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Abstract

Background: Breast cancer is the most prevalent and among the most deadly cancers in females. Patients with
breast cancer have highly variable survival lengths, indicating a need to identify prognostic biomarkers for
personalized diagnosis and treatment. With the development of new technologies such as next-generation
sequencing, multi-omics information are becoming available for a more thorough evaluation of a patient’s
condition. In this study, we aim to improve breast cancer overall survival prediction by integrating multi-omics data
(e.g., gene expression, DNA methylation, miRNA expression, and copy number variations (CNVs)).

Methods: Motivated by multi-view learning, we propose a novel strategy to integrate multi-omics data for breast
cancer survival prediction by applying complementary and consensus principles. The complementary principle
assumes each -omics data contains modality-unique information. To preserve such information, we develop a
concatenation autoencoder (ConcatAE) that concatenates the hidden features learned from each modality for
integration. The consensus principle assumes that the disagreements among modalities upper bound the model
errors. To get rid of the noises or discrepancies among modalities, we develop a cross-modality autoencoder
(CrossAE) to maximize the agreement among modalities to achieve a modality-invariant representation. We first
validate the effectiveness of our proposed models on the MNIST simulated data. We then apply these models to
the TCCA breast cancer multi-omics data for overall survival prediction.

Results: For breast cancer overall survival prediction, the integration of DNA methylation and miRNA expression
achieves the best overall performance of 0.641 ± 0.031 with ConcatAE, and 0.63 ± 0.081 with CrossAE. Both
strategies outperform baseline single-modality models using only DNA methylation (0.583 ± 0.058) or miRNA
expression (0.616 ± 0.057).

Conclusions: In conclusion, we achieve improved overall survival prediction performance by utilizing either the
complementary or consensus information among multi-omics data. The proposed ConcatAE and CrossAE models
can inspire future deep representation-based multi-omics integration techniques. We believe these novel multi-
omics integration models can benefit the personalized diagnosis and treatment of breast cancer patients.
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Background
Breast cancer is the most common type of cancer in fe-
males worldwide. In 2018, breast cancer constituted over
25% of about 8.5 million new cancer diagnoses in female
patients [1]. This prevalence pattern is found in the US
as well, where women have over a 12% risk of being di-
agnosed with breast cancer in their lives, and breast can-
cer cases are expected to encompass about 30% of new
cancer cases [2]. While the principal risk factor for
breast cancer is age, it is known that selected gene muta-
tions account for about 10% of all breast cancer cases
[3]. Research into prognostic genomic biomarkers be-
yond mutational status is ongoing and may offer insights
into disease mechanisms and new therapies. Breast can-
cer maintains the second-highest mortality rate for can-
cers in females at about 13% [2]. Survival rates for breast
cancer are typically measured by 5-year post-diagnosis
survival. The 5-year survival rate is 90% when all stages
are combined [4]. If each cancer stage is considered sep-
arately, the 5-year survival rate is 99% for localized
breast cancer and drops to 85 and 27% for regionally
and distantly spread cancer, respectively.
Public multi-omics datasets such as The Cancer Gen-

ome Atlas (TCGA) [5] have greatly accelerated the re-
search for cancer study [6], including accurate cancer
grading, staging, and survival prediction [7–9]. The can-
cer survival analysis can be categorized into binary clas-
sification or risk regression. In a binary classification
task, the patients are typically split into a short-survival
group and a long-survival group based on a predefined
threshold (e.g., 5 years). While in risk regression studies,
a risk score is calculated for each patient, typically with
the Cox proportional hazards model [10] and its
extensions.
Various models have been developed for survival pre-

diction in large and heterogeneous cancer datasets. For
example, Zhao et al. have tested various classification al-
gorithms to predict 5-year breast cancer survival by inte-
grating gene expression data with clinical and
pathological factors [11]. Authors find that various clas-
sification methods (e.g., gradient boosting, random for-
est, artificial neural networks, and support vector
machine) have similar accuracy and area under the curve
(AUC) of 0.72 and 0.67, respectively. This study demon-
strates that classification methods may not matter as
much as the quality of the data itself [11]. Goli et al.
have developed a breast cancer survival prediction model
with clinical and pathological data using support vector
regression and find similar positive results [12]. This
study has established the use of support vectors as a
promising route in survival prediction with an imbal-
anced dataset. Similarly, Gevaert et al. have integrated
microarray gene expression data with clinical data using
Bayesian Networks and achieved a maximum AUC of
0.845 [13]. This study shows that incorporating both
data modalities improved predictions beyond either clin-
ical or gene expression alone. Sun et al. have created 5-
year breast cancer survival prediction models using gen-
omic data (e.g., gene expression, copy number alteration,
methylation, and protein expression) coupled with
pathological imaging data also from TCGA. The authors
utilize multiple kernel learning to enact feature-level in-
tegration of all data. Their multi-omics model, excluding
imaging data, has an AUC of 0.802 ± 0.032. When in-
corporating the imaging data, the AUC goes up slightly
to 0.828 ± 0.034 [14]. Ma et al. have applied factorization
autoencoder to integrate gene expression, miRNA ex-
pression, DNA methylation, and protein expression for
progression-free interval event prediction and achieve an
AUC of 0.74 on bladder cancer and an AUC of 0.825 on
brain glioma [15].
Instead of binary classification, the survival risk regres-

sion aims to predict the expected duration of time until
one or more events happen by modeling the time to
event data. The proportional hazards model assumes the
covariates are multiplicatively related to the hazard [16].
Assuming the proportional hazards assumption holds,
the Cox proportional hazards model can estimate the ef-
fect parameters without considering the hazard function
[10]. Recently, the Cox proportional hazards model has
been extended by deep neural networks. For example,
Deep Surv [17] and Cox-Time [18] replace the linear re-
lationship in the Cox proportional hazards model with
non-linear neural networks. In addition, L1 and L2
regularization terms have been utilized on the network
parameters to reduce the over-fitting of the models. The
survival risk regression model has also been applied to
multi-omics data. For example, Huang et al. have devel-
oped a Cox-proportional hazards model based multi-
omics neural network for breast cancer survival regres-
sion [19].
In our previous study [20], we have built a trans-

national pipeline for overall survival prediction of breast
cancer patients by decision-level integration of multi-
omics data (e.g., gene expression, DNA methylation,
miRNA expression, and copy number variations
(CNVs)). However, many right-censored samples have
been discarded to enable binary classification. In this
study, we extended the work by replacing the binary sur-
vival classification with survival risk regression to make
the most of the TCGA dataset. We hypothesize there
are both complementary and consensus information in
the multi-omics data. To utilize the complementary and
consensus information among multi-omics data, we re-
place the decision-level integration with deep learning-
based feature-level integration. The remainder of the
paper is structured as follows: in section 2, we first de-
scribe the simulated two-view data from the Modified
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National Institute of Standards and Technology (MNIS
T) database and multi-omics breast cancer (BRCA) data
from the TCGA database (referred as TCGA-BRCA
hereafter). We then present the proposed methods for
multi-omics data integration by utilizing the comple-
mentary information and consensus information among
modalities. In section 3, we present the results of the
baseline models and proposed models on both MNIST
simulated data and TCGA-BRCA multi-omics data. We
will discuss the results and conclude the current work in
section 4 and section 5, respectively.

Methods
Simulated multi-view MNIST dataset
To validate the proposed feature-level integration net-
work, we simulate the multi-modality data from the
Modified National Institute of Standards and Technol-
ogy (MNIST) database. The MNIST database consists of
60,000 training samples and 10,000 testing samples. Each
sample in the MNIST database is a 28 × 28 image of a
single hand-written digit from 0 to 9. The goal is to train
a multi-class classifier to predict the digit from the input
image.
We simulate two-views of each hand-written digit

image from the MNIST database (Fig. 1a). The first view
(X1) is the original image from the MNIST database,
while the second view (X2) is the corresponding rotated
image (90-degree counter-clockwise rotation). We fur-
ther simulate noises for the data because the task is easy
even for single-view data. We have simulated two kinds
of noises and apply them to both views of the hand-
written digit images: random erasing (Fig. 1b) and pixel-
wise Gaussian noise (Fig. 1c). We flatten the image to a
Fig. 1 Simulation two-view data from the MNIST database. a Pipeline for s
dataset S1 with random erasing noise. c Simulated dataset S2 with Gaussian
vector with a length of 784 as the final input to deep
neural networks.

TCGA-BRCA breast cancer multi-omics dataset
TCGA database [5] is a public database containing gen-
omic data for over 20,000 paired cancer and normal
samples from 33 cancer types. In this study, we are using
TCGA-BRCA, which has 1060 patients with all four
types of -omics data (e.g., gene expression, miRNA ex-
pression, DNA methylation, and CNVs) and survival in-
formation (see Supplementary Material Section S2).
Table 1 contains information about the four omics data
types. For gene expression, the number of features in-
cludes different isoforms for each gene and some non-
coding RNA transcripts. The DNA methylation beta
value ranges from 0 to 1, where a beta value of 0 means
that no methylation is detected for that probe, while a 1
means that the CpG was always methylated. For CNV
features, “Gain” means more copies of a gene than nor-
mal, while “Loss” means fewer copies of a gene than
normal. More details for the TCGA multi-omics data
can be found in Supplementary Material Section S1.
The overall pipeline for multi-omics survival analysis

is presented in Fig. 2. Quality control and preprocessing
are essential for making sense of multi-omics data. To
get rid of the low-quality features, we remove features
with missing data. For the gene expression and miRNA
expression data, we also apply a log transform log2(X +
1) to the features, where X is the FPKM for gene expres-
sion and RPM for miRNA expression. We then apply
min-max normalization to scale all four data modalities
to a range of 0 to 1. After the quality control and
normalization, we apply a stratified four-fold split of the
imulation of two-view data from the MNIST database. b Simulated
noise



Table 1 Overview of four omics data modalities

Data
Modality

Gene Expression DNA
Methylation

miRNA Expression Copy Number Variation

Measures Fragments per kilobase of transcript per million
mapped reads (FPKM)

Beta Value Reads per million mapped
reads (RPM)

Gain/Loss/Neutral

Dynamic
Range

Continuous
[0, 3,823,803,664.0]

Continuous
[0, 1]

Continuous
[0, 679,286.5]

Discrete {“Loss”: − 1,” Neutral”:
0,” Gain”:1}

Feature
Name

Ensembl
Gene ID

cg probe
identifier

miRNA
identifier

Ensembl
Gene ID

# of
Features

60,483 25,978 1881 19,729
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data into a training set (60%), a validation set (15%), and
a testing set (25%) in each fold.
The multi-omics data usually suffer from the “curse of

dimensionality,” where the number of features is signifi-
cantly larger than the number of samples. To mitigate
this challenge, we apply feature selection or dimension
reduction techniques to get rid of the unrelated or
Fig. 2 Overall pipeline for survival analysis. We obtain multi-omics data (i.e
number variation) for breast cancer patients from the TCGA-BRCA database
0 to 1. We then apply four-fold cross-validation and split the data into a tra
We train the feature selection or dimension reduction step and the surviva
for parameter selection and the testing set for performance reporting
redundant features, which are essential for the success of
downstream analysis such as classification or survival
analysis. For classification, supervised univariate feature
selection methods such as minimum Redundancy Max-
imum Relevance (mRMR) [21] and mutual information
can be used. For survival analysis, various unsupervised
or knowledge-guided feature selection can be applied.
., gene expression, DNA methylation, miRNA expression, and copy
. The multi-omics data are preprocessed and normalized to a range of
ining set (60%), validation set (15%), and testing set (25%) in each fold.
l networks using the training set and apply them to the validation set
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For example, Huang et al. have applied gene co-
expression analysis as the dimension reduction approach
[19]. In this study, with the focus on deep-learning based
feature-level integration, we use both principal compo-
nent analysis (PCA) and unsupervised variance-based
feature selection. In PCA-based dimension reduction, we
apply PCA to the training dataset and use the first 100
principal components (PCs) of training, validation, and
testing datasets for survival analysis. In unsupervised
variance-based feature selection, we select the top 1000
features with the highest variances from the training
dataset, and then use them for survival analysis in train-
ing, validation, and testing datasets.
Single-modality network
For single-modality data, we use an autoencoder and a
task-specific network for single-modality classification or
survival analysis (Fig. 3). For the input data x after fea-
ture selection, we first apply an encoder q(x) to trans-
form the input data to a hidden feature z, and then
reconstruct the input data x̂ from the hidden feature
with a decoder p(z). We then feed the hidden feature z
into a task-specific network for classification or survival
analysis.
Endpoint 1: multi-class classification
For the classification network c(z), we use a fully con-
nected network with the output dimension size the same
as the number of classes. Thus, the whole network is
trained with the reconstruction loss Lrecon and the classi-
fication loss Lcls. In this study, we use the mean-square
error for the reconstruction loss:

Lrecon ¼ 1
N

XN
1

xn − x̂nð Þ2

where N is the batch size. We use the cross-entropy loss
for the classification loss:
Fig. 3 Single-omics data survival analysis network. The input data x is repre
constructed with a decoder p(x). We then feed the hidden feature z into a
survival analysis
Lclf ¼ − log
exp x class½ �ð ÞPC

j¼1 x j½ �ð Þ

 !

¼ − x class½ � þ log
XC
j¼1

x j½ �ð Þ
 !

where C is the number of classes and j ∈ {1,…,C}. For
each epoch, we first train the encoder-decoder with the
reconstruction loss Lrecon and then train the encoder and
classification network with the cross-entropy loss Lclf.
The multi-class classification performance is evaluated

by accuracy, weighted precision, and weighted recall.
These metrics are in the range of [0, 1], and the higher
the better. We do not include AUC as a metric because
we perform 10-class classification with the simulated
MNIST dataset instead of binary classification.

Endpoint 2: survival analysis
For the survival analysis, we use a fully connected neural
network s(z), to replace the Cox proportional hazards
model. The output of the survival network s(z) is the
hazard h of the patient. Based on the Cox proportional
hazards model, the survival network is trained with the
negative log partial likelihood loss Lsur:

Lsur ¼ −
1

Nob

X
i:Ci¼1

hi − log
X

j:T j ≥Ti

exp hj
� �

0
@

1
A

Where Ci = 1 indicates the occurrence of the event for
patient i, Nob is the total number of events in the batch,
and Ti and Tj are the survival time for patient i and pa-
tient j, respectively.
To evaluate the risk scores predicted by survival

models, various metrics have been developed to measure
the concordance between the predicted risk scores and
the actual survival time. Following the previous studies
in deep-learning-based survival analysis [19], we evaluate
the overall survival analysis performance with the con-
cordance index (C-index) [22]. C-index evaluates how
well the survival risk we computed aligns with the actual
survival time given any two comparable pairs:
sented with an encoder q(x) into hidden feature z and then
task-specific network such as multi-class classification or
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C − index ¼ Pr hi > hjjTi < T j;Ci ¼ 1
� �

Novel multi-modality integration network
We develop novel multi-omics integration networks
based on two principles in multi-view machine learning:
1) the complementary principle assumes that each view
contains information other views do not have, and we
should extract the difference from each view while pre-
serving the common information; and 2) the consensus
principle assumes that the disagreements between views
upper bound the classification errors; thus, we should
aim to maximize the agreement between views. Based
on these principles, we have used this novel strategy to
learn meaningful representations by integrating data
from multiple modalities.

Integrating the complementary information: concatenation
autoencoder (ConcatAE)
We use the concatenation autoencoder (ConcatAE) to
integrate the complementary information from each data
modality (Fig. 4). For each modality, we train an inde-
pendent autoencoder and transform the input features
into a hidden space. We then concatenate the hidden
features from each modality and feed the concatenated
hidden feature into the task-specific network. Compared
to the single-modality network, we have a separate re-
construction loss for each data modality. Thus, the re-
construction loss is the summation of these separate
reconstruction losses. For example, when integrating
two modalities, the new reconstruction loss would be:
Fig. 4 Multi-omics data integration with concatenation autoencoder (Conc
before feeding into the task-specific network
L
0
recon ¼

1
N

XN
1

x1;n − x̂1;n
� �2 þ x2;n − x̂2;n

� �2� �

The task-specific network training procedure remains
the same, with the input becoming the concatenation of
hidden features represented from each modality.
Integrating the consensus information: cross-modality
autoencoder (CrossAE)
We use the cross-modality autoencoder (CrossAE) to in-
tegrate the consensus information from each data mo-
dality (Fig. 5) through cross-modality translation. To
enable consensus representation among modalities, it
uses the hidden features extracted from one modality to
reconstruct the input features from other modalities.
We train the framework with three steps. In the first

step, we train an autoencoder for each modality inde-
pendently, as we have done in the ConcatAE model with
L

0
recon . In the second step, we train these encoders and

decoders again with cross-modality reconstruction. For
example, the modality 1 encoder q1(x) is used to trans-
form input data x1 to hidden feature z1 = q1(x1). We then
use the modality 2 decoder p2(z) to reconstruct the mo-
dality 2 input data x2 from z1, which is denoted as x̂21
¼ p2ðz1Þ. We can perform similar cross-modality recon-
struction from modality 2 hidden features z2 to modality
1 input data x1. Thus, the cross-modality reconstruction
loss Lcross _ recon for step 2 with two modalities is
atAE). The hidden features of each data modality are concatenated



Fig. 5 Multi-omics data integration with cross-modality autoencoder (CrossAE). For hidden features of each data modality, they are used to
reconstruct input features of both the original modality and other modalities. The hidden features of various modalities are element-wise
averaged before feeding into the task-specific network
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Lcross recon ¼ 1
N

XN
1

x1;n − x̂12;n
� �2 þ x2;n − x̂21;n

� �2� �

In the third step, we combine the hidden features from
each modality with the element-wise average and then
train the encoders and task-specific network with task-
specific loss (e.g., the cross-entropy loss for classification
or the negative partial log-likelihood loss for survival re-
gression). We implemented and tested the proposed in-
tegration models on two data modalities. These
frameworks can be naturally extended to the integration
of more than two data modalities.

Implementation and experiments
The train-test split for cross-validation and the classifica-
tion metrics are implemented with [23]. The neural net-
works are designed and implemented with PyTorch
1.1.0. For cancer type classification, we use a batch size
of 32, and Adam optimizer with a learning rate of 0.001,
and training epochs of 200. For survival analysis, we use
a batch size of 128, and Adam optimizer with a learning
rate of 0.001, and training epochs of 200. More details of
the model implementation and training details can be
found at Github repo (https://github.com/tongli1210/
BreastCancerSurvivalIntegration).

Results
Multi-modality integration simulation
We first test the proposed single and multi-modal inte-
gration networks on the simulated MNIST datasets (S1
and S2). The results are presented in Table 2. From the
results, we observe significant classification performance
improvements after multi-modality data integration for
both random erasing dataset S1 and the Gaussian noise
erasing dataset S2. For dataset S1, we assume the model
should take the complementary information from X1

and X2 to get better performance. From the experiment
results, the integration model ConcatAE does perform
slightly better compared to the integration model
CrossAE. For dataset S2, because of the global noises for
both views, we assume the model should take the con-
sensus information from S1 and S2 to get better perform-
ance. From the experiment results, we observe CrossAE

https://github.com/tongli1210/BreastCancerSurvivalIntegration
https://github.com/tongli1210/BreastCancerSurvivalIntegration


Table 2 Multi-modality integration simulation with MNIST dataset

Modalities Random Erasing (S1) Gaussian Noise (S2)

ACC Precision Recall ACC Precision Recall

X1 0.942 ± 0.004 0.942 ± 0.004 0.942 ± 0.004 0.884 ± 0.003 0.886 ± 0.003 0.884 ± 0.003

X2 0.942 ± 0.003 0.943 ± 0.003 0.942 ± 0.003 0.879 ± 0.005 0.881 ± 0.005 0.879 ± 0.005

ConcatAE(X1 + X2) 0.962 ± 0.001 0.963 ± 0.001 0.962 ± 0.001 0.924 ± 0.001 0.925 ± 0.002 0.924 ± 0.001

CrossAE(X1 + X2) 0.962 ± 0.002 0.962 ± 0.002 0.962 ± 0.002 0.933 ± 0.002 0.933 ± 0.002 0.933 ± 0.002

Tong et al. BMC Medical Informatics and Decision Making          (2020) 20:225 Page 8 of 12
achieves better performance compared to ConcatAE,
which is as expected.
Multi-modality integration for breast cancer survival
analysis
The performance of the single-omics survival analysis
model is presented in Table 3. We observe that the
model achieves better performance when using PCA
features compared with that using the high variance
features for all modalities except for CNVs. Among the
four -omics data, miRNA expression is the most predict-
ive for overall survival, followed by DNA methylation
and gene expression. Moreover, CNVs are the least
predictive for breast cancer overall survival, which is
consistent with our previous findings [20]. The best
single-omics survival analysis performance is a C-index
of 0.616 ± 0.057, achieved by miRNA data with PCA
features.
The performance of the novel multi-omics integration

survival analysis model is presented in Table 4. Based on
the results, we observe that integration is not always
beneficial for performance. For example, the integration
of gene expression and DNA methylation high variance
features can lead to lower C-index (0.507 ± 0.036) than
either gene expression (0.529 ± 0.033) or DNA methyla-
tion (0.581 ± 0.066) alone. Among the six combinations
of two-omics data integration, we found the integration
of DNA methylation and miRNA expression consistently
achieves a good performance. Comparing the two inte-
gration strategies, we found that the ConcatAE outper-
forms the CrossAE in most experiments. Comparing the
two feature selection strategies, we observed that the
PCA features outperform high variance features in most
experiments except for those involves CNV data. We be-
lieve the PCA dimension reduction approach may not be
suitable for the discrete CNV data. Among all multi-
omics integration models, the best performance (0.641 ±
0.031) is achieved by integrating DNA methylation and
Table 3 Performance of single-omics survival analysis model

Data Modality Gene Expression DNA Methylatio

PCA 0.589 ± 0.084 0.583 ± 0.058

Variance 0.529 ± 0.033 0.581 ± 0.066
miRNA expression using PCA features and the Conca-
tAE model.
To evaluate the consensus among hidden features, we

measure the similarity of paired hidden features with the
Euclidean distance, and visualize their distributions with
grouped violin plots in Fig. 6. The violin plots are
grouped by multi-omics modalities under integration
(e.g., GeneExp+miRNA) and compared for the two inte-
gration methods ConcatAE and CrossAE. For the hidden
features (dimension of 10) represented from PCA fea-
tures, we can observe higher similarities (or lower Eu-
clidean distances) for integration using CrossAE
compared to those using ConcatAE (Fig. 6a). However,
for the hidden features (dimension of 100) represented
from high variance features, the CrossAE method will
not necessarily lead to higher similarities (Fig. 6b). The
observation is further confirmed with grouped bar plots
of the average Euclidean distances in Fig. 6c and d. The
results indicate that the consensus constraints imposed
by CrossAE work well for PCA features but suffer for
the high variance features, which has a much higher
dimension.
To further understand the similarity between paired

hidden features, we tried to use the t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) to visualize the
hidden features from the first fold of our four-fold cross-
validation in the Supplementary Material Section S3. If
using 100 PCA features as the input data, we observe
more overlap among the CrossAE hidden features
(Green and Yellow) than the ConcatAE hidden features
(Red and Blue) (See Fig. S2). This indicates that the
multi-omics data representation by CrossAE is more
complied with consensus constraints. However, if using
1000 high variance features as the input data, we observe
that the distribution patterns of the ConcatAE hidden
features (Red and Blue) are similar to those of the
CrossAE hidden features (Green and Yellow) (See Fig.
S3). This implies that the effect of consensus constraints
by CrossAE is not as significant.
n miRNA Expression Copy Number Variation

0.616 ± 0.057 0.476 ± 0.051

0.614 ± 0.041 0.503 ± 0.071



Table 4 Performance of multi-omics survival analysis model

Integration Data Modality GeneExp
+
DnaMeth

GeneExp
+
miRNA

GeneExp
+
CNVs

DnaMeth
+
miRNA

DnaMeth
+
CNVs

miRNA
+
CNVs

ConcatAE PCA 0.585 ± 0.107 0.59 ± 0.093 0.576 ± 0.047 0.641 ± 0.031 0.583 ± 0.09 0.588 ± 0.057

Variance 0.507 ± 0.036 0.53 ± 0.052 0.524 ± 0.038 0.625 ± 0.023 0.586 ± 0.068 0.603 ± 0.04

CrossAE PCA 0.583 ± 0.07 0.595 ± 0.062 0.553 ± 0.045 0.63 ± 0.081 0.579 ± 0.065 0.578 ± 0.028

Variance 0.511 ± 0.027 0.558 ± 0.054 0.53 ± 0.033 0.605 ± 0.059 0.576 ± 0.026 0.613 ± 0.066
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Discussions
In this study, we have developed two novel multi-modal
data integration strategies: to integrate the complemen-
tary information among modalities with ConcatAE; and
to integrate the consensus information using CrossAE.
We have tested the two new models on the simulated
MNIST data and validated their effectiveness. We then
apply the two new models to the multi-omics breast
cancer survival data. ConcatAE model integrating DNA
methylation and miRNA expression PCA features
achieves the best performance with a C-index of 0.641 ±
0.031 and outperforms that of the CrossAE model
(0.63 ± 0.081). Both integration approaches outperform
Fig. 6 Similarity measure with Euclidean distance of the paired hidden fea
Euclidean distance. a Grouped violin plots of the Euclidean distances for hi
of the Euclidean distances for hidden features represented from high varia
for hidden features represented form PCA features. d Grouped bar plots of
high variance features. Yellow: ConcatAE. Blue: CrossAE
the corresponding single-modality model, which uses
DNA methylation or miRNA expression alone. The re-
sults indicate that these two modalities should have both
complementary and consensus information for survival
prediction.
Although the ConcatAE outperforms CrossAE, we be-

lieve this does not necessarily indicate that the comple-
mentary information is more important than the
consensus information. As we have seen in the MNIST
simulated data with Gaussian noise, if the multi-
modality data are noisy and equally predictive, consen-
sus learning can achieve higher prediction performance
compared to that of complementary learning. Moreover,
tures. We measure the similarity of paired hidden features with the
dden features represented from PCA features. b Grouped violin plots
nce features. c Grouped bar plots of the average Euclidean distances
the average Euclidean distances for hidden features represented from
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the ConcatAE model should include both the modality-
invariant and modality-unique information, although
neither has been specifically maximized.
The best survival prediction performance is achieved

by integrating DNA methylation and miRNA expression
PCA features. However, the results are insufficient to
conclude that DNA methylation or miRNA expression is
more informative than the other modalities. Due to the
lack of biological ground-truth, the model interpretation
and wet-lab validation are needed to understand the
model. As a black-box model, we cannot currently locate
which biomarkers (e.g., specific genes or methylation
sites) are picked by the integration network and contrib-
ute more to the final survival prediction. Thus, as a fu-
ture direction, we propose to apply model interpretation
methods to the deep network and to validate the bio-
markers by literature or by wet-lab experiments. Such
validation can provide insight into why some integration
models outperform the others and is critical for trans-
lation to clinical practice.
Although we have demonstrated the effectiveness of

ConcatAE and CrossAE for multi-omics data integration
in this study, future improvements can be made in the
following three areas: 1) training data, 2) model valid-
ation, and 3) model improvements.
The first improvement is on the training data, which

dictates the survival prediction performance. For ex-
ample, in the TCGA-BRCA dataset, the CNV features
are the least predictive for breast cancer survival. One
potential cause is that the CNV features from the TCGA
database are categorical (i.e., “gain”, “loss”, or “normal”)
and might constrain the predictive capability of this mo-
dality. In addition, the gene expression data are normal-
ized with FPKM and the miRNA expression data are
normalized with RPM. FPKM and RPM normalization
are potentially biased when comparing between samples.
The survival prediction performance can be further im-
proved for gene expression and miRNA expression if re-
placing the normalization method with more
sophisticated bioinformatics techniques such as tran-
scripts per million (TPM). Another essential limitation
of the current training dataset is the relatively small
sample size of the TCGA-BRCA dataset with around
1000 patients. For a data-driven approach, the perform-
ance of deep learning is significantly influenced by the
amount of training data. One future direction is to im-
prove our model by using a larger breast cancer survival
dataset or by combining multi-source breast cancer sur-
vival datasets. Another future direction is to make the
most of the TCGA database by multi-task learning, such
as applying the integration methods to cancer staging,
subtyping, and grading in addition to survival analysis.
The second limitation is model validation. In this

study, we validate the effectiveness of ConcatAE and
CrossAE networks with the simulated two-view imaging
data from the MNIST database, in which we have con-
trolled and visualized the consensus and complementary
information. Ideally, a cancer genomics dataset with
ground truth would be preferred to validate the pro-
posed integration networks. However, to the best of our
knowledge, there is no such golden standard multi-
omics dataset developed yet because many complex in-
teractions among multi-omics data remain unknown. If
the ground-truth of multi-omic interactions were
known, it would be straightforward to validate the con-
sensus and complementary principles for multi-omics
data integration methods. Before it happens, a more
realistic approach is to collect data for the known cross-
modality pathways (e.g., DNA methylation and gene ex-
pression pathways) to validate the consensus principle.
Another way is to use the multi-omics data simulation
with ground truth to validate the proposed models. Al-
though some multi-omics data simulation works have
been recently developed [24, 25], they are not specifically
designed to validate the interactions across modalities
with 1) consensus information (e.g., co-regulation path-
ways), 2) complementary information (e.g., modality-
specific pathways/biomarkers), and 3) endpoint irrele-
vant information. Thus, one promising future step is to
simulate multi-omics data to validate the integration
principles and methods in the follow-up studies.
The third limitation lies in the multi-modality integra-

tion network. First, we have shown that the feature-
selection or dimension-reduction steps impact multi-
modality integration performance. Our current feature
selection step contains unsupervised feature selection by
variance ranking and unsupervised dimension reduction
by PCA. One immediate future work is to utilize more
sophisticated knowledge-guided feature selection. An-
other future work is to integrate feature selection with
multi-omics feature representation into the multi-
modality deep network to improve model performance.
Second, combining consensus learning and complemen-
tary learning may further improve multi-omics integra-
tion. We propose to extend the current ConcatAE
framework by using two encoders or an encoder with
branches to represent both the modality-unique hidden
feature and the modality-consensus feature. The
modality-unique hidden features can be learned by
maximizing the divergence among modalities, while the
modality-consensus hidden features can be learned by
minimizing the divergence among modalities. Instead of
cross-modality reconstruction in CrossAE, the consensus
constraints and the complementary constraints are both
realized by divergence optimization for better perform-
ance. Third, another future direction is to improve the
survival model. In this study, we have implemented a
simple deep learning-based survival network using the
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negative partial log-likelihood loss. One future work is
to improve the survival network with regularization,
such as L1 loss on the network weights. A robust sur-
vival network will further improve the multi-omics
integrated survival network.
Conclusions
In this study, we have investigated two novel multi-
modal data integration strategies: ConcatAE and
CrossAE. We first tested the proposed models on the
simulated MNIST data and validated the effectiveness of
ConcatAE in integrating complementary information
and CrossAE in integrating consensus information
among multi-modality data. We then apply the proposed
models to the multi-omics breast cancer survival data
obtained from the TCGA-BRCA dataset. For the single-
omics model, the miRNA expression is the most predict-
ive for breast cancer survival analysis (0.616 ± 0.057),
followed by DNA methylation and gene expression.
CNV data is the least predictive for breast cancer overall
survival analysis. For the multi-omics model, the Conca-
tAE model integrating DNA methylation and miRNA
expression PCA features achieves the best performance
with a C-index of 0.641 ± 0.031. The CrossAE model in-
tegrating DNA methylation and miRNA expression PCA
features achieves a C-index of 0.63 ± 0.081, which also
outperforms either DNA methylation or miRNA expres-
sion alone. We conclude that the DNA methylation data
and miRNA expression data contain both complemen-
tary and consensus information, and using such infor-
mation can improve survival analysis performance. As a
future direction, we can develop a sophisticated learning
framework utilizing both consensus and complementary
information simultaneously to further improve survival
prediction for personalized breast cancer diagnosis and
treatment.
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