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Abstract

Background: One of the most challenging tasks for bladder cancer diagnosis is to histologically differentiate two
early stages, non-invasive Ta and superficially invasive T1, the latter of which is associated with a significantly higher
risk of disease progression. Indeed, in a considerable number of cases, Ta and T1 tumors look very similar under
microscope, making the distinction very difficult even for experienced pathologists. Thus, there is an urgent need
for a favoring system based on machine learning (ML) to distinguish between the two stages of bladder cancer.

Methods: A total of 1177 images of bladder tumor tissues stained by hematoxylin and eosin were collected by
pathologists at University of Rochester Medical Center, which included 460 non-invasive (stage Ta) and 717 invasive
(stage T1) tumors. Automatic pipelines were developed to extract features for three invasive patterns characteristic
to the T1 stage bladder cancer (i.e., desmoplastic reaction, retraction artifact, and abundant pinker cytoplasm), using
imaging processing software ImageJ and CellProfiler. Features extracted from the images were analyzed by a suite
of machine learning approaches.

Results: We extracted nearly 700 features from the Ta and T1 tumor images. Unsupervised clustering analysis failed
to distinguish hematoxylin and eosin images of Ta vs. T1 tumors. With a reduced set of features, we successfully
distinguished 1177 Ta or T1 images with an accuracy of 91–96% by six supervised learning methods. By contrast,
convolutional neural network (CNN) models that automatically extract features from images produced an accuracy
of 84%, indicating that feature extraction driven by domain knowledge outperforms CNN-based automatic feature
extraction. Further analysis revealed that desmoplastic reaction was more important than the other two patterns,
and the number and size of nuclei of tumor cells were the most predictive features.

Conclusions: We provide a ML-empowered, feature-centered, and interpretable diagnostic system to facilitate the
accurate staging of Ta and T1 diseases, which has a potential to apply to other types of cancer.
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Background
Bladder cancer is one of the most common malignancies
in the world, with nearly 550,000 newly diagnosed cases
and 200,000 deaths of this disease estimated in 2018 [1].
Approximately 90% of bladder cancers are urothelial car-
cinomas that arise from epithelial cells lining the inside
of the bladder. Roughly three-fourths of urothelial car-
cinomas are non-muscle invasive [2]. According to the
current WHO classification system, non-muscle invasive
bladder cancers (NMIBCs) can be divided into three
groups: Ta (non-invasive papillary), Tis (carcinoma in
situ), and T1 (invasion into subepithelial connective tis-
sue/lamina propria), which account for approximately
70, 10, and 20% of NMIBC, respectively [2, 3]. Ta and
Tis tumors are confined to the urothelium and have not
penetrated the basal membrane. In particular, Ta tumors
often present as low-grade lesions that can often be
managed conservatively [2–4]. By contrast, T1 tumors
are mostly high-grade and have the potential to progress
to muscle invasion and extravesical dissemination [3, 5].
In general, NMIBCs have a favorable treatment outcome
with the five-year survival rate up to 90%, whereas
muscle-invasive bladder cancers have a less favorable
prognosis with 30–70% five-year survival rate [6].
Clearly, accurate diagnosis of non-invasive (Ta) versus
invasive (T1) bladder cancers is vitally important and
will help clinicians to make a timely and appropriate
treatment plan for patients.
To date, the detection of bladder cancers mainly de-

pends on the cystoscopic examination of the bladder
and biopsy/resection of the tumor as well as urine cy-
tology [7]. Currently, no molecular biomarkers accur-
ately stage Ta and T1 tumors. Histological assessment
remains a vital tool to differentiate the T1 disease from
the Ta disease.
Although several histological features suggestive of

tumor invasion have been identified (see below), Ta and
T1 tumors sometimes look very similar under microscope,
making the distinction very difficult even for experienced
pathologists. As an illustration, 235 bladder tumors ini-
tially diagnosed as T1 tumors were restaged as being Ta
(35%), T1 (56%), “at least” T1 (6%), and ≥T2 (3%) diseases
by an experienced reviewer [8]. Obviously, there is consid-
erable room for improvement of inter-observer agreement
by developing objective methods.
Computerized image processing technology has been

shown to improve efficiency, accuracy and consistency in
histopathological slide evaluation and provides a novel
diagnostic tool to the practice of pathology [9]. Automated
analysis systems have been developed to quantitatively
capture morphological features of histopathological im-
ages to predict the outcome of breast cancer [10], neuro-
blastoma [11], lymphoma [12], lung cancer [13], and
Barrett’s esophagus [14].

Image-based predictive models are further empowered
by recent advances in machine learning (ML) and com-
puter vision to achieve expert-level accuracy in medical
image classification [15–20]. Recent work has shown
that a convolutional neural network (CNN)-based deep
learning model can achieve 100% accuracy in identifying
the presence or absence of breast cancer cells in a whole
slide [20]. A similar study from Google Inc. found that a
CNN model was able to identify breast cancer better
than pathologists [21]. Because training a CNN model
from scratch requires a large number of medical images
that are often hard to obtain, a highly effective approach
to deep learning on small image datasets is to use a pre-
trained network such as Visual Geometry Group (VGG)
[22], which has previously been trained on large image-
classification datasets. However, none of these models
are built for classifying bladder cancer images. This lack
of computational models severely hampers the applica-
tion of modern image-based analytic tools to differenti-
ating Ta and T1 diseases.
In this study, we aim to develop a novel ML-

empowered, feature-centered, and interpretable diagnos-
tic system to facilitate the accurate staging of Ta and T1
bladder tumors. We design a fully automated informatics
pipeline to extract quantitative image features from
hematoxylin and eosin (H&E)-stained slides (see flow-
chart in Supplementary Figure S1) and identify micro-
scopic patterns that are important for distinguishing T1
from Ta tumors. Our methods may be not only helpful
for the precision medicine of bladder cancer but also ex-
tensible to other types of cancer.

Methods
Histopathological slides
Upon approval from the Institutional Review Board at
University of Rochester Medical Center (URMC), we
collected a total of 1177 images from H&E-stained blad-
der cancer tissues, which included 460 non-invasive
(stage Ta) and 717 invasive (stage T1) urothelial tumors.
Problematic cases where it was difficult for a group of
genitourinary pathologists at URMC to histopathologic-
ally distinguish between Ta and T1, as well as muscle-
invasive cases (stage T2 and above), were excluded from
the analysis. All images were included for image process-
ing and analysis, with the labels of images serving as
ground truth. All tumor specimens were obtained by
surgical excision and processed by a standardized proto-
col at the Department of Pathology and Laboratory
Medicine at URMC.

Image digitization system
A Leica upright microscope DM5000 B research micro-
scope attached with a high-resolution camera from
MacroFire was used to capture the raw H&E-stained
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images. The camera was able to capture a field of
2048 × 2048 pixels under the 100× magnification. Image
files were saved in the “.tiff” format. The central part of
the raw images was cropped into 1 to 4 images with
700 × 700 pixels by an ImageJ-based script with the
“Crop” function in ImageJ.

Image processing system
The cropped images were then pre-processed with the
“FFT” function in ImageJ if needed because this function
made the light intensity evenly distributed by normaliz-
ing the intensity from the darkest corner to the brightest
corner on the image. These pre-processed images were
then converted into black and white images to mask the
irrelevant areas. The images with lesions of interest were
used for feature extraction.

Image feature extraction
The feature extraction was performed using CellProfiler
and ImageJ. Both packages enabled us to create and
customize pipelines for extracting patterns in the images.
ImageJ provides a scripting language MacroJ, which al-
lows the extraction of patterns of interest. In this pro-
ject, the patterns of retraction artifact, nuclear size, and
cytoplasmic color were extracted by ImageJ. CellProfiler
provides multiple built-in cellular feature extraction
modules. The patterns of connective tissue around the
tumor and nuclear shapes in the images were extracted
by CellProfiler. Overall, ImageJ extracted textural fea-
tures in the whole tissue, whereas CellProfiler extracted
features of individual cells. For every image, 60 features
were extracted by ImageJ and 636 features were ex-
tracted by CellProfilers. The spreadsheets containing the
features from ImageJ and CellProfiler were merged into
a single data frame in R environment.

Statistical analysis and plotting
All statistical analyses in the project were performed
using R. To set the bin size for color spectrums, all
image pixels were processed and evaluated through R
scripts. The performance metrics including accuracy, re-
ceiver operating characteristic (ROC), and area under
the curve (AUC) were calculated by the functions in the
Scikit-Learn package. ROC and AUC are appropriate
metrics because our data have imbalanced classes: 460
non-invasive and 717 invasive samples. The plots of
ROC curves, cutoff points and AUC scores were gener-
ated by the Matplotlib package. The boxplots that com-
pare the performance of ML models were generated by
SigmaPlot 12.5.

Data processing methods
Features extracted by ImageJ and CellProfiler were proc-
essed and the data were saved in the comma separated

value (CSV) format. An R script was written to combine
all CSV files and produce a large spreadsheet. The
Pandas package was used for data processing and subset-
ting. The large CSV file was transformed into the
Numpy matrix before putting into ML models.

General ML models
Several general ML classifiers used in the project were
taken from several Python packages. The probabilistic
neural network framework was from the Neupy package.
All of the ensemble learning models, including probabil-
istic neural network (PNN), support vector machine
(SVM), logistic regression (LR), bagging (Adaboot), ran-
dom forest (RF), and multilayer perceptron (MLP), were
from the Scikit-Learn package. The datasets were ran-
domly partitioned into a training set (70%) and a testing
set (30%). To ensure the robustness of the results, the
random partitioning process was repeated 20 times and
the mean performance of the 20 tests was used to repre-
sent the overall performance of the classifier. The default
threshold 0.5 was used for classification.

Training and validation dataset splitting
Random sampling was performed multiple times in each
training and validation. Before feeding the data into any
machine learning models or deep learning models, the
dataset was first balanced by sampling an equal number
of 460 invasive cases and 460 non-invasive cases before
the training started. The weight of invasive cases is equal
to the weight of non-invasive cases. Then within the bal-
anced dataset, data were further split into a 70% training
set and a 30% validation set through random sampling.
Not image or data appeared in both data set and no du-
plicates were allowed in the study.

Results
Distinctive microscopic patterns for stage ta versus T1
bladder tumors
At least three morphological features have been identi-
fied to distinguish between stages Ta (Fig. 1a-c) and T1
(Fig. 1d-f) bladder tumors. The first pattern is desmo-
plastic reaction, which is characterized with dense fibro-
sis around the nests of T1 tumor cells (Fig. 1d). This
pattern is most definite for invasion, but T1 lesions often
lack it. The second pattern is retraction artifact, which is
the result of tissue shrinkage after dehydration during
tissue processing, seen around the nests of T1 tumor
cells (Fig. 1e). The third pattern is more abundant, pin-
ker cytoplasm in T1 tumor cells, presumably due to
higher uptake of eosin, compared with that of Ta tumor
cells (Fig. 1f). Although pathologists usually make a diag-
nosis of tumor invasion based on these patterns under
microscope, a quantitative representation will allow
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automatic extraction and analysis of the patterns in
H&E-stained slides.

H&E-stained slide digitalization, image processing and
feature extraction
We obtained 1177 H&E-stained histopathology images of Ta
or T1 bladder tumors from the archive in the Department of
Pathology and Laboratory Medicine at URMC. To digitize
these slides, each image was captured at × 100 magnification
with 2048 × 2048 pixels. Although the overall images were
very clear, a dark spot was often found at the lower right-
hand corner. We therefore cropped and tiled the central part
of the raw images to get smaller ones with 700 × 700 pixels.
To extract objective morphological information from

these images, we used ImageJ and CellProfiler to extract
image patterns into numerical numbers. We therefore built
nine fully automated image pattern extraction pipelines to
capture the above three microscopic patterns. Due to the
complexity of pathological images, each pattern consisted
of various features. The general procedure of feature extrac-
tion is described below. We first masked unwanted areas
using methods like color thresholding and matrix subtrac-
tions before extracting the features. Since all of the raw im-
ages were consistent in staining quality, the parameters for
extracting each feature were kept the same across all im-
ages. The image features included nuclear size distribution,
crack edge, sample ratio, distribution of pixel intensity in
the connective tissue and cytoplasm, as well as the shape of
connective tissue and nuclei of tumor cells. The numerical
representation of the features was outputted in spread-
sheets and placed in columns.
For example, to extract the retraction artifact pattern,

we developed a pipeline to differentiate two types of
non-tissue regions in a H&E-stained image, one was

around cells (i.e., small space around cells) and the other
was between tissue parts (i.e., large space between tissue
edges) (Fig. 2a). To only catch the small space surround-
ing cells (named “cracks” for simplicity), we first con-
verted an original color image to a monochrome image
with black or white color on each pixel and all non-
tissue regions were in white (Fig. 2b). Then we con-
verted the original color image to an 8-bit grayscale
image. The regions with more than 40 pixels in diame-
ters were considered to be the regions between tissue
parts, which were shown in white (Fig. 2c). This 8-bit
image was then converted to a 1-bit image with black
and white colors inverted; now the inter-tissue space
was shown in black (Fig. 2d). Then we combined images
shown in Fig. 2b and d to get the final image in which
the inter-tissue spacer was masked and cracks were
shown in white (Fig. 2e). The number of pixels in white
regions represented the size of cracks around cells.
We also developed pipelines (Supplementary Figures

S2 and S3) to extract features in the pinker cytoplasm
pattern and the desmoplastic reaction pattern. Note that
each of the three microscopic patterns was extracted
separately, and the numeric representation of each pat-
tern was later combined into a large spreadsheet in the
CSV format, in which each row represented an image
and each column represented a feature. For every image
(out of 1177), 740 quantitative features were extracted to
represent the three microscopic patterns.

Unsupervised clustering of cancer images
To understand whether extracted features were suffi-
cient to differentiate the histopathological images of Ta
and T1 tumors, we set out to conduct a cluster analysis
of the features. We first reduced data dimension through

Fig. 1 Histological features of stages Ta (a-c) versus T1 (d-f) bladder cancers. Three microscopic patterns, including desmoplastic reaction (d),
retraction artifact (e), and more abundant, pinker cytoplasm (f, arrowhead), are apparent in invasive components of T1 tumors, but not in Ta
tumors without (a, b) or with (c) an inverted growth pattern. Original magnification: a, c, e – 100x; b, d, f – 200x
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principal component analysis (PCA) because, through
PCA, we were able to rank top components by their eigen-
values. However, as shown in Fig. 3a-b, plotting the top
components with the highest eigenvalue failed to find
recognizable clusters. In addition, by performing k-means
analysis on PCA components, we found no apparent

clusters between k = 2 and k = 9 (Fig. 3c-d). Combining
the PCA and k-means analyses, we found that the non-
invasive and invasive tumor images were highly over-
lapped. Splitting the clusters resulted in less than 0.006 in
information gain. These data suggested that non-invasive
and invasive bladder cancer images were not separable

Fig. 3 Clustering analysis of extracted features from Ta (non-invasive) and T1 (invasive) tumor images. The features were first selected by PCA and
then clustered using k-means analysis. Plots were made for the first and second components of PCA output (a), which were clustered with k = 2
(c). Plots were also made for the first and third components of PCA output (b), which were clustered with k = 9 (d)

Fig. 2 Flow diagram of the image processing method for extracting features from the retraction artifact pattern
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with simple linear transformation. Therefore, supervised
learning methods were considered.

Feature reduction and supervised classification of cancer
images
To select meaningful ones from the 740 features ex-
tracted by ImageJ and CellProfilers, we first manually
trimmed questionable features that were related to time
(i.e., time when images are processed or taken), index
(i.e., labels of images), descriptive string (i.e., initials of
processing methods or channels of image processing), or
those containing missing values ‘N/A’ as the results of
ImageJ and CellProfilers processing. In addition, the fea-
tures containing no numeric values were also removed.
As a result, 696 features were selected for further
analysis.
Given that the training set contained 930 images,

696 features might raise the concern of overfitting.
To address this concern, we reduced the number of
features by employing decision tree (DT) with k-fold
cross-validation to rank the relative importance of the
features. Specifically, we first used all 696 features as
the input to build 20 forests, each with 40 trees.
Similar to RF, each tree was constructed by random
samples, but the number of features was fixed to 696.
The DT method was used to evaluate the importance
of each feature by averaging the importance values of
the feature in all trees of a forest. We therefore
ranked the relative importance of all 696 features
based on their average importance values. This rank
determined the order of the features added to ML
models. That is, after measuring the impact of the
first feature, we iteratively added the next feature in
the rank to the models. As shown in Fig. 4a, as the
features were added in the ranking order, the per-
formance of 6 ML classifiers including PNN, in-
creased and reached a plateau between 70th and
100th features (Fig. 4b). After adding 200 features,

the performance started to drop (Fig. 4a). To examine
whether the ranking order of features was critical for
the observed tendency, we randomized the feature
order and found that a plateau was still reached be-
tween 70th and 100th features (Supplementary Figure
S4A-B). This result suggests that the DT method suc-
cessfully selects the most important 100 features from
the original 696 features.
To compare further the two feature sets (100 vs. 696)

in predicting Ta and T1 bladder cancers, we used 6 ML
classifiers, including PNN [23–25], RF [26, 27], SVM
[28], bagging (Adaboost) [29], LR [30], and MLP. Three
metrics were used to evaluate the performance of the
classifiers, including accuracy, ROC curve, and the AUC.
We found that the average accuracy was over 90% for all
classifiers (Fig. 5). Moreover, the 100-feature set outper-
formed the 694-feature set in five out of six classifiers,
except LR (Fig. 5). The same trend is observed in ROC
and AUC (Fig. 6a-b and Supplementary Figure S5A-B).
Of note, PNN outperformed other classifiers with the
AUC of 0.99 (Fig. 6b and Supplementary Figure S5B)
and the accuracy of 96.7% (Fig. 5). Overall, our work
clearly showed that the top 100 features generally had a
higher predictive power than the 696 features.
To examine the performance of deep learning models

on our data, we used both pre-trained VGG16 and
VGG19 networks to extract features. Specifically, we
took the convolutional base of the networks, ran the Ta
and T1 cancer images through it, and trained a new clas-
sifier on top of the output. We found that the accuracies
of VGG16 and VGG19 reached 84 and 81%, respectively
(Fig. 7a and Supplementary Figure S6A), whereas their
AUC values were 0.926 and 0.912, respectively (Fig. 7b
and Supplementary Figure S6B). Our results showed that
the general ML classifiers outperformed deep learning
models, suggesting that, for cancer histopathological im-
ages, feature extraction based on domain knowledge per-
formed better than computer-based feature extraction.

Fig. 4 Prediction accuracy of 6 ML models for 696 features (a) and top 100 features (b). The importance of 696 features was ranked by decision
trees. The features were added to the models in the order of the importance
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Relative importance of three microscopic patterns
To assess the relative importance of the three micro-
scopic patterns in predicting non-invasive versus inva-
sive bladder cancer images, we separated the 696
features into three groups and assessed the performance
of the 6 ML classifiers. We found that features extracted
from the desmoplastic reaction pattern had the highest
overall accuracy of 90.5% with the average AUC values
of 0.98 (Fig. 8a and Supplementary Figure S7A). By con-
trast, pinker cytoplasm had 74.5% overall accuracy with
the average AUC of 0.825 (Fig. 8b and Supplementary
Figure S7B), whereas retraction artifact had 73.4% over-
all accuracy with the average AUC values of 0.802 (Fig.
8c and Supplementary Figure S7C). It was noteworthy
that desmoplastic reaction had 675 features, whereas
pinker cytoplasm and retraction artifact had 13 and 15
features, respectively. These observations suggest that
the models with the desmoplastic reaction features may
be overfitting. Reducing from 675 features to 70 features

in the desmoplastic reaction pattern still outperformed
the pinker cytoplasm and retraction artifact patterns
with an accuracy of over 90% (data not shown). To some
extent, all three patterns could distinguish Ta and T1
tumor images with a reasonable accuracy (> 70%), sug-
gesting that some features extracted from these patterns
might be correlated (see Discussion).
To understand which features in the desmoplastic re-

action pattern are more important, we ranked all fea-
tures based on 40 DTs. We found that features, such as
the number of nuclei and distributions of nuclei sizes,
came out at the very top of our ranking (Supplementary
Figure S8). These findings were consistent with the main
microscopic characteristics of the desmoplastic reaction
pattern, in which a large number of inflammatory cells
surround the nests of tumor cells. Our result suggests
that the desmoplastic reaction pattern contains the most
informative features in distinguishing Ta versus T1 blad-
der tumors.

Fig. 5 Accuracy comparison for 6 ML methods based on 696 features (blue) and top 100 features (orange)

Fig. 6 ROC curves of 6 ML classifiers based on all 696 features (a) and top 100 features (b). All 696 features or the top 100 features evaluated by
multiple decision trees were incorporated into 6 ML classifiers to calculate the ROC curves. AUC values of the models were indicated in the
caption. Twenty iterations were performed for each model. The mean ROC curve (blue) and standard deviation (grey shade area) are presented
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Fig. 7 Prediction accuracy and ROC curves of CNN-based models. Pre-trained VGG16 and VGG19 networks were used to build the models. AUC
values of the models were indicated in the caption. Twenty iterations were performed for each model. The mean ROC curve (blue) and standard
deviation (grey shade area) are presented

Fig. 8 ROC curve of various ML classifiers based on features related to desmoplastic reaction (a), cytoplasmic/eosin intensity (b), and retraction
artifact (c). There are 675, 13, and 15 features used to represent the desmoplastic reaction, cytoplasmic/eosin intensity and retraction artifact
patterns, respectively. Several ‘background’ features were shared by the three patterns, leading to the sum of the features (i.e., 703) larger than
the total number of features (i.e., 696). The features were incorporated into 6 ML classifiers to calculate the ROC curves. AUC values of the models
were indicated in the caption. Twenty iterations were performed for each model. The mean ROC curve (blue) and standard deviation (grey shade
area) are presented
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Discussion
The goal of this project was to build a ML-empowered,
feature-centered, and interpretable diagnostic system to
assist pathologists to distinguish histopathological im-
ages of non-invasive and invasive bladder cancers. For a
given image, the system provided a probability value to
Ta or T1 tumors, which can be used as additional evi-
dence to facilitate the doctors’ decision-making process.
To this goal, we successfully developed automatic

pipelines to extract features in three invasive patterns
characteristic to the T1 stage bladder cancer (i.e., des-
moplastic reaction, retraction artifact, and abundant pin-
ker cytoplasm), using ImageJ and CellProfiler.
Meanwhile, the presence of the muscle layer in the spec-
imens of bladder tumor resection is often crucial for
cancer staging. However, we have not taken into account
the muscle layer in our analysis because: 1) its presence
in a slide provides no help in distinguishing Ta and T1
tumors; and 2) the muscle layer is often absent in biopsy
specimens. Our system was therefore designed on the
basis of the assumption that the muscle layer is not
present in tumor specimens. The fact that the system is
able to achieve > 90% predictive accuracy suggests that
textural features hidden in the aforementioned three
patterns are critical for distinguishing T1 from Ta
tumors.
We further investigated the relative importance of the

three patterns in the distinction of Ta versus T1 tumors,
and found that the desmoplastic reaction pattern is most
important. Interestingly, using 15 and 13 features identi-
fied from retraction artifact and abundant pinker cyto-
plasm patterns respectively still achieve > 70% accuracy.
A separate analysis with 60 features combining all fea-
tures extracted from the retraction artifact pattern and
the pinker cytoplasm pattern was able to achieve ~ 85%
accuracy (data not shown). In our view, this high pre-
dictive accuracy may be explained by two possibilities.
First, multiple patterns may co-exist in the T1 tumor
images. In other words, most of T1 images may have
more than one microscopic pattern. Second, different
patterns may share common textural features. Identifica-
tion of these ‘basic’ features will shed light on the funda-
mental differences between Ta and T1 tumors. It may
help further reduce the feature number, thereby improv-
ing the interpretability of this ML-based diagnostic
system.
Feature engineering requires domain knowledge/ex-

pertise and may take much time to identify features that
represent the patterns of interest. Recently, deep learn-
ing techniques [31, 32] from the computer science field
have dramatically improved the ability of computers to
recognize objects in images. This raises the possibility
for fully automated computer-aided diagnosis in path-
ology. Among all the ML models in image recognition,

CNN is one of the most studied and validated method.
Not only it has great performance, but also the design of
CNN hidden layers allows the model to extract mean-
ingful features without any prior knowledge. The path-
ology community has been showing increasing interests
in comparing CNN to human judgements. Although ap-
plying the deep neural network to recognizing medical
image patterns is not a new idea and has shown promis-
ing results, its requirement of large quantity of data for
training turns out to be a big bottleneck for many un-
popular diseases. To address this limitation, we devel-
oped CNN models using pre-trained VGG networks and
found that it achieves a remarkable accuracy of 84%. Of
note, these CNN models are pre-trained on general im-
ages that are different from histopathological images,
suggesting that their performance could be improved
with pre-training on histopathological images.
Notably, features in CNN models are automatically ex-

tracted from images without prior knowledge, and some
features may be completely novel to pathologists. By
assessing the intermediate layers of CNN, we may iden-
tify novel features that could be subsequently added to
the feature engineering models to improve prediction
accuracy. This iterative process will help make our sys-
tem more powerful and interpretable.
Although the inclusion of pathologists (i.e., human-in-

the-loop) in the model development process is very im-
portant, there is a need to go beyond interpretable ma-
chine learning. To reach a level supporting the
pathologists in their daily decision making, another fac-
tor that should be taken into account is causability [33],
which is measured in terms of effectiveness, efficiency,
satisfaction related to causal understanding and its trans-
parency for a user. In other words, it refers to a human
understandable model. Since causability encompasses
measurements for the quality of explanations, causability
enables an expert pathologist to consider the causality of
a particular disease. As such, although our system, in
some sense, is interpretable, achieving causability is the
ultimate goal of our system, which will be not only us-
able but also useful for pathologists.

Conclusions
With ImageJ [34, 35] and CellProfiler [36], nearly 700
numeric features were extracted from three well-
characterized patterns that distinguish T1 from Ta tu-
mors, including desmoplastic reaction, retraction
artifact, and abundant pinker cytoplasm. Clustering ana-
lysis with k-means failed to separate Ta and T1 images.
To avoid overfitting, we selected only informative feature
through feature ranking based on decision-trees with k-
fold cross-validation. With the top 100 features, we suc-
cessfully distinguished ~ 1200 Ta and T1 images with an
accuracy of 91–96% using six classic ML approaches

Yin et al. BMC Medical Informatics and Decision Making          (2020) 20:162 Page 9 of 11



such as random forest, LR, PNN, bagging (Adaboost),
SVM, and MLP. By contrast, a CNN model based on
pre-trained VGG networks achieved an accuracy of 84%,
suggesting that human-assisted feature extraction could
outperform automatic feature extraction. Our analysis
suggests that desmoplastic reaction is more important
than the other two patterns. Moreover, the number and
size distribution of nuclei of tumor cells in the desmo-
plastic reaction pattern appear to be the most predictive
features, which is generally consistent with observations
by pathologists. This ML-empowered diagnostic system
is highly interpretable and has a potential to apply to
other types of cancer.
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