratio of the 
number of synonyms associated with annotation 
properties to the total number of annotation proper-
ties.
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Table 1  Top 50-most frequently used annotation properties in BioPortal

Annotation property Usage per entity

http://www.w3.org/2004/02/skos/core#prefL​abel 0.52

http://biopo​rtal.bioon​tolog​y.org/ontol​ogies​/umls/tui 0.44

http://www.w3.org/2000/01/rdf-schem​a#label​ 0.42

http://biopo​rtal.bioon​tolog​y.org/ontol​ogies​/umls/cui 0.42

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#hasDb​Xref 0.37

http://www.w3.org/2004/02/skos/core#altLa​bel 0.35

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#id 0.16

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#hasEx​actSy​nonym​ 0.10

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#hasOB​OName​space​ 0.10

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#hasRe​lated​Synon​ym 0.08

http://www.w3.org/2004/02/skos/core#relat​edMat​ch 0.08

http://www.w3.org/2004/02/skos/core#exact​Match​ 0.08

http://purl.oboli​brary​.org/obo/IAO_00001​15 0.08

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#P383 0.07

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#P90 0.07

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#P384 0.07

http://www.w3.org/2004/02/skos/core#defin​ition​ 0.07

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#inSub​set 0.04

http://www.w3.org/2000/01/rdf-schem​a#comme​nt 0.04

http://purl.oboli​brary​.org/obo/IAO_00001​17 0.03

http://www.loc.gov/mads/rdf/v1#hasNa​rrowe​rAuth​ority​ 0.03

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#A8 0.03

http://www.w3.org/2000/01/rdf-schem​a#seeAl​so 0.03

http://purl.oboli​brary​.org/obo/IAO_00001​19 0.03

http://purl.org/dc/terms​/ident​ifier​ 0.03

http://purl.oboli​brary​.org/obo/IAO_00001​18 0.03

http://schem​a.org/name 0.03

http://www.w3.org/2004/02/skos/core#inSch​eme 0.03

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#sourc​e 0.03

http://schem​a.org/sameA​s 0.02

http://purl.org/sig/ont/fma/autho​rity 0.02

http://purl.org/sig/ont/fma/autho​r 0.02

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#P378 0.02

http://www.w3.org/2004/02/skos/core#broad​er 0.02

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#P106 0.02

http://purl.org/sig/ont/fma/Date_enter​ed_modif​ied 0.02

http://purl.org/dc/eleme​nts/1.1/descr​iptio​n 0.02

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#NHC0 0.02

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#P108 0.02

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#hasSy​nonym​Type 0.02

http://purl.oboli​brary​.org/obo/OGG_00000​00015​ 0.02

http://purl.oboli​brary​.org/obo/OGG_00000​00018​ 0.02

http://purl.oboli​brary​.org/obo/OGG_00000​00006​ 0.02

http://purl.oboli​brary​.org/obo/OGG_00000​00019​ 0.02

http://purl.oboli​brary​.org/obo/OGG_00000​00009​ 0.02

http://purl.oboli​brary​.org/obo/OGG_00000​00017​ 0.02

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#P97 0.02

http://purl.org/dc/terms​/subje​ct 0.02

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#creat​ed_by 0.02

http://www.w3.org/2004/02/skos/core#prefLabel
http://bioportal.bioontology.org/ontologies/umls/tui
http://www.w3.org/2000/01/rdf-schema#label
http://bioportal.bioontology.org/ontologies/umls/cui
http://www.geneontology.org/formats/oboInOwl#hasDbXref
http://www.w3.org/2004/02/skos/core#altLabel
http://www.geneontology.org/formats/oboInOwl#id
http://www.geneontology.org/formats/oboInOwl#hasExactSynonym
http://www.geneontology.org/formats/oboInOwl#hasOBONamespace
http://www.geneontology.org/formats/oboInOwl#hasRelatedSynonym
http://www.w3.org/2004/02/skos/core#relatedMatch
http://www.w3.org/2004/02/skos/core#exactMatch
http://purl.obolibrary.org/obo/IAO_0000115
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P383
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P90
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P384
http://www.w3.org/2004/02/skos/core#definition
http://www.geneontology.org/formats/oboInOwl#inSubset
http://www.w3.org/2000/01/rdf-schema#comment
http://purl.obolibrary.org/obo/IAO_0000117
http://www.loc.gov/mads/rdf/v1#hasNarrowerAuthority
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#A8
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://purl.obolibrary.org/obo/IAO_0000119
http://purl.org/dc/terms/identifier
http://purl.obolibrary.org/obo/IAO_0000118
http://schema.org/name
http://www.w3.org/2004/02/skos/core#inScheme
http://www.geneontology.org/formats/oboInOwl#source
http://schema.org/sameAs
http://purl.org/sig/ont/fma/authority
http://purl.org/sig/ont/fma/author
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P378
http://www.w3.org/2004/02/skos/core#broader
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P106
http://purl.org/sig/ont/fma/Date_entered_modified
http://purl.org/dc/elements/1.1/description
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#NHC0
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P108
http://www.geneontology.org/formats/oboInOwl#hasSynonymType
http://purl.obolibrary.org/obo/OGG_0000000015
http://purl.obolibrary.org/obo/OGG_0000000018
http://purl.obolibrary.org/obo/OGG_0000000006
http://purl.obolibrary.org/obo/OGG_0000000019
http://purl.obolibrary.org/obo/OGG_0000000009
http://purl.obolibrary.org/obo/OGG_0000000017
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P97
http://purl.org/dc/terms/subject
http://www.geneontology.org/formats/oboInOwl#created_by
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Structural accuracy metrics
We propose to analyse the accuracy of the structure by 
exploiting and comparing the lexical and the logical con-
tent of the ontology. Our structural accuracy metrics will 
measure to what extent the lexical and logical content are 
aligned.

In this work, we propose two structural accuracy met-
rics, whose purpose is to measure the fulfilment of two of 
the best practices in ontology engineering:

•	 Lexically suggest logically define (LSLD). This prin-
ciple establishes that what is expressed in a human-
friendly way in the natural language should also be 
available as logical axioms for the machine [40]. Let 
us consider the example in Fig.  1, which contains a 
simplified hierarchy taken from SNOMED CT, show-
ing the label together with the concept id within 
parentheses. In this case, the concept Procedure 
is an LR class because its label is contained in the 

labels of the classes Administrative proce-
dure, Death administrative procedure, 
and Cosmetic procedure. The LSLD princi-
ple would suggest that as these classes are lexically 
related to Procedure, they should also be seman-
tically related; however, Cosmetic procedure 
is not semantically linked with Procedure, so the 
lexical and logical content will not be aligned.

•	 Systematic naming. This principle establishes that 
the labels of the taxonomically related classes should 
share a lexical regularity. In the example shown 
in Fig.  1, the class labelled ‘Biopsy administration’ 
belongs to a hierarchy that presents some type of lexi-
cal regularity: the sibling of Biopsy administra-
tion is Death administrative procedure, 
which contains the label of their parent class Admin-
istrative procedure, and this class contains 
the label of its parent, Procedure. All of the con-
cepts in this hierarchy, except for Biopsy admin-
istration, exhibit the LR of the parent class. This 
indicates that the class Biopsy administration 
should not be in this position of the hierarchy. Note 
that if it were in the correct position, it is possible that 
its label would not have been sufficiently descriptive.

Table 1  (continued)

Annotation property Usage per entity

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#P207 0.01

Table 2  Identified annotations properties for describing labels, synonyms, and descriptions

Name http://www.w3.org/2004/02/skos/core#prefL​abel

http://www.w3.org/2000/01/rdf-schem​a#label​

http://schem​a.org/name

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#P108

Synonym http://www.w3.org/2004/02/skos/core#altLa​bel

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#hasEx​actSy​nonym​

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#hasRe​lated​Synon​ym

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#hasBr​oadSy​nonym​

http://www.geneo​ntolo​gy.org/forma​ts/oboIn​Owl#hasNa​rrowS​ynony​m

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#P90

http://purl.oboli​brary​.org/obo/IAO_00001​18

Description http://purl.oboli​brary​.org/obo/IAO_00001​15

http://www.w3.org/2004/02/skos/core#defin​ition​

http://www.w3.org/2000/01/rdf-schem​a#comme​nt

http://purl.org/dc/eleme​nts/1.1/descr​iptio​n

http://ncicb​.nci.nih.gov/xml/owl/EVS/Thesa​urus.owl#P97

Fig. 1  Example of hierarchy formed by concepts in SNOMED CT

http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P207
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.w3.org/2000/01/rdf-schema#label
http://schema.org/name
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P108
http://www.w3.org/2004/02/skos/core#altLabel
http://www.geneontology.org/formats/oboInOwl#hasExactSynonym
http://www.geneontology.org/formats/oboInOwl#hasRelatedSynonym
http://www.geneontology.org/formats/oboInOwl#hasBroadSynonym
http://www.geneontology.org/formats/oboInOwl#hasNarrowSynonym
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P90
http://purl.obolibrary.org/obo/IAO_0000118
http://purl.obolibrary.org/obo/IAO_0000115
http://www.w3.org/2004/02/skos/core#definition
http://www.w3.org/2000/01/rdf-schema#comment
http://purl.org/dc/elements/1.1/description
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#P97
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Lexically suggest logically define (LSLD) metric
The LSLD metric, which is inspired by  [40], accounts 
for the ratio of classes that exhibit the same LR and are 
logically connected in the ontology through an object 
property or a taxonomic link. For this purpose, only 
the LR associated with the LR classes is considered. It 
is calculated as described in Algorithm  1. In brief, we 
processed the labels of the ontology classes to obtain 
the set of lexical regularities (LRs) and the associated 
LR classes. Then, for each class exhibiting an LR, we 
checked whether there was a link between the class and 
the corresponding LR class; this class was classified as 
a positive/negative case depending on the existence 
of such a link. We applied the breadth-first algorithm 
to find the path between the classes. In particular, 
given a class X, we considered its owl:subclassOf and 
owl:equivalentClass axioms as edges, and the classes 
appearing in these axioms were the classes adjacent to 
X. Then, given this ontology graph model, the classes C1 
and C2 were semantically related if there existed a path 
from C1 to C2 or vice versa. Note that the owl:subclassOf 
and owl:equivalentClass axioms were related not only 
to taxonomic relations but also to non-hierarchical 
relations through properties. Let us consider that the 
class ‘Structure of left upper limb’ was declared equiv-
alent to (‘Structure of left half of body’ and hasLat-
erality some ‘Left’), and ‘Left’ is an LR class. Then, 
our algorithm would find a non-hierarchical relation 
between the classes ‘Left’ and ‘Structure of left upper 
limb ’ through the attribute hasLaterality. There-
fore, ‘Structure of left upper limb’ would be detected as 
a positive case of the LR class ‘Left’ because it exhibited 
the LR ‘Left’. Finally, the ratio of positive/negative cases 
could be obtained. 

The example shown in Fig. 1 has two LR classes: Pro-
cedure and Administrative procedure. Then, 
for each of these LR classes, we obtained the classes whose 
labels exhibited its lexical regularity. On the one hand, 
the classes Death administrative procedure, 
Administrative procedure, and Cosmetic pro-
cedure exhibited the LR ‘Procedure’. The classes Death 
administrative procedure and Administra-
tive procedure were semantically linked to Pro-
cedure, but Cosmetic procedure was not. On the 
other hand, the LR ‘Administrative procedure’ was only 
exhibited by the class Death administrative pro-
cedure, in addition of the corresponding LR class. In this 
case, the classes Administrative procedure and 
Death administrative procedure were seman-
tically related. Then, the value of the LSLD metric for this 
example was 3/4, as there were three positive cases and one 
negative case (Cosmetic procedure was not related to 
Procedure).

Systematic naming metric
The systematic naming metric accounts for the ratio of 
taxonomically related classes, which share lexical regulari-
ties. As in the case of the LSLD metric, only the LR associ-
ated with the LR classes was considered. It was calculated 
as described in Algorithm 2. First, we obtained all the LRs 
appearing in the class labels of the input ontology and 
the corresponding LR classes. Then, for each LR class, we 
obtained all of its subclasses. Finally, for each subclass, we 
checked whether it was a positive case (whether it exhib-
ited the label of the LR class) or a negative case (whether it 
did not exhibit the label of the LR class). Thus, the ratio of 
positive/negative cases could be obtained.
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In the example shown in Fig.  1, there were two LR 
classes, namely, Procedure and Administrative 
procedure. Procedure had three subclasses (Admin-
istrative procedure, Death administra-
tive procedure, and Biopsy administration), 
so it had two positive cases (Administrative pro-
cedure and Death administrative procedure), 
and one negative case (Biopsy administration). In 
the case of the class Administrative procedure, it 
had two subclasses (Death administrative pro-
cedure and Biopsy administration). Thus, Death 
administrative procedure was a positive case and 
Biopsy administration, a negative one. Hence, the 
value of the metric was 3/5. 

taxonomic distance is the length of the shortest path 
between two classes by following is-a relationships.

4	 Number of negative cases.
5	 Average taxonomic distance from the classes belong-

ing to the negative cases set to the LR class.
6	 Value of the metric applied only to the LR class, that 

is, the ratio of positive cases to the total number of 
cases for this LR class.

We will then analyse the significance of the difference 
between the distance to the LR class of positive and nega-
tive cases by applying the Wilcoxon test [48] and whether 
there is a correlation between the depth of the LR classes 
in the ontology and their individual metric values by 

Evaluation method
In this section, we describe the proposed application of 
the previous metrics to a given ontology with the pur-
pose of contributing to its quality assurance. The first 
step is to obtain the values of the readability and struc-
tural accuracy metrics. Then, additional information can 
be captured for the structural accuracy metrics in order 
to support the analysis of the results. As mentioned ear-
lier, both the LSLD and the systematic naming metrics 
are ratios accounting for the fulfilment of two of the best 
practices, and both use LR classes as the key elements. In 
our evaluation, we will also use the following information 
for each LR class: 

1	 Depth of the LR class in the hierarchy.
2	 Number of positive cases.
3	 Average taxonomic distance from the classes belong-

ing to the positive cases set to the LR class. This 

applying the Spearman correlation test [49]. This will be 
done for both LSLD and systematic naming.

Results
We applied our framework to all of the available 
SNOMED CT versions from 2011 to 2019. The RF2 native 
SNOMED format was converted into OWL through the 
SNOMED CT OWL toolkit [50] and by applying the ELK 
reasoner  [51]. The objective of the study was to provide 
an overview of the evolution of the readability and struc-
tural accuracy of SNOMED CT (see ‘Additional file 1’ in 
the GitHub repository for the complete results) and to 
detect the potential issues in the aspects analysed, thus 
contributing to its quality assurance. Moreover, we will 
carry out some studies on the most recent version avail-
able at the moment of writing this paper. The ‘Readabil-
ity analysis’ section includes the results obtained after 
applying the readability metrics, whereas the ‘Structural 
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accuracy’ section presents the results obtained for the 
structural accuracy metrics.

Readability analysis
Figure 2 shows that the readability metrics defined in the 
‘Readability metrics’ section provided stable values for 
the different SNOMED CT versions processed. Regard-
ing the classes, every class had at least two names: a qual-
ified name and a preferred name, which were translated 
into rdfs:label and skos:prefLabel, respec-
tively; nonetheless, there were classes with more than 
one preferred name, which led to the value of labels per 
class to be slightly higher than 2 for all of the SNOMED 
CT versions considered. With respect to the synonyms of 
the classes, the corresponding metric had values slightly 
higher than 0.5, which remained stable for the different 
versions. The lowest values for classes were obtained for 
the number of descriptions per class. In this case, the 
value of the metric was close to 0, indicating that only 
very few classes included descriptions. Regarding object 
properties, they usually had a qualified name and a pre-
ferred name, which led to a value close to 2 for such a 
metric; this value was slightly lower in the versions pub-
lished before 2013-07-31, reaching a value of exactly 2 
after this date. The number of synonyms per object prop-
erty was stable for the different versions, with a value of 
around 0.1, which was lower than the number of syno-
nyms per class. The number of descriptions per object 

property was the most varying metric over time. The 
object properties were not annotated with descriptions 
until 2015. In this year, the value reached 0.25. From 2015 
to 2019, the value of this metric gradually increased to 
0.37. Finally, on the one hand, the SNOMED CT ontol-
ogy did not contain datatype properties, and, on the 
other hand, the annotation properties used in the ontolo-
gies did not have metadata, which led to a zero value for 
all of the metrics; thus, both annotation and data type 
properties are not seen in Fig. 2.

Next, we will summarise the results on the latest 
SNOMED CT version. The complete data can be found 
in ‘Additional file  2’ in the GitHub repository. With 
respect to classes (see Fig.  3), the ontology contained a 
total of 350,711 classes. There were 23,513 (6.7%) classes 
annotated with three labels, and 327,198 (93.3%) with 
two labels, which led to an average of 2.07 names per 
class; in the case of synonyms, each class had a mean of 
0.53 synonyms, having a median of 0. There were 13,068 
(3.73%) with more than two synonyms, the class with ID 
37810007 (myeloid leukaemia) being the most enriched 
one in this sense, with 33 synonyms. 25,957 (7.4%) classes 
showed exactly two synonyms, whereas 82,009 (23.39%) 
had a unique synonym. In contrast, there were 229,677 
(65.49%) classes without synonyms. When we inspected 
the descriptions, we found 4062 (1.16%) classes anno-
tated with one description and 1027 (0.29%) including 
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Fig. 2  Values of the readability metrics for all of the SNOMED CT versions included in the study: 2011–2019
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two descriptions; however, there were 345,622 (98.55%) 
classes without a description.

The ontology contained 120 object properties (see 
Fig. 3), and all of them had two names. There were 114 
(95%) object properties without synonyms; 5 (4.17%) 
with one synonym; and only the object property with ID 
288556008 (before) had two synonyms. There were 78 
(65%) object properties without description; 39 (32.5%) 
object properties had one description; and 3 (2.5%) object 
properties had two descriptions.

Structural accuracy
Figure  4 shows the values obtained for the systematic 
naming and the LSLD metrics. Both metrics remained 
stable for the different SNOMED CT versions. The val-
ues of the LSLD metric were between 0.27 and 0.3, which 
decreased from 2016-07-31 to 2018-01-31, and increased 
since then, reaching its maximum value for the most 
recent version. The values of the systematic naming met-
ric were around 0.17, with a minimum of 0.169 and a 
maximum of 0.18.

0
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Descriptions Names Synonyms

C
ou

nt

Per class

Per object property

Fig. 3  Box plots indicating the number of descriptions, names, and synonyms per class and per object property. Y axis was limited to 5 because of 
readability reasons

Table 3  Top ten LR classes according to the systematic naming metric, sorted by positive cases

LR class (label) LR class depth Positive cases (depth) 
(distance)

Negative cases (depth) 
(distance)

Metric value

411123000 (diagnostic allergen extract) 4 336 (5.961) (1.961) 0 (NA) (NA) 1

256259004 (pollen) 7 289 (8.606) (2.346) 0 (NA) (NA) 1

24851008 (deoxyribonucleic acid) 8 243 (10.465) (2.465) 0 (NA) (NA) 1

263490005 (status) 6 38 (7.658) (1.658) 0 (NA) (NA) 1

257351008 (shunt) 7 22 (8) (1) 0 (NA) (NA) 1

87612001 (blood) 5 20 (6.2) (1.2) 0 (NA) (NA) 1

449872003 (powder) 5 19 (6.158) (1.158) 0 (NA) (NA) 1

264193005 (segment) 7 10 (8.4) (1.4) 0 (NA) (NA) 1

255711007 (pattern) 6 9 (7) (1) 0 (NA) (NA) 1

277536004 (serogroup) 6 8 (7) (1) 0 (NA) (NA) 1
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When we focused on the SNOMED CT version of 
2019-07-31, we obtained a value of 0.171 for the sys-
tematic naming metric, and 0.304 for the LSLD metric. 
378 LR classes were identified in this version, includ-
ing domain concepts, such as ‘Hemoglobin’, ‘Injec-
tion’, or ‘Neoplasm’; and more general concepts such as 
‘Right’, ‘Left’, ‘On’, ‘Does’, or even numbers. Moreover, we 
found 43 cases in which a label was shared between two 
classes. Some examples of this were the lexical regular-
ity ‘Open wound’, which was the label of the SNOMED 
CT concepts 125643001—Open wound (disorder)—and 
59091005—Open wound (morphologic abnormality)—; 
and the lexical regularity ‘Substance’, which was the label 
of the concepts 261217004—Substance (attribute)—and 
105590001—Substance (substance)—.

The systematic naming metric could not be evalu-
ated for 160 LR classes, such as 300594005 (Resonance), 
62105006 (Compound), or 263767004 (Genital), because 
they were leaves and thus did not have subclasses. The 
value of the metric was 1 for 61 LR classes, which implied 
that all of their subclasses exhibited the LR of the parent 
class. Some examples of such LR classes were 411123000 
(Diagnostic allergen extract), 263490005 (Status), and 
257351008 (shunt). Tables  3 and 4 show the top ten 
LR classes for this metric, sorted by positive cases, and 
the SNOMED CT hierarchy containing the LR classes, 
respectively. In contrast, the value of the metric was 0 
for 18 LR classes, such as 385268001 (Oral dose form) 
or 273248003 (Action); thus, their subclasses did not 
exhibit the lexical regularity of the parent. Tables 5 and 6 
show the bottom 10 of these LR classes, sorted by nega-
tive cases, and the SNOMED CT hierarchy in which the 
concerning LR classes were located, respectively. The 
complete data for this metric can be found in the corre-
sponding file in ‘Additional file 2’ in the GitHub reposi-
tory. Figure 5 shows the distribution of the metric values 
by taking the LR classes as individuals. In this case, the 
value per LR class was 0.78 in median and 0.64 in mean. 
The difference between these individual systematic nam-
ing metric values with respect to the global one (0.171) 
was obtained by using the LR classes with a large number 
of negative cases, which drastically decreased the global 
metric value.

In addition, we compared the average taxonomic dis-
tance from the positive and the negative cases to their 
corresponding LR class. The positive cases presented 
a distance of 1.698 and 1.282 on average and median, 
respectively. For its part, the distance of negative cases 
was 2.138 on average and 1.875 on median. The Wilcoxon 
test showed that the difference in the taxonomic distance 
between the positive and the negative cases was statisti-
cally significant, with p value  =  2.935 · 10−5

;α = 0.05 . 

Finally, we studied the correlation between the depth 
of LR classes and their individual metric value. For this, 
we applied the Spearman correlation test, which found 
that the depth of LR classes was slightly correlated to 
their individual metric value in a direct proportion, with 
ρ = 0.2186587 ; p value = 0.001157;α = 0.05.

With respect to the LSLD metric, eight LR classes 
obtained a value of 1 for the metric because the LR class 
was linked to all of the classes exhibiting the LR. For 
example, all the classes exhibiting the lexical regular-
ity ‘conventional release’ (a total of 6071 classes) were 
semantically related to the LR class 736849007 (Con-
ventional release). Tables  7 and 8 show the top 10 LR 
classes sorted by the metric value and positive cases, and 
the hierarchy in which the LR classes were located. The 
value of the metric was 0 for 122 LR classes. For instance, 
the LR class with ID 42504009 (Containing) had 0 posi-
tive cases and the largest number of negative cases, with 
20, 803 classes, such as ‘Peanut containing products’ or 
‘Fluid containing peripheral blood stem cells’, exhibiting 
the lexical regularity without being semantically related 
to the LR class. Another example was the LR class ‘Oral’, 
which had 7531 classes exhibiting the regularity but were 
not semantically related to it, such as ‘Oral air flow’ or 
‘Oral RAE endotracheal tube’. In this case, only the class 
314808005 (Oral site descriptor) was semantically related 
to the LR class ‘Oral’. Tables  9 and  10 show the bottom 
10 LR classes according to LSLD value, sorted by the 
number of negative cases, and the hierarchy containing 
each LR class, respectively. The complete data about this 
metric are available in the corresponding file in ‘Addi-
tional file 2’ in the GitHub repository. Figure 5 shows the 
metric value distribution according to LR classes. In this 
case, the median value of the metric for each LR class 
was 0.033, which was lower than the global metric value 
(0.304), whereas the average value was 0.325, which was 
slightly higher.

In the case of the LSLD metric, the hierarchical dis-
tance of the negative cases to the corresponding LR class 
was 2.118 on median and 2.404 on average; whereas the 
distance of positive cases was 1.69 on median and 1.92 
on average, reaching statistical significance according 
to the Wilcoxon test (p value = 2.428 · 10−8

; α = 0.05 ). 
Moreover, the Spearman correlation test found an 
inverse correlation between the depth of the LR classes 
and their individual metric values ( ρ = −0.19 ; p 
value = 1.756 · 10−4

;α = 0.05).

Analysis by hierarchies
The results shown for the top and bottom 10 LR classes 
revealed that some SNOMED CT hierarchies were highly 
represented in these lists. Next, we analysed the values of 
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the metrics for the 19 SNOMED CT hierarchies on the 
latest version of SNOMED CT.

Readability
All of the hierarchies presented a median of two labels 
per class, whereas the average number was slightly higher 
because of the existence of outlier classes with three 
labels. The hierarchy with the highest average number of 
labels per class was ‘Special concept’ (2.15). The lowest 
value was reached for ‘Organism’ (2).

The number of descriptions per class was also homo-
geneously distributed along the different hierarchies. The 
median value of descriptions per class was 0 for all the 
hierarchies. The highest mean was obtained for ‘Clinical 
finding’ (0.04 descriptions per class).

The number of synonyms per class showed the larg-
est variation among the hierarchies (see Fig.  6). All the 
hierarchies had a median of 0, except for ‘Organism’ and 
‘Staging and scales’, whose median was 1. ‘Organism’ 
and ‘Staging and scales’ obtained the largest mean val-
ues (0.76 and 0.69, respectively), followed by ‘Substance’ 
(0.65) and ‘Clinical finding’ (0.6). In contrast, ‘Pharma-
ceutical/biologic product’ and ‘Event’ had the lowest val-
ues for the average number of synonyms per class (0.04 
and 0.1, respectively).

Structural accuracy
The 378 detected LR classes were heterogeneously dis-
tributed along the SNOMED CT hierarchies. Table  11 
shows the number of LR classes per hierarchy. The most 
represented hierarchy was ‘Qualifier value’ with 177 LR 
classes, followed by ‘SNOMED CT Model Component’ 
with 43 LR classes, and ‘Substance’, with 39 LR classes. In 
contrast, no LR classes were found in the ‘Situation with 
explicit context’ hierarchy.

We calculated the absolute value of the structural 
accuracy metrics for each SNOMED CT hierarchy. This 
value was computed by dividing the number of positive 
cases by the total number of cases per hierarchy. Table 12 
shows the value of the systematic naming metric for each 
hierarchy, together with the number of LR classes and 
the count of positive and negative cases per hierarchy, 
and sorted by the metric value. ‘Record artifact’, ‘Event’, 
and ‘Pharmaceutical/biologic product’ have the highest 
values (over 0.97); however, these hierarchies only con-
tain one or two LR classes. The fourth hierarchy in this 
ranking was ‘SNOMED CT Model Component’, which 
reached a value of 0.71 having 43 LR classes. Examples 
of other hierarchies containing a significant number of 
LR classes are ‘Qualifier value’ (0.55), ‘Substance’ (0.18), 
‘Procedure’ (0.16), ‘Clinical finding’ (0.15), and ‘Body 
structure’ (0.11).

Figure 7 shows the box plots for the systematic naming 
metric per hierarchy. The hierarchies whose LR classes 
had a higher mean value for the systematic naming met-
ric were ‘Record artifact’, ‘Event’, ‘Pharmaceutical/biologic 
product’, and ‘Organism’, but the number of LR classes 
associated with them was at most two. The fifth hierar-
chy with the highest value for the metric was ‘Substance’, 
whose 39 LR classes reached a mean value of 0.72. Other 
examples were ‘Body structure’, ‘Clinical finding’, ‘Proce-
dure’, or ‘Qualifier value’ whose LR classes had a mean of 
0.55, 0.75, 0.57, and 0.67, respectively.

Table 13 shows the values of the LSLD metric for each 
hierarchy. Similar to the systematic naming, the highest 
value was obtained for hierarchies with at most two LR 
classes: ‘Pharmaceutical/biologic product’ (0.92), ‘Event’ 
(0.89), and ‘Specimen’ (0.78). The values provided by 
hierarchies with a higher number of LR classes varied 
from ‘Body structure’ (0.76) to ‘Qualifier value’ (0.24).

Figure  7 shows the individual analysis performed for 
the LR classes, grouping them by hierarchy. The highest 
mean value for the LSLD metric was observed for hier-
archies with less than two LRs, namely ‘Pharmaceutical/
biologic product’ (0.92), ‘Event’ (0.9), ‘Specimen’ (0.79), 
and ‘Organism’ (0.76). Amongst the hierarchies with 
more than two LRs, ‘Procedure’ had 22 LR classes and 
a mean value of 0.73; ‘Clinical finding’ had 32 LRs and 
a mean value of 0.56; ‘Substance’ had 39 LR classes and 
a mean value of 0.41; and ‘Qualifier value’ had 177 LR 
classes and a mean value of 0.22.

Discussion
In this paper, we have defined a set of metrics for meas-
uring the readability and the structural accuracy of ontol-
ogies. Our method allows for identifying which parts of 
the ontology have low readability or structural accuracy. 
The metrics provide information about the engineering 
of the ontology that permit one to detect potential flaws 
and errors and to evaluate from the metrics’ perspective 
the effect of modelling decisions; all of these aspects are 
relevant to the quality assurance purpose. In general, low 
values of the metrics or negative cases in the structural 
accuracy analysis are expected to be related to the flaws 
in the engineering of the ontology, but they may also be 
the consequence of the desired modelling decisions. In 
this work, the metrics were applied to different versions 
of SNOMED CT and, in general, all of them showed val-
ues that remained stable in time (see Figs. 2 and 4). This 
stability of the metrics could be interpreted as a maturity 
indicator of this ontology, implying that the same princi-
ples were applied in SNOMED CT modelling with time.
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Readability
In this work, readability was approached as the existence 
of human readable descriptions in the ontology, such as 
comments, labels, or captions [20]. As mentioned in the 
‘State of the art’ section, readability is usually measured 
through the annotation properties. There exist basic 
metrics, such as those implemented in Protégé  [36], 
that count the number of annotation properties and the 
number of annotation assertion axioms. More complex 
metrics take into account the meaning of the annotation 
properties in order to select those that refer to readability. 

For example OntoQA  [20] uses rdfs:label and 
rdfs:comment annotation properties. Nonetheless, 
this may not be sufficient because there are emerging 
vocabularies that are widely used by the semantic web 
community for including elements such as labels, syno-
nyms, or descriptions in ontology entities. In order to 
adapt to the community practice, we analysed the use of 
annotation properties in BioPortal ontologies. We found 
that four annotation properties referring to labels, seven 
referring to synonyms, and five referring to descriptions 
had sufficient use to take them into account when ana-
lysing readability. These properties were provided by the 
following resources: Simple Knowledge Organization 
System (skos)  [37], Resource Description Framework 
Schema (rdfs)  [52], schema.org  [53], oboInOwl [54], 
Information Artifact Ontology (IAO) [55], Dublin Core 
Terms (dcterms) [38], and National Cancer Institute The-
saurus (NCIT) [56].

We applied this result to the study of readabil-
ity in SNOMED CT. For the conversion to OWL, we 
used skos:prefName and rdfs:label for labels, 
skos:altName for synonyms, and skos:definition 
for descriptions. The results obtained for the readability 
metrics showed that the values remained stable in time, 
except for the descriptions per object property, which 
was improved in January 2015 by including descriptions 
in these elements (see Fig. 2).

The number of descriptions was small in the most 
recent version included in the study, being close to 0 
for descriptions per class and 0.37 for descriptions per 
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object property. Ideally, each ontology entity should have 
at least one human-readable description, which helps it 
to be understandable by human beings. In contrast, the 
number of names per class and per object property was 
around 2, and this value was stable along different hier-
archies, which was a rich value for the metric. Finally, 
we found that there existed 0.53 synonyms per class and 
65.49% of the classes did not contain any synonym. Our 
analysis per hierarchy might help to detect which hierar-
chies had the least number of synonyms (see Fig. 6). The 
values of the metrics for object properties were lower, 
and 95% of them did not have any synonym. This could 
be improved by adding synonyms to these classes and 
properties. These metrics can be applied to any ontology 
to detect which type of ontology entity (class or object 
property) should be enriched with a concrete type of 
annotation (labels, synonym or description). Our results 
also revealed that these readability metrics could be used 
for detecting potential changes in modelling decisions 
and, in case such changes are intended by the developers, 
the metrics provide information about the effects of the 
implementation of such decisions. Consequently, they 
are useful for the ontology quality assurance process.

Structural accuracy
The structural accuracy metrics analyse the consistency 
between the lexical content included in the labels and the 
logical one expressed in the axioms by following the lexi-
cally suggest logically define principle [40]. These aspects 
are usually modelled by calculating different hierarchical-
based features, where higher values of depth and breadth 
variance in the class hierarchy tree are associated with 
better semantic relations [19, 39]. Our solution is in line 
with [44, 45], which proposed a lexical study in order to 
discover the possible inconsistencies. [44] focused on the 
semantics of sets that group lexically similar concepts, 
and [45] used subgraphs enriched with lexical charac-
teristics obtained along the is-a relationships. The 
approach followed in our work was to focus on the LR 
classes, which are classes whose label is a lexical regu-
larity. We considered that LR classes provide the rel-
evant domain knowledge and domain concepts that are 
reused for creating other classes in the ontology. Two 
metrics have been proposed based on such LR classes: 
(1) LSLD, which accounts for the existence of semantic 
links between LR classes and classes to which they are 
lexically connected; and (2) systematic naming, which 
focuses on the degree to which the subclasses of the LR 
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classes contain the corresponding LR. The LSLD metric 
facilitates the detection of situations of potentially incor-
rect or suboptimal axiomatisation of the ontology, and 
the systematic naming metric facilitates the detection of 
the possible inconsistencies in the naming of the entities 
or in the ontology hierarchy. All of these aspects are rel-
evant in ontology quality assurance processes.

With respect to the structural accuracy of SNOMED 
CT, the systematic naming metric had a general value 
closer to 0.17 for all of the SNOMED CT versions. We 
found that the use of synonyms resulted in lower values 
for the metric. We show next some examples of negative 
cases found by the metric for the latest version. The com-
plete list is available in ‘Additional file  4’ in the GitHub 
repository. An example is the class 75478009 (Poison-
ing), which has subclasses such as 197359004 (Toxic liver 
disease with chronic persistent hepatitis) or 111776002 
(Toxic effect of hydrocarbon gas). These subclasses do 
not exhibit the LR ‘poisoning’; however, they use the 
word ‘toxic’, which could be a synonym of ‘poisoning’. 
Another example is the LR class 34896006 (Incision), 
which has subclasses such as 150062003 (Osteotomy) or 
359696001 (Colpotomy for pelvic peritoneal drainage), 
being ‘osteotomy’ and ‘colpotomy’ hyponyms of ‘inci-
sion’. In these cases, replacing the corresponding term(s) 
in the negative case would fix these situations. For exam-
ple, the LR class 782161000 (Bite) has 75 subclasses that 
exhibit the lexical regularity ‘bite’; however, there are 
two subclasses in which the LR is not exhibited, namely 
the class 242599009 (Stung by cone shell), and the class 
262551003 (Flea bites), which could be renamed as ‘bite 
by cone shell’ and ‘bite by flea’, respectively, in order to 
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Fig. 7  Boxplots for the distribution of both LSLD and systematic naming metrics per LR class by hierarchy in the SNOMED CT July 2019 release

Table 4  Top ten of  LR classes according to  the  systematic 
naming metric, showing their hierarchy in SNOMED CT

LR class (label) Hierarchy

411123000 (diagnostic allergen 
extract)

Pharmaceutical/biologic product

256259004 (pollen) Substance

24851008 (deoxyribonucleic acid) Substance

263490005 (status) SNOMED CT model component

257351008 (shunt) Physical object

87612001 (blood) Substance

449872003 (powder) Substance

264193005 (segment) Qualifier value

255711007 (pattern) SNOMED CT model component

277536004 (serogroup) Qualifier value
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increase the value of the metric. Additionally, we found 
that the LR classes located in the upper positions in the 
hierarchy were likely to obtain lower values for the sys-
tematic naming metric and that negative cases were fur-
ther from the LR class than the positive ones (see the 

‘Structural accuracy’ section). This implied that the nam-
ing convention was likely to be broken for the most spe-
cific classes (higher depth) in the ontology. These aspects 
are exemplified in the LR class 64572001 (Disease), which 
is a direct subclass of ‘clinical finding’. In this case, the LR 
class has 1956 positive cases and 74,026 negative cases, 
thus obtaining a low value of 0.026 for the metric. This 
low value could be explained because higher LR classes 
denote general concepts and their lexical regularities are 
difficult to maintain in the labels of their subclasses, as 
they became increasingly specific and complex with an 
increase in the hierarchy depth. In fact, the positive cases 
had an average distance of 4.340 to the Disease class, 
whereas the average distance of the negative cases was 
4.680. In this case, the low value of the metric was jus-
tified by the nature of the concept ‘clinical finding’, as it 
would not be usual to name subclasses such as Disease 
as ‘Clinical finding diseases’ or any other combination 
including ‘clinical finding’. This implied that the value of 
this metric was to provide information about the engi-
neering of the ontology, but the value had to be analysed 

Table 5  Bottom ten of LR classes according to the systematic naming metric, sorted by negative cases

LR class (label) LR class depth Positive cases (depth) 
(distance)

Negative cases (depth) 
(distance)

Metric value

385268001 (oral dose form) 4 0 (NA) (NA) 61 (5.607) (1.607) 0

273248003 (action) 6 0 (NA) (NA) 27 (7.259) (1.259) 0

385287007 (parenteral dose form) 4 0 (NA) (NA) 25 (5.16) (1.16) 0

740596000 (cutaneous dose form) 4 0 (NA) (NA) 24 (5.167) (1.167) 0

10546003 (site) 6 0 (NA) (NA) 11 (7.545) (1.545) 0

133936004 (adult) 5 0 (NA) (NA) 6 (6.5) (1.5) 0

260726005 (part) 7 0 (NA) (NA) 4 (8) (1) 0

246176004 (form) 7 0 (NA) (NA) 3 (8.667) (1.667) 0

738984000 (parenteral) 4 0 (NA) (NA) 3 (5) (1) 0

116154003 (patient) 5 0 (NA) (NA) 2 (6) (1) 0

Table 6  Bottom ten of  LR classes according 
to  the  systematic naming metric, showing their hierarchy 
in SNOMED CT

LR class (label) Hierarchy

385268001 (oral dose form) Qualifier value

273248003 (action) SNOMED CT model component

385287007 (parenteral dose form) Qualifier value

740596000 (cutaneous dose form) Qualifier value

10546003 (site) SNOMED CT model component

133936004 (adult) Social context

260726005 (part) SNOMED CT model Component

246176004 (form) SNOMED CT model Component

738984000 (parenteral) Qualifier value

116154003 (patient) Social context

Table 7  Top ten of LR classes according to the LSLD metric, sorted by metric value first, and positive cases later

LR Class (label) LR class depth Positive cases (depth) 
(distance)

Negative cases (depth) 
(distance)

Metric value

736849007 (conventional release) 4 6071 (7.082) (3.082) 0 (NA) (NA) 1

385268001 (oral dose form) 4 2955 (5.725) (1.725) 0 (NA) (NA) 1

421026006 (conventional release oral tablet) 5 2286 (7.212) (2.212) 0 (NA) (NA) 1

385287007 (parenteral dose form) 4 1613 (5.581) (1.581) 0 (NA) (NA) 1

420692007 (conventional release oral capsule) 5 696 (7.129) (2.129) 0 (NA) (NA) 1

740596000 (cutaneous dose form) 4 566 (5.783) (1.783) 0 (NA) (NA) 1

736847009 (prolonged-release) 5 398 (6.96) (1.965) 0 (NA) (NA) 1

272673000 (bone structure) 7 372 (10.288) (3.293) 0 (NA) (NA) 1

282721001 (fluoroscopic guidance) 6 877 (6.523) (0.875) 1 (7) (1) 0.999

19830006 (blood group antibody) 9 715 (11.292) (2.365) 2 (5.5) (3.5) 0.997
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and interpreted by the ontology developers, as low values 
could be justified by the nature of the domain knowledge.

The analysis of the systematic naming metric by 
SNOMED CT hierarchy could help ontologists to ana-
lyse the results by module, which could be maintained 
and developed by different people and even require dif-
ferent modelling patterns. For example, the hierarchy 
‘body structure’ had an absolute metric value of 0.11 
(see Table 12); however, the average individual values of 
the LR classes belonging to this hierarchy was 0.55 (see 
Fig. 7). This implied that there existed LR classes in this 
hierarchy with many more negative cases than positive 
ones, which had a negative impact on the value of the 
metric. Some examples are 419351001 (Sinus), with 41 
positive and 875 negative cases; or 2483006 (Cavity), with 
9 positive and 726 negative cases.

The LSLD metric showed values closer to 0.3 for the 
different SNOMED CT versions. In this case, we also 
performed a further study of the latest version based on 
the negative cases provided by this metric (see ‘Addi-
tional file 3’ in the GitHub repository for a complete list 
of negative cases). We found that a considerable number 

of negative cases were a result of very general classes. For 
example, the label of the LR class 38112003 was ‘1’, and 
this LR appeared in 1324 classes, from which only 386 
were semantically related to the LR class, thus providing 
an LSLD metric value of 0.29. We considered a similar 
scenario for other LR classes that were numbers, includ-
ing 19338005 (2), 79605009 (3), and 3445001 (10), among 
others. It could be argued that if the classes exhibited LR, 
there were numbers that were linked to these LR classes. 
Other examples of general LR classes with a high number 
of negative cases are 42504009 (Containing), 255503000 
(Entire), and 18720000 (In), as they are very common 
words that appear in many class labels, although they are 
not used for describing these classes semantically. Prepo-
sitions such as ‘In’ are sometimes considered stopwords 
and therefore excluded from previous studies. In our 
case, we preferred to consider them in this study.

Next, we focused on the existence of object properties 
with the LR classes. For example, the LR class 269736006 
(poisoning of undetermined intent) was semantically 
related to the 501 classes that exhibited the lexical reg-
ularity, but there were 2 negative cases. These negative 

Table 8  Top ten of LR classes according to the LSLD metric, 
showing their hierarchy in SNOMED CT

LR class (label) Hierarchy

736849007 (conventional release) Qualifier value

385268001 (oral dose form) Qualifier value

421026006 (conventional release oral tablet) Qualifier value

385287007 (parenteral dose form) Qualifier value

420692007 (conventional release oral capsule) Qualifier value

740596000 (cutaneous dose form) Qualifier value

736847009 (prolonged-release) Qualifier value

272673000 (bone structure) Body structure

282721001 (fluoroscopic guidance) Procedure

19830006 (blood group antibody) Substance

Table 9  Bottom ten of LR classes according to the LSLD metric, sorted by negative cases later

LR Class (label) LR class depth Positive cases (depth) 
(distance)

Negative cases (depth) (distance) Metric value

42504009 (containing) 6 0 (NA) (NA) 20803 (6.678) (0.992) 0

255503000 (entire) 6 0 (NA) (NA) 14678 (10.842) (4.844) 0

18720000 (in) 6 0 (NA) (NA) 12671 (6.699) (1.228) 0

20401003 (with) 6 0 (NA) (NA) 10616 (7.495) (1.769) 0

260548002 (oral) 7 1 (6) (1) 7531 (6.59) (0.713) 0

246176004 (form) 7 0 (NA) (NA) 6519 (5.737) (1.351) 0

255333006 (conventional) 5 0 (NA) (NA) 6086 (7.082) (2.083) 0

86495002 (for) 6 0 (NA) (NA) 5715 (6.95) (1.501) 0

420862001 (on) 5 0 (NA) (NA) 4821 (6.873) (1.91) 0

733021006 (system) 5 0 (NA) (NA) 4068 (6.481) (1.545) 0

Table 10  Bottom ten of  LR classes according to  the  LSLD 
metric, showing their hierarchy in SNOMED CT

LR Class (label) Hierarchy

42504009 (containing) Qualifier value

255503000 (entire) Qualifier value

18720000 (in) SNOMED CT model component

20401003 (with) SNOMED CT model component

260548002 (oral) Qualifier value

246176004 (form) SNOMED CT model component

255333006 (conventional) Qualifier value

86495002 (for) Qualifier value

420862001 (on) Qualifier value

733021006 (system) Qualifier value
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cases were the classes 291421002 (Alternative medicine 
poisoning of undetermined intent) and 242976002 (Poi-
soning of undetermined intent by non-drug substance), 
which had zero object properties associated. The object 
properties might be related, for instance, to laterality, 
which are important in SNOMED CT. An example is the 
class 7771000 (Left), which is related to 287045000 (Pain 
in left arm).

The analysis of the LSLD metric by the SNOMED CT 
hierarchy could also help to identify which hierarchies 
follow better the lexically suggest, logically define princi-
ple. An example is the ‘Qualifier value’ hierarchy, which 
has an LSLD metric value of 0.25, having 58,589 posi-
tive and 180,390 negative cases derived from the 177 LR 
classes detected in the hierarchy (see Table 13). Moreo-
ver, the mean and the median of the individual metrics 
per LR class was 0.22 and 0, respectively. Further, we 
detected that most of the very general LR classes, such 
as 255503000 (Entire), 42504009 (Containing), and 
86495002 (for), belong to this hierarchy (see Table  10), 
resulting in a low value for the metric. In addition, we 
detected LR classes such as 255551008 (posterior) or 
303231004 (intracranial) with 1853 and 615 negative 
cases, respectively, which are not being used for defin-
ing classes such as 256707009 (Posterior cervical flap), 
202889007 (Posterior shin splints), 244951004 (Entire 
posterior muscle of abdomen), 44823006 (Intracranial 
embolic abscess), and 128319008 (Intracranial structure). 
Again, the LSLD metric provides information about the 

Table 11  Number of  LR classes per  hierarchy, sorted 
by number of LR classes

Hierarchy Number 
of LR 
classes

Qualifier value 177

SNOMED CT model component 43

Substance 39

Body structure 34

Clinical finding 32

Procedure 22

Observable entity 7

Physical object 5

Social context 5

Environment or geographical location 4

Organism 2

Pharmaceutical/biologic product 2

Event 1

Physical force 1

Record artifact 1

Special concept 1

Specimen 1

Staging and scales 1

Situation with explicit context 0

Table 12  Systematic naming metric values for  each SNOMED CT hierarchy, including  the  number of  LR classes 
in the hierarchy, and the counts of both positive and negative cases, sorted by the metric value

Hierarchy LR classes Positive cases Negative cases Metric value

Record artifact 1 3 0 1.00

Event 1 75 2 0.97

Pharmaceutical/biologic product 2 730 22 0.97

SNOMED CT model component 43 217 88 0.71

Organism 2 1735 1042 0.62

Specimen 1 1024 676 0.60

Qualifier value 177 870 719 0.55

Environment or geographical location 4 143 133 0.52

Physical force 1 32 38 0.46

Observable entity 7 1443 1939 0.43

Substance 39 8496 39131 0.18

Procedure 22 15463 79584 0.16

Clinical finding 32 16556 90841 0.15

Body structure 34 1680 13527 0.11

Physical object 5 1452 13981 0.09

Social context 5 25 296 0.08

Special concept 1 0 0

Staging and scales 1 0 0
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engineering of the ontology. The results must be inter-
preted by the domain experts. In case, they agree with 
the shortcomings spotted by the metric, they will have to 
make decisions about the content of the ontology. Conse-
quently, the metric is useful for the quality assurance of 
the ontology.

In this study, we focused on SNOMED CT, but the 
metrics could be applied to other ontologies. Note that 
despite the fact that we focused on the values of the 
metrics, our method could retrieve the negative cases, 
whose revision should be part of the quality assurance 
of the ontology. The study of negative cases could help 
to determine the correctness of the position of a class 
in the hierarchy, to suggest the renaming of the class to 
be in concordance with the name of its ancestors, or to 
suggest that there are missing object properties between 
concepts.

Limitations and future work
The metrics presented in this work permit the analysis 
of certain features of ontologies, but the global evalua-
tion of the quality of an ontology requires one to combine 
them with other metrics in order to develop a complete 
quality assurance framework. In this sense, we plan to 
include the new metrics into our OQuaRE framework 
[15], which currently includes 19 ontology metrics. The 
integration of the new metrics will require us to map the 
range of values of the metrics to the quality scores 1 to 
5, which in turn requires a study of different ontologies 

and repositories. Hence, we will perform a systematic 
analysis of the content of repositories such as the OBO 
Foundry  [57], BioPortal  [47], and UMLS [58] with the 
purpose of characterising the current biomedical ontolo-
gies from the perspective of the metrics, hence enabling 
a comparative analysis of the metrics and ontologies. 
As future work, we also plan to improve the detection 
of LRs and the detection of negative cases in systematic 
naming and LSLD metrics, and to apply the novel met-
rics to a different corpus of ontologies. We believe that 
the lemmatisation or normalisation of the labels would 
contribute to the improvement of the detection of LRs. 
Regarding the negative cases, our lexical analysis has the 
limitation of not taking into account the cases in which 
a lexical regularity is exhibited without doing an exact 
match, thus providing false negatives. This is exemplified 
by the LR class 269736006 (Poisoning of undetermined 
intent), which has subclasses such as 291368008 (Poison-
ing caused by herbal asthma mixture of undetermined 
intent) and 291990000 (Poisoning caused by angiotensin-
converting enzyme inhibitor of undetermined intent). 
In this case, both the subclasses do not provide an exact 
match with the regularity ‘Poisoning of undetermined 
intent’; however, we can consider that they are exhib-
iting it by including extra text in the middle. Another 
improvement is to filter the negative cases for providing 
useful information about how to improve the ontology. 
In the case of SNOMED CT, we can ignore classes in the 
upper levels, as they are likely to present many negative 

Table 13  LSLD metric values for  each SNOMED CT hierarchy, including  the  number of  LR classes in  the  hierarchy, 
and the counts of both positive and negative cases, sorted by the metric value

Hierarchy LR classes Positive cases Negative cases Metric value

Pharmaceutical/biologic product 2 730 62 0.92

Event 1 475 56 0.89

Specimen 1 1462 389 0.79

Body structure 34 21979 6975 0.76

Organism 2 2203 1096 0.67

Clinical finding 32 17069 10199 0.63

Procedure 22 16322 11050 0.60

Physical force 1 254 215 0.54

Physical object 5 2287 2776 0.45

Substance 39 15404 22749 0.40

Observable entity 7 1902 2960 0.39

Qualifier value 177 58589 180390 0.25

Environment or geographical location 4 143 1650 0.08

Social context 5 87 6898 0.01

Record artifact 1 3 410 0.01

SNOMED CT model component 43 217 69645 0.00

Special concept 1 0 452 0.00

Staging and scales 1 0 354 0.00
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cases that cannot been fixed because of the complexity 
of the ontology itself. Nonetheless, this is a difficult task, 
because not all of the ontologies present the same organi-
sation. We also plan to enable filters to exclude certain 
parts of the ontology from the analysis.

Conclusion
The quality assurance of biological and biomedical ontol-
ogies is critical for the success of their application to sup-
port research. In this paper, we addressed two relevant 
features of biomedical ontologies, namely readability and 
structural accuracy. Readability not only improves the 
understanding of ontologies by humans but also empow-
ers their use in natural language processing tasks, such as 
named entity recognition. An accurate structure of the 
ontology guarantees that ontologies are built by apply-
ing the best practices and methodologies that make 
their development and maintenance easier. Our metrics 
were applied to SNOMED CT, showing their capabil-
ity to provide useful insights about the engineering of 
the ontology. Therefore, this work makes the following 
contributions: (1) a set of readability metrics based on 
the most frequently used annotation properties, (2) the 
use of lexical regularities to define two metrics related 
to structural accuracy, and (3) the generation of quality 
assurance information for SNOMED CT.
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