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Abstract

Background: Accurately determining the softness level of pituitary tumors preoperatively by using their image
textures can provide a basis for surgical options and prognosis. Existing methods for this problem require manual
intervention, which could hinder the efficiency and accuracy considerably.

Methods: We present an automatic method for diagnosing the texture of pituitary tumors using unbalanced
sequence image data. Firstly, for the small sample problem in our pituitary tumor MRI image dataset where T1 and
T2 sequence data are unbalanced (due to data missing) and under-sampled, our method uses a CycleGAN (Cycle-
Consistent Adversarial Networks) model for domain conversion to obtain fully sampled MRI spatial sequence. Then,
it uses a DenseNet (Densely Connected Convolutional Networks)-ResNet(Deep Residual Networks) based
Autoencoder framework to optimize the feature extraction process for pituitary tumor image data. Finally, to take
advantage of sequence data, it uses a CRNN (Convolutional Recurrent Neural Network) model to classify pituitary
tumors based on their predicted softness levels.

Results: Experiments show that our method is the best in terms of efficiency and accuracy (91.78%) compared to
other methods.

Conclusions: We propose a semi-supervised method for grading pituitary tumor texture. This method can accurately
determine the softness level of pituitary tumors, which provides convenience for surgical selection and prognosis, and
improves the diagnostic efficiency of pituitary tumors.
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Background [3]. It is important to accurately judge the softness level

Pituitary tumor is one of the most common diseases in
the nervous system [1]. It is the third largest tumor type
in brain and is extremely harmful to the human body
[2]. Many critical questions, such as whether a surgical
procedure is needed, what kind of procedure is most
suitable, and what is the expected postoperative effect,
are all closely related to the softness of pituitary tumor
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of pituitary tumor preoperatively in a non-invasive man-
ner. This has been a problem for a long time and is still
plaguing the clinic. However, due to the closure nature
of the cranial cavity, it is often difficult to accurately de-
termine the softness of pituitary tumor before surgery
[4]. With the technological advancements in medical im-
aging, MR, CT and other imaging modality can now
provide rich anatomical information non-invasively. It
has been shown that such information can be used to
improve the treatment planning for 30 to 50% cancer
patients, resulting in more accurate treatments for them.
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Thus, it is extremely valuable to mine deep quantitative
information (such as the softness level) from pituitary
tumor image data, which is not perceivable by the naked
eyes of clinician.

At present, the most commonly used method for evalu-
ating the image texture of pituitary tumor is image omics,
which is defined as the conversion of visual image infor-
mation into deep features for quantitative research. The
advantage of such a method is its interpretability, which is
based on domain knowledge [5]. Aerts et al [6] extracted
440 CT features for prognosis, and found that imaging
histology can reflect tumor phenotype, internal heterogen-
eity, and the prognostic radiological features of intra-
tumoral heterogeneity are related to potential gene
expression patterns, which could effectively assess the
prognosis of patients. Zhang et al [7] adopted an approach
that combines machine learning techniques with imaging
omics. They extracted 970 medical image features, and
used six kinds of machine learning phenomenological fea-
ture selection methods and nine classification methods to
obtain 54 different combinations. They showed that the
random forest method (RF) has the best performance in
the prognosis analysis of nasopharyngeal carcinoma im-
ages. However, since image omics requires accurate ex-
traction of lesions, it is not very efficient. Moreover, the
number of deep features that can be extracted by image
omics could be as many as thousands, which need to be
selected manually. Thus, it is a challenging task to select
the best set of features, as it depends largely on the experi-
ence of the technician. In general, feature extraction is a
computation-intensive and time-consuming process, and
thus better solution is needed.

In recent years, artificial intelligence has gained a lot
of popularity which propelled a new way for medical im-
aging processing. The combination of deep learning and
medical imaging. It has shown that such an approach is
capable of automatically extracting a large number of
deep features from large medical image datasets, and
yields much improved solutions. For example, Wang
et al. [8] combined medical imaging with in-depth learn-
ing to develop a new generation of image reconstruction
theory technology, which enhanced the ability of image
analysis and image reconstruction. Xu et al. [9] proposed
a new network cxnet-ml to detect abnormal chest X-ray
images, which improved the efficiency and accuracy of
diagnosis. Wei et al. [10] proposed a method called
Locality-constrained Sparse Autoencoder (LSAE) which
introduces the concept of locality into Autoencoder and
can encode similar inputs by similar features. Their
method achieves a classification accuracy of 72.7% for
CALTECH-101 dataset. Xu et al. [11] presented a new
Stacked Sparse Autoencoder (SSAE) framework for the
diagnosis of high resolution histopathological images of

breast cancer. They wused a dataset with 500
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histopathological images (2200 x 2200) and 3500 manu-
ally segmented cell nucleuses, and showed that their
method improves the F value by 84.49% and vyields an
AVEP of 78.83%.

Despite the aforementioned progresses, deep-learning-
based approaches are also facing a number of challenges,
such as data unbalancing in small sample, limited reli-
ably labeled data, inaccurate feature extraction, etc. In
the case of pituitary tumor, the dataset we collected is
unbalanced, e.g., only T1 sequences but lacking of T2 se-
quences. In addition, more accurate features of pituitary
tumor image data are needed for texture classification.
In this paper, we proposed a semi-supervised pituitary
tumor image classification method based on CycleGAN
and optimized feature extraction. Our method first uses
CycleGAN to make up the missing T2 sequences, and
then adopts a DenseNet-ResNet based Autoencoder-
decoder framework to extract pituitary tumor features
and optimize adaptively. Finally, the optimized features
are inputted to CRNN. It needs only sequence-level
label, instead of frame-level label, to complete the train-
ing for subtype classification of pituitary tumors.

Methods

Theoretical basis

CycleGAN

CycleGAN [12] is basically two mirrored GANs that
form a ring network. The goal of CycleGAN is to con-
vert image A to another domain to generate image Al
and convert Al back to A, where output image Al is
similar to the original input image A to form a meaning-
ful mapping that does not exist in the unpaired data set.
The advantage of CycleGAN is its ability to train two
image sets without pairing.

DenseNet

DenseNet [13] is a convolutional neural network frame-
work with dense connectivity proposed by Huang Gaoren
in 2017. In its architecture, there is a direct connection be-
tween any two layers of the network. The input of each
layer of the network is a combination of the output of all
previous network layers, which enhances the propagation
of features. It alleviates the problem of gradient disappear-
ance, reduces network parameters and encourages feature
reuse. It has been widely used in the medical image field.

ResNet

ResNet [14] is a convolutional neural network frame-
work proposed by He et al. in 2015. It adds a shortcut
on top of the original architecture to enable direct con-
nection between the mappings of layers, which solves
the degradation problem. ResNet alleviates the gradient
vanishing and gradient explosion problems caused by
the increased depth of the network, and thus protects
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the entirety of the data. It has been widely used in med-
ical image field.

CRNN

CRNN is a model proposed by Shi et al. [15] to deal with
sequence-like objects in images, which consists of
DCNN and RNN. DCNN is used to extract sequence
features from the input image. RNN has the advantage
of processing sequence data, and can achieve better rec-
ognition accuracy from the extracted sequence features.
The ability of CRNN to predict sequence data brings in-
spiration to the recognition of medical image data.

Pituitary tumor sequence data amplification using
CycleGAN

A problem often encountered in MR images of pituitary
tumors is under-sampling in a single domain (e.g., T1 or
T2). This can be caused by various reasons, such as data
missing or simply under sampling. To resolve this issue,
our main idea is to use images from other domains
(which may come from different image modalities) to
generate a set of new images through domain conver-
sion. The set of new and old images forms an aug-
mented set of images which provides a better sample for
the domain.

Particularly, we use CycleGAN for data augmentation.
First, two domain converters are designed and trained
based on the CycleGAN architecture to allow inter-
domain conversion from T1 to T2 and from T2 to T1.
Then, the generated MR images from domain conver-
sion are added to the original sets of images to form
augmented T1 and T2 sequences.

Multiple sequence of pituitary tumor MR images
As mentioned above, the MR images of one patient usu-
ally include spatial sequences from different modalities,
such as T1WI, T2WI, T1C and T2FLAIR, etc. In this
paper, we mainly use T1 and T2 spatial sequence images.
For each patient i, we denote its T1 spatial sequence is
as Ty = {t},....t1 v}, where t|, represents the n-th
slice/frame in the T1 spatial sequence, and its T2 spatial
sequence as Ty = {t}, ...,y \}, where ), represents
the n-th slice/frame in the T2 spatial sequence. The
number of slices per sequence is N (12 in this paper).
To classify the pituitary tumors, we combine the T1 and
T2 spatial sequences of each patient i to obtain a spatial
sequence of multiple sequences, which is denoted as:

Ti = {(ti,l’ té,l)’ (ti,wté,z)-"w (tg,N7t§,N)} (1)

The total number of slices in a multi-sequence spatial
sequence is 2 N (24 in this paper).
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Training domain converter based on CycleGAN
In this paper, we use the CycleGAN framework to de-
sign and train the domain converter. CycleGAN is es-
sentially a cyclic network consisting of two mutually
symmetric GANs. On top of the original GAN, add-
itional loop constraints are added to force the image to
be converted into its original image format so as to re-
construct itself. This allows images to be converted from
one domain to another domain without needing to pair
them. The architecture of our domain converter is illus-
trated in Fig. 1. In our design, we need to train the T1-
to-T2 generator Tr(t;, ,;0;) and the T2-to-T1 generator
Tr(ty, n;6,.), as well as the T1 domain discriminator
Dis(t;, 4;03) and T2 domain discriminator Dis(ty ,;04),
where in 6, 0,, 65 and 6, are the to-be-determined pa-
rameters in the deep neural network. During the training
process, when the discriminator’s loss reaches the mini-
mum and tends to be stable, CycleGAN model training
is completed.

The training of the above network mainly consists of
two steps:

1) The training of the Discriminator: Fixing the values
of 8; and 6,, update the values of 65 and 6,. This is
for discriminating the authenticity of the image. If
the input is MR image data from the real domain,
the label is 1, and if the input is an MR image data
generated by the generator, the label is 0. In short,
the role of the discriminator is to score pictures. If
the input pictures are real pictures from the original
dataset, they will get high scores. Otherwise (i.e.,
they are generated fake pictures), their scores will
be low. The network of this part is depicted in
Fig. 2, where the convolution layer is consists of
Conv2D, Leaky ReLU, Instance Normalization, and
the digits represent the size and number of the
convolution kernel.

2) The training of the Generator: Fixing the values of
85 and 0,4, update the values of 8; and 0,. This is for
inter-domain conversion of images. After getting
the input MR images from T1 or the T2 domain,
the generator sends them to the corresponding do-
main converter to generate MR images of the other
domain. The generated images are then again sent
to the corresponding domain converter to generate
MR images of the original domain. After being con-
verted twice, the obtained MR images are forced to
be as similar as possible to the original ones. The
network of this part is shown in Fig. 3, where the
convolution layer consists of Conv2D, Leaky ReLU,
Instance Normalization. The first three de-
convolution layers consist of UpSampling2D,
Conv2D, ReLU, Instance Normalization, and the
last de-convolution layer consists of UpSampling2D,
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Same as possible

T1 Label
Discriminator [0, 1]

T2=>T1

Generator T2 Label

TI=>T2 Discriminator [0, 1]

Generator T1 Label

T2=>T1 Discriminator [0, 1]
T2 Label Generator
Discriminator [0, 1] TI=>T2

Same as possible

Fig. 1 CycleGAN based Deep Neural Network Model for domain conversion

Conv2D, Tanh. The dashed line represents the
superimposing operation between the correspond-
ing network layers, and the digits are the size and
number of the convolution kernel.

Semi-supervised classification method for the image
texture of pituitary tumors based on adaptively
optimized feature extraction

To improve the efficiency of feature extraction for deter-
mining the softness level of pituitary tumor, using Den-
seNet, ResNet we propose in this paper an Auto-
Encoder-based deep neural network model for feature
extraction. Since the weight of the features common to
all input data could be reduced during the training
process, our proposed model can enhance the weight of
the features unique to each MRI spatial sequence (i.e.,
the features of pituitary tumor), and meanwhile reduce

the dimensionality of the features of each slice. This can
greatly accelerate the operational speed of the subse-
quent classifier. Therefore, it is essential for our classifi-
cation method to use the proposed Auto-Encoder-based
framework for feature extraction.

Encoder and decoder based on dense block and residual
block

For encoder, we use Dense Block to enhance the feature
propagation ability of MRI spatial sequences, rely on the
convolutional layer and pooling layer to reduce the di-
mensionality, and combine them to form an encoder for
extracting the common features of MRI spatial se-
quences. As shown in Fig. 4, the encoder uses two dense
blocks in the training process (only one is shown in the
figure). Due to the fact that the feature maps are super-
imposed during the training process, it enhances the
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propagation ability of pituitary tumor features, which
consequently improves the accuracy and reliability of
feature extraction.

For decoder, we use Residual Block to compress the
dimensionality of the feature map, and rely on the
upsampling layer and the convolution layer to increase
the dimensionality. These two components together
form the decoder which can generate MRI spatial
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sequences with the same dimensionality as the original
input data. The network architecture is shown in Fig. 5.
It also uses two residual blocks in the decoder (only one
is shown in the figure). The decoder uses shortcut to
lower the weight of some features during the training
process. Also, the model drift increases due to the added
network depth (after adding the decoder). These to-
gether improve the effectiveness of MRI spatial sequence
reconstruction. It also means that it is quite meaningful
to use Residual Block for image reconstruction in the
whole model.

Adaptive optimization of feature extraction

The above Dense Block-based encoder and Residual
Block-based decoder enable us to adopt an Auto-
Encoder model for sequence level feature extraction. Its
specific network structure is shown in Fig. 6.

Firstly, the input image sequence is generated by dense
block encoder. Secondly, the feature sequence is decoded
by the residual block-based decoder to restore the image
sequence. At last, the input image is compared with the
corresponding pixels of the generated image. The lower
the loss, the more similar the generated image is to the in-
put image, and the more representative the extracted fea-
ture sequence is.

Semi-supervised classification of spatial sequence images
based on CRNN

The extracted feature map of the pituitary tumor MRI
spatial sequence is a three-dimensional matrix using the
format of CRNN. An image sequence represents a pa-
tient and only one sequence-level label is needed. We

first use CNN to extract the spatial feature sequence of
the feature map, and then use RNN to train the ex-
tracted feature sequence. When the loss in training
process reaches the lowest and tends to be stable, it indi-
cates that CRNN model has been trained. At this time,
the model can be used as a standard to predict test ac-
curacy. The neural network architecture is shown in
Fig. 7.

Multi-sequence pituitary tumor classification model

Combining all the above neural network components,
we obtain a model for classifying the multi-sequences of
pituitary tumors. Its network architecture is shown in
Fig. 8. The model is capable of augmenting under-
sampled T1 and T2 datasets, fusing sequences from
multiple modalities, extracting features, and finally
obtaining the accurate estimation of the softness level of
pituitary tumor by using a CRNN-based classifier.

Experiment platform and dataset

Our experiments are conducted in the following settings.
The operating system is Windows10, the processor is
2.10GHz Intel Xeon (dual core), the memory capacity is
64GB, the development environment is PyCharm, the
deep learning framework is Keras, the programming lan-
guage is Python, and the graphics card is GeForce RTX
2080Ti (three cores).

The dataset used in the experiment was pituitary tu-
mors collected in a local affiliated hospital. Each patient
had MRI data of OAX, OSAG and OCOR (In this paper,
OCOR MRI data are used), and there were T1 and T2
two modes in OCOR MRI data. There are 374 patients

-

Residual Block

Feature Maps

Cololioor

MRI image
sequence

Fig. 5 ResNet decoder network architecture
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/
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Fig. 6 Feature extraction model based on Auto-Encoder

in total, 152 of whom are labeled, with each associated
with a grading label from the following two grades: soft
texture and hard texture.

Results
Experiment analysis
CycleGAN-based multi-sequence data amplification
We use the image data of 374 patients for CycleGAN
training, including 280 T1 MRI spatial sequences and
94 T2 MRI spatial sequences. We train a total of 120
times, in which the loss of the generator and the dis-
criminator is shown in Fig. 9. When the number of
training reaches 90 epochs, the loss of the discrimin-
ator reaches its minimum and becomes stable.

We use 152 patient datawith labels (including 112
T1 MRI spatial sequences and 40 T2 MRI spatial se-
quences) to augment the data using the trained

cyclegan model. As a result, there is a multi-sequence
of 24 slices (12T1 slices and 12 T2 slices) for each
patient. The result (after 120 times of training) is
shown in Fig. 10.

Figure 10 shows the original MR image in two do-
mains and the MR image reconstructed after two con-
versions by the domain converter. Visually, the
difference between a real MR image and a transformed
MR image is very small.

Semi-supervised pituitary tumor texture image classification
based on adaptively optimized feature extraction

After being amplified by CycleGAN, the dataset was
then fed to the Auto-Encoder for feature extraction
using unsupervised learning. Supervised learning is
conducted during the CRNN texture classification
stage.

Label
[1,0,0]

Softmax

Multimodal MRI sequence

Fig. 7 CRNN classifier network architecture

Feature sequence
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Fig. 10 Visualization of training results

Translated
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To ensure reliable comparisons, all the models were
trained 100 steps in the feature extraction stage. The
training process of multi-sequences is shown in Fig. 11,
and the curve of the single-modal baseline is similar.

It can be seen from the figure that when the
model is trained 100 steps, the loss curve reaches its
lowest point, which is 0.01, and feature extraction
network almost achieves the optimal solution.

The architecture of the experiment can be divided into
three models, namely the multi-sequence model, the T1

domain model and the T2 domain model. The multi-
sequence (medical image classification) model is com-
pared to two single-modal baseline models:

(1) T1 domain model: We only consider the MRI spatial
sequence of T1 domain of all patients, including the
MRI spatial sequence generated from another domain
converter.

(2) T2 domain model: We only consider the MRI
spatial sequence of T2 domain of all patients,

0.6
— Accuracy

0.5

0.4
3 031
<

0.2

0.14

0.0 T y T .

0 20 40 60 80 100
Steps
(a) Feature extraction accuracy

Fig. 11 Multi-sequence feature extraction model
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including the MRI spatial sequence generated
from another domain converter.

(3) Multi-sequence model: We use the trained domain
converter to construct an MRI multi-sequence in
both T1 and T2 domains, including the MRI spatial
sequence generated by the domain converters.

In the texture classification stage, there are many
neural network model parameters in the experiment, but
a small number of trained samples. This could poten-
tially cause over-fitting. To avoid this issue, we use
Dropout and EarlyStopping methods during the training
process. The Droupout ratio is set to be 0.5, that is, for
all the neural network units in model, they are tempor-
arily discarded from the network with a probability of
50%. We set the patience value of EarlyStopping to be 2
and the monitor to be ‘val_loss’. That is, if the value of
‘val_loss’ does not decrease relative to the previous
epoch during model training, the model is stopped after
2 epochs. The T1 domain, T2 domain, and multi-
sequence model training process are shown in the fol-
lowing figures:

As can be seen from Figs. 12, 13, 14, we performed 6
replicate experiments on the T1 domain, T2 domain and
the multi-sequence domain. In our experiment, we ran-
domly divide the dataset into training dataset (70%), test
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dataset (15%), and verification dataset (15%). We re-
peated this process 6 times, and recorded the average
and variance of 6 classification accuracy rates. Table 1
shows the details of classification, and Table 2 shows
precision, recall and F1-score of classification:

Compared with other models

In the training process of neural network model, the
quality of tumor feature extraction is the key to improv-
ing the classification accuracy. Compared with the fea-
ture extraction method of image omics, deep learning
can adaptively learn the tumor features from big data.
Table 3 lists the performance of ours and some com-
monly used classification models on pituitary tumor
MRI images. This further demonstrates the effectiveness
of our method.

As can be seen from the above table, our proposed
DenseNet+ResNet+CRNN architecture significantly out-
performs all other methods in terms of running time
and classification accuracy. Our method has the fastest
convergence rate and thus shortest running time. From
the perspective of classification accuracy, we can see that
adding an Auto-Encoder-based feature extractor before
CRNN can considerably improve the performance. In
summary, the comparative experiment suggests that our
CycleGAN-based classification model and the adaptively
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Table 1 Pituitary tumor classification accuracy
T1 domain(%)

Multi-sequence(%) T2 domain(%)

Train 988 + 1.24 9755 + 140 9741 + 137
Verification 9282 +1.23 91.70 £ 1,61 9115+ 113
Test 9178 £ 144 89.24 £ 3.11 88.98 £ 423

optimized feature extraction has great potential of yield-
ing accurate texture classification results for pituitary
tumors.

In order to verify the clinical statistical significance of
the experiment, we paired the method proposed in this
article with the other methods in Table 3. We use Wil-
coxon signed rank test to perform statistical test on paired
samples, and the specific data are shown in Table 4.

It can be seen from Table 4 that the P values obtained
by statistics on various models are all less than 0.05,
which is statistically significant. Results have clinical
significance.

In order to reflect this contrast more clearly, we have
drawn a forest plot, as shown in Fig. 15.

As can be seen from the forest plot, our proposed
method is more effective compared with other methods.

Discussion

In this study, several experiments were designed to
validate our method. Particularly, We first carried out
a comprehensive evaluation of the image data gener-
ated by CycleGAN, and found that the generated im-
ages were great. Subsequently, we list the training
curves of feature extraction part to judge extraction
effect. Finally, we repeated the experiment six times,
calculated the test accuracy, and compared it with
other models, and found that our method is the best
in terms of accuracy and efficiency. These experi-
ments demonstrate that our method has advantages
in grading pituitary tumors. Despite the achievements
reported in this paper, several improvements remain
possible: On the one hand, the data samples used in
the experiment are still insufficient, and it is easy to
produce the phenomenon of overfitting. On the other
hand, although the loss of feature extraction model
training is low and convergence is achieved, the ac-
curacy is still not high enough. Future research in the

Table 2 Precision, recall and F1-score of pituitary tumor
classification

Precision(%) Recall(%) F1-score(%)
T1 domain 86.81 = 3.67 9333 £ 596 89.80 £ 2.64
T2 domain 8707 £ 3.71 9444 + 502 9041 + 2.15
Multi-sequence 89.89 + 4.02 95.55 + 544 9246 + 1.74
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Table 3 Comparisons of classification results of different
methods

Feature extraction Texture classification Accuracy(%) Time(s)
- VGG 69 113

- ResNet 78.25 105

- DenseNet 81.25 97

- CRNN 737 67
ResNet+ ResNet CRNN 88.76 43
DenseNet+DenseNet ~ CRNN 90.33 43
DenseNet+ResNet CRNN 91.78 42
DenseNet+ResNet RNN 89.12 42

domain shall address these issues, possibly collecting
new data and improving the part of feature
extraction.

Conclusion

In this paper, we proposed a deep neural network model
for determining the softness level of pituitary tumors,
which has the potential to assist clinical diagnosis. Our
method first uses CycleGAN to amplify the pituitary
tumor dataset to generate multi-sequence samples,
which enhances the diversity of pituitary tumor samples
and thus helps resolve the under-sampling issue. Then,
our method uses an Auto-Encoder architecture, based
on ResNet encoding and decoding, to extract the pituit-
ary tumor features, which can improve the classification
efficiency of the network to some extent. Finally, the ex-
tracted pituitary tumor features are fed to CRNN for
classification/grading of the softness level of pituitary tu-
mors. Experiments on a real medical dataset show that
our method achieves significantly improved results than
some existing popular methods. The experimental re-
sults also suggest that our adaptively optimized feature
extraction method can better identify deep texture

Table 4 Statistics of Wilcoxon signed rank test based on paired

samples

Feature extraction Texture classification z P

- VGG —2.201 0.028
- ResNet -2.201 0.028
- DenseNet —2.201 0.028
- CRNN —2.201 0.028
ResNet+ ResNet CRNN —2.201 0.028
DenseNet+DenseNet CRNN -2.023 0.043
DenseNet+ResNet RNN —2.201 0.028
DenseNet+ResNet CRNN - -
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\

Subgroup Randomly Min Randomly Max Accurate Ratio(95% Cl)
All patients 152 152 0.92(0.68-1.16) ———e——cEE R ———
VGG
0677 0.7065 0.71(0.66-0.84) —l—
ResNet
0.7769 0.7913 0.80(0.74-090) ——
Densenet
0.8086 0.8162 0.82(0.75-0.91) ——
CRNN
0.732 0.7411 0.74(069-080) r——
ResNet+ResNet CRNN
0.879 0.8985 0.90(0.85-0.91) —il-
Densenet+Densenet CRNN
0.8967 09128 0.91(0.87-0.94) —ln
Densenet+ResNet RNN
0.888 0.8951 0.90(0.87-0.94) s
Densenet+ResNet CRNN
0.9128 0.9263 0.92(0.89-0.95) o
Fig. 15 Forest plot for comparisons of classification results of different methods

features of pituitary tumor image, and can thus improve
the classification accuracy of pituitary tumors.
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