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hemodynamics instability during
pheochromocytoma surgery
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Abstract

Background: Surgical resection of pheochromocytoma may lead to high risk factors for intraoperative
hemodynamic instability (IHD), which can be life-threatening. This study aimed to investigate the risk factors that
could predict IHD during pheochromocytoma surgery by data mining.

Method: Relief-F was used to select the most important features. The accuracies of seven data mining models
(CART, C4.5, C5.0, and C5.0 boosted), random forest algorithm, Naive Bayes and logistic regression were compared,
the cross-validation, hold-out, and bootstrap methods were used in the validation phase. The accuracy of these
models was calculated independently by dividing the training and the test sets. Receiver-Operating Characteristic
curves were used to obtain the area under curve (AUC).

Result: Random forest had the highest AUC and accuracy values of 0.8636 and 0.8509, respectively. Then, we
improved the random forest algorithm according to the classification of imbalanced data. Improved random forest
model had the highest specificity and precision among all algorithms, including relatively higher sensitivity (recall)
and the highest f1-score integrating recall and precision. The important attributes were body mass index, mean
age, 24 h urine vanillylmandelic acid/upper normal limit value, tumor size and enhanced computed tomography
difference.

Conclusions: The improved random forest algorithm may be useful in predicting IHD risk factors in
pheochromocytoma surgery. Data mining technologies are being increasingly applied in clinical and medical
decision-making, and provide continually expanding support for the diagnosis, treatment, and prevention of various
diseases.

Keywords: Data mining, Pheochromocytoma, Relief-F, Naive Bayes, Decision trees, Random forest, Logistic
regression

Background
Pheochromocytoma is a rare neuroendocrine tumor and
the primary treatment strategy is surgical resection;
however, the surgery may result in a life-threatening
situation with high risk of intraoperative instability of

hemodynamics (IHD) due to the excessive release of cat-
echolamine (CA) into the blood circulation [1]. Some in-
dependent risk factors possibly related with IHD were
identified by statistical methods in previous studies, in-
cluding tumor size, CA level, preoperative blood pres-
sure, and surgical approaches [2, 3].
Data mining is defined as analyzing observation data-

sets (generally large-scale datasets) to identify unex-
pected relationships and summarize the data in a novel
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pattern, and then provide useful information [4]. Data
mining algorithms are classified into two functional
types, predictive and descriptive [5], and eight applica-
tion types, classification, estimation, prediction, correl-
ation analysis, sequence, time sequence, description, and
visualization [6]. The successful application of data min-
ing in biomedical research provides reliable support for
clinical decision-making (e.g., disease diagnosis, therapy
selection, and disease prognosis prediction) and manage-
ment decision-making (e.g., staffing, medical insurance,
and quality control) [7–21].
Although there have been significant improvements in

the preoperative medical preparation (PMP),
anesthetization, and surgical techniques for pheochro-
mocytoma in recent years, exploring the risk predictors
of IHD will bring better therapeutic results. Unfortu-
nately, only a few small-scale retrospective studies have
focused on the relevant issues and reached different con-
clusions, thus the risk factors remain unknown. How-
ever, compared with traditional statistical models, data
mining can provide better classification results. This
study uses data mining to investigate the risk factors that
could predict IHD during pheochromocytoma surgery
and provides a basis for optimizing patient preoperative
preparation and facilitating clinical treatment.

Pheochromocytoma
Pheochromocytoma is a rare neuroendocrine tumor that
originates from the adrenal medulla chromaffin cells and
can secrete one or more CAs, including epinephrine,
norepinephrine, and dopamine. The incidence rate of
pheochromocytoma is 0.2–0.8/100,000 annually and is
0.1–1% in patients with hypertension. At present, about
25% cases of pheochromocytoma are incidentally found
by imageological examination, and pheochromocytoma
occurs in 4–5% of patients with adrenal incidentaloma
[22]. In addition, pheochromocytoma can cause a series
of clinical symptoms due to excessive CA production,
including hypertension, headache, sweating, palpitation,
tremor, and facial pallor. These symptoms are usually
paroxysmal and may be spontaneous or caused by such
events as intense physical activity, childbirth, trauma,
anesthetic induction, and surgery [23].
Although surgical resection is the major treatment strat-

egy for pheochromocytoma, the surgery is associated with
a high risk of intraoperative instability of hemodynamics
(IHD) due to excessive release of CA into the blood circu-
lation, which may result in life-threatening conditions [1].
The mortality rate of pheochromocytoma can be as high
as 50% during the period when no α-receptor blocker is
used to control blood pressure before operation; develop-
ments of anesthesiology and surgery and improvements in
the pathophysiological comprehension of pheochromocy-
toma have significantly reduced operative mortality rate to

0–2.9% [23]. However, pheochromocytoma surgery still
has high technical requirements and high risk, and thus
needs careful PMP.
High fluctuation of blood pressure (hypertension or

hypotension), tachycardia or bradycardia, and other IHD
manifestations are common during pheochromocytoma
surgery, and the “rollercoaster-type” blood pressure is a
highly alerted event for surgeons and anesthesiologists.
Such IHD may lead to increased intraoperative bleeding
and cardio-cerebro-vascular incidents, resulting in in-
creased surgical difficulty and risk. Therefore, to reduce
occurrence of IHD and decrease its frequency and amp-
litude, it is very important to study and determine the
risk factors of IHD.
In previous retrospective studies, the influential factors

of IHD were predicted. For instance, tumor size was
considered to be associated with occurrence of IHD [1,
24, 25]; statistical analysis showed that urinary norepin-
ephrine was a risk factor for IHD [2, 3]; and some other
risk factors were also mentioned, such as urine CA, dia-
betes/prediabetes, large preoperative systolic blood pres-
sure fluctuation, CA level, preoperative blood pressure,
and surgical approaches. Few studies have addressed the
risk factors of IHD during pheochromocytoma surgery,
mainly because the number of cases is small and case
collection is difficult. The number of cases collected this
time was the highest among all published studies.

Data mining in healthcare and biomedicine
With the continuous increase in medical big data (con-
taining a lot of patient, disease, surgical, and drug infor-
mation), it is absolutely necessary to extract potential
information about the diagnosis, treatment, and progno-
sis of diseases and the medical treatment through ana-
lysis and knowledge digging. Therefore, the data mining
field is closely related to the biomedical field. Many
scholars have successfully used data mining to diagnose
diseases, predict disease prognosis, and provide decision-
making support in the medical field.
Shukla et al. [7] determined the survival rate of breast

cancer and predicted its relevant factors by combining
self-organizing map with density-based spatial clustering
of applications with noise. Their analysis could also help
decision-makers to select the best survival period and
thus obtain better accuracy of survival prediction. Using
regression analysis, artificial neural network, and Naive
Bayes, Sangi et al. [8] established a diabetes prediction
model to indicate the relationship between the risk fac-
tors and the complications in each patient, which could
help patients change their lifestyle and implement effect-
ive interventions. Moreover, Umesh and Ramachandra
[9] explored the feasibility of association rule mining for
predicting recurrence of breast cancer in the SEER
breast cancer patient database. In a study of disease
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diagnosis, Akben [10] proposed an automatic diagnosis
method for chronic kidney disease; Mostafa et al. [11]
extracted the feature set of the human voice and applied
five classification algorithms to analyze speech disorders
and improve diagnosis of Parkinson’s disease; and Bang
et al. [12] established a four-phase data mining model
consisting of four modules to select the important diag-
nostic criteria for effective diagnosis and to predict and
diagnose senile dementia. In the field of medical
decision-making support, data mining can help third-
party payers (e.g., health insurance organizations) extract
useful knowledge from thousands of claims and identify
a small number of claims and claimants for further
evaluation and review of insurance fraud and abuse [13].
Bosson-Rieutort et al. [14] analyzed non-Hodgkin’s
lymphoma in the National Occupational Disease Surveil-
lance and Prevention Network Database of France using
spectroscopy, and identified 40 occupational exposures
related to diseases – this contributed to the monitoring
and assessment of occupational exposures associated
with health risks. In addition, Chang V et al. used uplift
modeling to predict the patient appropriate for ambula-
tory cleft repair. The uplift modeling is a predictive ana-
lytics technique, which was utilized using multivariate
logistic regressions [26].. Kartoun U et al. developed an
insomnia classification algorithm to identify insomnia
patients, and the algorithm had better performance com-
pared with traditional methods [27].
Many machine learning methods have been used for

medical data classification and disease factor analysis,
and many innovative research results have been
achieved. However, due to the inherent high-
dimensional feature space, high feature redundancy, and
imbalance of sample types in medical clinical data and
microarray expression data, especially due to the many
factors affecting disease or the complex interactions be-
tween genes, the inter-correlations are very strong, and
the classification accuracy of many classic classification
algorithms on medical data sets is not ideal.
Due to the high-dimensional feature space and high

feature redundancy of medical data, it is necessary to
perform feature selection operations when mining med-
ical data. Feature selection technology can help people
understand data, simplify machine learning and data
mining models, reduce the computation time of training
models, and maintain or improve the classification or
prediction performance of models. Feature selection is
broadly divided into two types: feature selection using
the structure of the data itself and feature selection using
external knowledge. There are many methods for feature
selection based on the structure of the data itself, such
as factor analysis, Relief-F [28], chi-square test, principal
component analysis, and genetic algorithms. Biofilter is a
method of feature selection using prior knowledge [29].

By adding biological knowledge to the model, the search
space for variable selection can be significantly reduced.
In general, any research question needs to be analyzed
on a case-by-case basis. Whether using the data’s own
structure or external knowledge, it is a good feature se-
lection method if it effectively reduces the data dimen-
sions and removes redundant information.
In order to predict the risk factors of IHD during

pheochromocytoma surgery, firstly, the fast feature se-
lection of Relief-F filtering was used to preprocess the
data and filter out the important features. Then the clas-
sification effects of several machine learning algorithms
were compared to find an algorithm suitable for analyz-
ing the research data. Based on the characteristics of the
data, the algorithm was further improved to obtain im-
portant factors that can be used to predict the occur-
rence of IHD.

Methods
Dataset
The study protocol was approved by the Institutional
Research and Ethics Committee of Shengjing Hospital of
China Medical University (No. 2019PS003K). Written
informed consent was obtained from all patients. The
clinical research registry unique identification number is
ChiCTR1900020811. This study adheres to CONSORT
guidelines.
The data set consists of 283 patient characteristics and

19 clinical parameters. The diagnosis of pheochromocy-
toma was confirmed by pathological examination, and
patients who underwent either unilateral laparoscopic or
open adrenalectomy were included. The clinical stage
was localized (apparently benign) disease with an Ameri-
can Society of Anesthesiologists (ASA) score of 1–3. Pa-
tients were excluded if they had a familial history of
pheochromocytoma, were converted to laparotomy, or
underwent bilateral adrenalectomy or surgery for ectopic
pheochromocytoma, see details in flowchart: supplemen-
tary Fig. 1.
The population information is in Table 1. The patients’

characteristics included sex, age, body mass index (BMI),
and comorbidities: ASA score, diabetes mellitus, coronary
heart disease (CHD), hypertension, and arrhythmia. The
disease characteristics include tumor side and size, tumor
necrosis, enhanced computed tomography difference. The
preoperative parameters include the use of alpha adrenor-
eceptor antagonists, use of crystal/colloid fluids, preopera-
tive transfusion, 24 h urine vanillylmandelic acid/upper
normal limit value. The intraoperative parameters include
surgical approach and IHD. There were 18 prediction in-
dicators, and one target indicator, IHD occurrence. IHD
was defined as the presence of at least one event of intra-
operative systolic blood pressure > 200mmHg and a mean
arterial pressure < 60mmHg, or the requirement for
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norepinephrine management or blood transfusion to
maintain normal blood pressure intraoperatively [30].
Hypertension was classified into three categories: normal,
intermittent, and continuous hypertension. Range of ASA
score was 1–3.
Sex, CHD, arrhythmia, diabetes mellitus, tumor side,

tumor necrosis, use of α adrenoreceptor antagonists, use of
crystal/colloid fluid, use of blood transfusion, and surgery
approach were regarded as categorical variables, all valued
as 0 or 1. Hypertension was valued as 0, 1, or 2, whereas
ASA score was valued as 1, 2, or 3; thus, these two variables
were categorized as numerical variable and categorical vari-
able, respectively. The computation was performed inde-
pendently using seven models, and its purpose was to judge
the target indicator (i.e., which indicators were closely re-
lated with the occurrence of IHD during surgery) by calcu-
lating the occurrence of all 18 indicators.

Data mining
Relief-F is a feature selection algorithm with high oper-
ating efficiency. It expands the functions of multi-class

data processing on the basis of the Relief algorithm and
simultaneously solves the problem of noise and incom-
pleteness of the data. The algorithm measures the im-
portance of features by calculating a correlation statistic
on each feature. The larger the correlation statistics of a
feature, the more important this feature is in classifica-
tion. By sorting all features and then setting a threshold
or feature selection number, a filtered feature subset can
be obtained. Relief-F was first used in this study to per-
form feature extraction on the dataset.
There are three main applications of machine learning

algorithms: classification and regression, clustering, and
dimension reduction. The clustering method has four
applications: unsupervised medical image segmentation;
studies of diseases subtype classification; relationship
analysis and feature interpretation of disease and genes.
Classification and regression can predict disease risk,
postoperative recovery time prediction, surgical selec-
tion, and efficacy evaluation [31]. So, classification
methods of data mining were used, including Naive
Bayes, decision tree (CART, C4.5, C5.0, and C5.0

Table 1 The population characteristics of patients

Without IHD n = 209 (73.9) With IHD n = 74 (26.1) p-value

Demographic characteristics

Mean age (years) 51.9 ± 12.3 54.0 ± 13.8 0.233

Sex (male/female) 110 (52.6) / 99 (47.4) 31 (41.9) / 43 (58.1) 0.112

BMI (kg/m2) 24.1 ± 3.5 21.9 ± 2.7 < 0.001

ASA score 1/2/3 52(24.9)/136(65.1)/21(10.0) 14(18.9)/53(71.6)/7(9.5) 0.548

Comorbidity

Diabetes mellitus 61 (29.2) 23 (31.1) 0.759

Coronary heart disease 66 (31.6) 37 (50.0) 0.005

Hypertension Normal/Intermittent/Continuous 82(39.2)/47(22.5)/80(38.3) 30(40.5)/18(24.3)/26(35.1) 0.883

Arrhythmia 12 (5.7) 4 (5.4) 0.914b

Preoperative data

Tumor side (left/right) 103 (49.3) / 106 (50.7) 39 (52.7) / 35 (47.3) 0.613

Radiographic tumor size (cm) 5.2 ± 2.5 6.5 ± 3.1 < 0.001

Tumor necrosis 69 (33.0) 33 (44.6) 0.075

Tumor enhanced CT difference (Hu) 43.2 ± 20.6 45.6 ± 20.2 0.435

Use of α adrenoreceptor antagonists 115 (55.0) 42 (56.8) 0.797

Use of crystal/colloid fluid 118 (56.5) 29 (39.2) 0.011

Use of blood transfusion 54 (25.8) 15 (20.3) 0.338

24-h urine metanephrines/ normal upper limit 1.4 (0.9–2.2) 1.47 (0.9–2.7) 0.153a

Intraoperative data

Laparoscopic vs. Open 109 (52.2) / 100 (47.8) 42 (56.8) / 32 (43.2) 0.495

Continuous variables with normal distribution are reported as the mean ± standard deviation (SD), while non-normal continuous variables as the median
(interquartile range) and categorical variables as numbers (percentages). Student’s t-test was used to compare the mean values of two continuous normally
distributed variables and the Mann–Whitney U-test was used to determine mean values of two continuous non-normally distributed variables. The chi-squared or
Fisher’s exact test was used for categorical variables
a Mann–Whitney U-test
b Fisher’s exact test
BMI body mass index; ASA American Society of Anesthesiologists; CT computed tomography; IHD intraoperative hemodynamic instability
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boosted), random forest algorithms and logistic regres-
sion. Naive Bayes algorithm is a classification method
based on Bayes theorem, the characteristic conditional
independence hypothesis, and a classification algorithm
based on probability theory [32], This is a very powerful
model for returning predicted values and certainty. This
is easy to understand and implement [33]. It has also
been used as a benchmark algorithm to compare other
types of classification algorithms [34]. C4.5 is a decision
tree algorithm [35] modified from the ID3 algorithm
[36], and the gain ratio is used for disassociation in the
Shannon entropy-based decision tree [37]. CART [38] is
a decision tree algorithm that supports the splitting
based on Gini value, binary system, and ordered binary
system [39], and it realizes only binary splitting. C5.0 is
a decision tree algorithm modified from theC4.5 algo-
rithm. C5.0 boosted improves model accuracy. The main
advantage of using decision trees is the visualization of
data for classes. This visualization is useful because it
makes it easy for users to understand the overall struc-
ture of the data, which property has the most impact on
the class [34]. The random forest algorithm [40] is based
on ensemble learning and a classifier containing multiple
decision trees, and RF has proven to be a highly accurate
algorithm in various fields including medical diagnostics
[41]. The two most primitive and common methods for
random forest used to measure the importance of fea-
tures are MDA and MDG. The MDA measure converts
the value of a variable into a random number, and ran-
dom forest can predict the decline in accuracy. The lar-
ger a MDA value is, the more important the variable will
be. The MDG measure calculates the influence of each
variable on the heterogeneity of the observed values at
each node of the classification tree using the Gini index,
so as to compare the importance of variables; the larger
the MDG value, the more important the variable will be.
All analyses were performed using the Python and R
3.5.1 programming language, with the packages e1071,
rpart, RWeka, C50, random forest, and caret.
The cross-validation method, hold-out method, and

bootstrap method are used in the validation phase. The
accuracy of each algorithm is calculated independently
by dividing the train set and the test set. For the cross-
validation method, the dataset is divided into n equal
subsets, (n–1) subsets are used as train sets, one subset
is used as the test set, and this process is repeated n
times. In this study, the cross-validation was performed
5, 10, and 15-fold. For the hold-out method, the dataset
is divided into one train set and one test set. In this
study, the dataset was divided into two sets using three
different divisions: 80% of the data for training and 20%
of the data for testing; 70% of the data for training and
30% of the data for testing; and 60% of the data for
training and 40% of the data for testing. For the

bootstrap method, random samples are selected to cre-
ate the test set and the train set. In this study, the test
and train subsets contained 50, 100, or 200 samples.

Model assessment
The model performance evaluation indicators (e.g., ac-
curacy, error rate, sensitivity, and specificity) were calcu-
lated as predicted classes and actual classes in the
confusion matrix. Samples with y = 0 were regarded as
positive (normal patients) and those with y = 1 were
regarded as negative (patients); y is the target variable
used for classification.
Accuracy was calculated by dividing the number of re-

cords predicted correctly by the total number of samples
in the confusion matrix:

Accuracy ¼ Number of records predicted correctly
Total number of samples in the confusion matrix

Other evaluation indicators were calculated accord-
ing to the confusion matrix. The true positive rate
(TPR) reflects model sensitivity (recall) and describes
how many illness-free cases were recognized [i.e., the
percentage of all recognized positive cases in all true
positive (TP) cases and false negative (FN) cases, or
TPR = TP/(TP + FN)]. The true negative rate (TNR)
reflects model specificity and describes how many ill
cases were recognized [i.e., the percentage of all rec-
ognized negative cases in all true negative (TN)
cases and false positive (FP) cases, or TNR = TN/
(FP + TN)]. The positive predictive value (PPV) re-
flects model precision and describes how many cases
in the predicted illness-free cases were correct
[PPV = TP/(TP + FP)]. Precision and recall generally
had an inverse relationship [f1-score = 2 × recall ×
precision/(recall + precision)], where the f1-score in-
tegrated both precision and sensitivity (recall) and
could be used as an evaluation indicator, f1-score is
called F-Measure [42].
Based on the accuracies of seven models obtained

using different verification methods, the Receiver-
Operating Characteristic (ROC) curve was plotted and
then the area under ROC curve (AUC) was calculated
to compare the classification effects of seven models.
The ROC curve is termed a sensitivity curve, and is a
comprehensive indicator reflecting the continuous
variables of sensitivity and specificity. The ROC curve
reveals the relationship between sensitivity and speci-
ficity by means of composition method, and supports
the calculation of a series of sensitivities and specific-
ities by setting several different critical values for the
continuous variables. The AUC is generally 0.5–1.0;
with larger AUC values indicating higher diagnostic
accuracy. In the ROC curve, the points closest to the
upper left of the coordinate system represent the
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critical values with high sensitivity and high specifi-
city. The ROC curve is plotted using two variables,
the x-coordinate is the false positive rate [FPR = FP/
(FP + TN)] and the y-coordinate is TPR. Figure 1
shows the flow chart on predicting IHD during pheo-
chromocytoma surgery.

Results
The results of indicator weights using Relief-F are shown
in Table 2. The larger the feature weight, the more im-
portant the feature is. The weights of eight indicators
below − 24 were low and we considered them unimport-
ant, and so excluded them. The remaining 10 indicators
were used as the result of feature selection for further
analysis. The following experiments were performed on
the dataset after removing the unimportant feature
variables.
Seven models were applied 10 times respectively

and their performance is shown in Table 3. The
highest classification accuracy and AUC of the ran-
dom forest model in the test set were achieved
when hypertension and ASA were used as categor-
ical variables and the training and test sets were di-
vided using the hold-out method with a division
ratio of 6:4. The AUC was 0.8636 and the calculated
accuracy was 0.8509 from dividing the number of
records predicted correctly (85 + 12) by the total
number of samples in the confusion matrix (114)
(Table 4). The next highest AUC and accuracy were
0.8630 and 0.8421, respectively, obtained with the
random forest model in the numerical dataset. In
addition, all values with accuracy > 0.8 were ob-
tained by the random forest algorithm (Table 3), al-
though the validation method and selection of the
training and test sets differed. Therefore, when the
hold-out method was used to divide the training
and test sets, and the division ratio was 6:4, the
random forest model had the highest classification
accuracy on the test set.

After feature extraction, there were 283 samples in
the data set, there were 10 attributes, 74 positive
samples, and 209 negative samples, and the ratio of
the number of positive to negative samples was 1:
2.82. For continuous variables, we tried to use the
improved random forest algorithm to further get the
indicators to predict IHD during pheochromocytoma
surgery.
Imbalanced Data Random Forest (BRF) algorithm idea:
Before training the random forest classifier, the al-

gorithm first uses the bootstrap method to randomly
extract a consistent number of sample subsets from
the majority class sample set and the minority class
sample set, and then extract the majority class sample
subset. Then this is recombined with a small number

Fig. 1 Flow chart for predicting IHD during pheochromocytoma surgery

Table 2 Indicator weights obtained by Relief-F

Attributes Weights

ctvalue −2.8871

prevma −3.3417

arrhythmia −4.4444

age −4.6933

bmi −6.7295

size −9.2895

asa −13.3596

preblood −19.3992

hypertension −22.7188

dm −23.1212

necrosis −24.2869

surgeryapproach −26.2391

preablock −27.0017

chd −27.0591

precrystal −27.1358

precolloid −27.1396

side −27.5089

sex −28.2274
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of sample subsets to obtain a balanced training data
set with sample category distributions, and then a
random forest classifier is trained on this balanced
training set to form a “forest” of random forests.
When an unknown sample is classified or predicted,
the category of the sample is determined by voting
from multiple random forest classifiers. The proposed
algorithm flow is explained as follows:

Input: Dataset D, Number of RF-based classifiers in BRF
Output: Random Forest Classifier for Imbalanced Data
BRF(x)

Stages:

1. Set m is the number of RF-based classifiers and n is
the sample number randomly sampled;

Table 3 Accuracy and AUC values of all models

hold out 80/
20

hold out 70/
30

hold out 60/
40

CV 5
fold

CV 10
fold

CV 15
fold

bootstrap
50

bootstrap
100

bootstrap
200

Numerical IHD Dataset

Logistic
regression

Accuracy 0.7018 0.7529 0.7368 0.7386 0.7278 0.7207 0.6223 0.7486 0.7470

AUC 0.5374 0.6392 0.6105 0.6096 0.5951 0.5597 0.5388 0.6343 0.6102

Naive Bayes Accuracy 0.7544 0.7412 0.7719 0.7245 0.7319 0.7312 0.6524 0.7705 0.7590

AUC 0.7392 0.7791 0.7999 0.6591 0.6740 0.7041 0.4966 0.6786 0.7719

CART Accuracy 0.7719 0.7059 0.6930 0.7031 0.7036 0.7060 0.6567 0.7377 0.7349

AUC 0.6827 0.3797 0.6999 0.6787 0.6097 0.6587 0.4495 0.6862 0.6694

C4.5 Accuracy 0.7193 0.7294 0.7544 0.7563 0.7284 0.7528 0.7167 0.7268 0.6747

AUC 0.6520 0.6792 0.7569 0.6727 0.6991 0.7480 0.4422 0.6151 0.6233

C5.0 Accuracy 0.6667 0.6824 0.7544 0.7246 0.7318 0.7493 0.6652 0.7268 0.6747

AUC 0.6478 0.7132 0.7716 0.6514 0.7150 0.7146 0.4847 0.3861 0.6498

C5.0 boosted Accuracy 0.7018 0.7882 0.7544 0.7706 0.7499 0.7596 0.6695 0.7268 0.7590

AUC 0.6420 0.7710 0.7686 0.7415 0.7130 0.7510 0.6600 0.6988 0.7849

Random Forest Accuracy 0.7544 0.7765 0.8421 0.8023 0.8025 0.8123 0.7639 0.8033 0.7952

AUC 0.8181 0.8524 0.8630 0.7943 0.8268 0.8274 0.6923 0.8538 0.8533

Categrical IHD dataset

Logistic
regression

Accuracy 0.6842 0.7411 0.7544 0.7563 0.7493 0.7483 0.5794 0.7377 0.7349

AUC 0.5257 0.6448 0.6220 0.6255 0.6442 0.6322 0.5535 0.6191 0.6179

Naive Bayes Accuracy 0.7544 0.7412 0.7632 0.7245 0.7319 0.7312 0.6481 0.7650 0.7590

AUC 0.7359 0.7812 0. 7986 0.6565 0.6745 0.7012 0.4976 0.6580 0.7711

CART Accuracy 0.7368 0.7059 0.6930 0.7031 0.7108 0.7097 0.6567 0.7377 0.7349

AUC 0.6653 0.3797 0. 6999 0.6787 0.5971 0.6575 0.4495 0.6862 0.6694

C4.5 Accuracy 0.7193 0.7412 0.7632 0.7456 0.7461 0.7774 0.7554 0.6831 0.7108

AUC 0.4427 0.7037 0. 7580 0.6784 0.6818 0.7365 0.4641 0.5457 0.6575

C5.0 Accuracy 0.7193 0.6706 0.7544 0.7316 0.7459 0.7528 0.6395 0.7268 0.6747

AUC 0.6171 0.6939 0. 7716 0.6775 0.6983 0.6994 0.6209 0.3861 0.6701

C5.0 boosted Accuracy 0.7544 0.7529 0.7719 0.7598 0.7562 0.7943 0.6395 0.7541 0.7470

AUC 0.7575 0.7283 0. 7084 0.7318 0.7335 0.7947 0.6209 0.7169 0.7596

Random Forest Accuracy 0.7719 0.7765 0.8509 0.8093 0.8130 0.8123 0.7811 0.8197 0.7952

AUC 0.8198 0.8597 0. 8636 0.7782 0.8194 0.8179 0.7064 0.8542 0.8322

Table 4 The confusion matrix of the random forest model

Actual classes

Positive Negative

Predicted classes Positive 85 (True Positive, TP) 2 (False Positive, FP)

Negative 15 (False Negative, FN) 12 (True Negative, TN)
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2. Divide the training set D into a subset of majority
samples Dmajority and subset of minority Dminortity;

(for) i = 1, 2, ⋯, m

(1) Resample Dmajority randomly with replacement, get

Dsampling
majority , set jDsampling

majority j ¼ n;

(2) Random resampling Dminority with replacement, get

Dsampling
minority , set jDsampling

minorityj ¼ n;

(3) Generate training data, set Dtrain ¼ jDsampling
majority j þ j

Dsampling
minorityj;

(4) Generate test data, set Dtest =D −Dtrain;
(5) Train random forest classifier RFi(x) on Dtrain;

and for

3. BRFðxÞ ¼ sgn
Pm

i¼1
RFiðxÞ;

4. (Output)BRF(x)

Considering all attributes as continuous variables, the
improved random forest algorithm was compared with
other algorithms. Other algorithms took 60% of the data
set as the training set and the rest as the test set. The ex-
perimental results are shown in Fig. 2. The comparison re-
sults between the improved random forest algorithm ROC
curve and other algorithms are shown in Fig. 3. We com-
pared the results for AUC, sensitivity (recall), specificity,
precision, and f1-score among the improved random for-
est and other models, the improved random forest model
had the highest AUC (0.9803), specificity (0.7647), and
precision (0.954) among all algorithms, including relatively

higher sensitivity (recall) (0.8557) and highest f1-score
(0.9022) integrating recall and precision. The 95% confi-
dence interval from random forests is (0.772, 0.9107). A
Confidence Interval is a range of values we are fairly sure
our true value lies in. For the same sample estimate for
the same population, the 99% confidence interval has
higher credibility, and its true value has higher credibility,
but its interval width is large and inaccurate; the 95% con-
fidence interval is less reliable than the 99% interval, but
its accuracy is higher. The choice of 95% confidence is
very common in presenting confidence intervals, although
other less common values are used, such as 90 and 99.7%.
In practice, we can use any value you prefer [43, 44]. The
comparative analysis showed that the random forest
model had optimal classification performance.
An illustrative diagram of important attribute scores is

presented in Fig. 4 and Table 5. The important attribute
scores calculated using the Mean Decrease Accuracy
(MDA) were BMI, tumor size, ASA, hypertension, and
enhanced computed tomography difference – the values
exceeded 4.6. Those calculated using the Mean Decrease
Gini (MDG) were BMI, tumor size, 24-h urine vanillyl-
mandelic acid/upper normal limit value, enhanced com-
puted tomography difference, and mean age – the values
exceeded 8. The weights of attributes from Relief-F were
enhanced computed tomography difference,24-h urine
vanillylmandelic acid/upper normal limit value,
arrhythmia, mean age, and BMI – the values exceeded −
6.8. We chose the indicators that appeared in more than
two permutations as the final predictors. Thus, BMI,
tumor size, 24-h urine vanillylmandelic acid/upper nor-
mal limit value, enhanced computed tomography

Fig. 2 Comparison of multiple evaluation indicators

Zhao et al. BMC Medical Informatics and Decision Making          (2020) 20:165 Page 8 of 13



difference, and mean age could be used as risk factors
for predicting IHD during pheochromocytoma surgery.

Discussion
This study aimed to predict the risk factors of IHD dur-
ing pheochromocytoma surgery by data mining. With
the necessary feature extraction steps, the biomedical
data with small samples and high dimensions were ana-
lyzed, and the Relief-F algorithm used to eliminate ir-
relevant features and screen features conducive to the
prediction of minority classes. The results showed that
random forest had the highest accuracy (0.8509) and
was the best classification model among the seven data
mining models. Then, due to the imbalance of the data,
we improved the random forest algorithm to obtain the
best classification performance.
In related fields such as medical diagnosis and bio-

medical data analysis, imbalanced data are more

common. It is difficult to analyze and mine this kind of
data with traditional methods, and it causes problems
such as overfitting and dimensional disaster. High-
dimensional data contain a large number of unrelated
redundant features. A classification model constructed
using the original data set will reduce the prediction
effect and interpretability. Research shows that using
feature selection alone can solve the problem of high-
dimensional imbalanced data classification, and it is
more helpful to improve performance than classification
algorithms. The idea of introducing an imbalanced clas-
sification method and determining the most relevant in-
fluencing factors for disease classification with the least
redundancy are of great significance for disease preven-
tion diagnosis and drug development screening.
Random forest, developed by Leo Breiman and Adele

Culter in 1999, is a classification algorithm composed of
a multitude of decision trees [31]. Many studies have

Fig. 3 Receiver-Operating Characteristic curve for prediction of hemodynamics instability
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shown that the random forest algorithm has high accur-
acy in various fields including medicine. For example, in
HIV/AIDS medicine study, compared with the J48 algo-
rithm and neural network, random forest predicted virus
response with comparable accuracy [45]. In a landslide
susceptibility assessment, random forest had the best
AUC and accuracy value compared with best-first deci-
sion tree and Naive Bayes [46].
In order to assess which variables are important

within the random forest algorithm, two measures
can be used: MDA and MDG [47–51]. The latter is
based on the number of splits within the decision
trees for each predictor, and is criticized for its bias
for continuous variables. In the random forest

algorithm, there are more options for analyses of con-
tinuous variables regarding where splits can occur
within each decision tree, and the MDG value tends
to give higher importance to these variables compared
to ordinal or categorical variables, which have a lim-
ited number of places for splits to occur. Another im-
portant measure is the MDA, which is the difference
between the out-of-bag error rate from a randomly
permuted dataset and the out-of-bag error rate of the
original dataset, expressed as an average percent over
all trees in the forest. For both of these important
measures, high values represent important variables
and low values represent unimportant variables within
the random forest framework.

Fig. 4 Visualization of important attribute scores

Table 5 Important attribute scores according to the improved random forest model

Attributes Importance Scores of random forest Attributes Importance Scores of random forest Attributes Relief-F

Mean Decrease Accuracy Mean Decrease Gini Weight of attribute

bmi 19.3095 bmi 16.688 ctvalue −2.8871

size 9.6143 size 12.2722 prevma −3.3417

asa 5.7061 prevma 9.5934 arrhythmia −4.4444

hypertension 4.6416 ctvalue 9.3884 age −4.6933

ctvalue 4.6293 age 8.0945 bmi −6.7295

prevma 1.3311 hypertension 2.9614 size −9.2895

preblood 0.8616 asa 2.3838 asa −13.3596

arrhythmia 0.2419 preblood 1.5554 preblood −19.3992

dm 0.0276 dm 1.2103 hypertension −22.7188

age −0.4422 arrhythmia 0.3524 dm −23.1212
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In the application for analyzing clinical data, data min-
ing can help find potential relationships between many
clinical manifestations and diseases. Meanwhile, clini-
cians are also interested in the predictors of many dis-
eases. In this study, the important attributes were BMI,
mean age, 24 h urine vanillylmandelic acid/upper normal
limit value, tumor size, enhanced computed tomography
difference. BMI was an independent risk factor for both
severe and cardiovascular morbidity, and was reported
previously as a risk factor for IHD [52, 53]. Lower BMI
is associated with less effective circulatory volume due
to relatively lower body weight, resulting in large fluctu-
ations in blood pressure and a high incidence of IHD.
Currently, there is only one study that investigated the
intraoperative changes in hemodynamics in a Chinese
population with pheochromocytoma; the results show an
association between age > 45 years and IHD [1], consist-
ent with our study results. The final metabolite of CA is
vanillylmandelic acid, so the 24-h urine vanillylmandelic
acid/upper normal limit value is an important factor in-
fluencing the occurrence of IHD and a biochemical indi-
cator with clinical importance.
Tumor size was also an effective predictor for IHD

in our study, in agreement with the reports of previ-
ous studies [24, 54]. A large pheochromocytoma has
a more prominent network of vessels and is associ-
ated with greater intraoperative blood loss than
smaller tumors [55, 56]. Large tumors secrete higher
levels of CAs, which can easily to lead to greater fluc-
tuations in blood pressure during the perioperative
period [57]. Natkaniec et al. [58] reported that intra-
operative blood loss in 530 patients who underwent
laparoscopic adrenalectomy was significantly greater
in patients with tumor diameters ≥6 cm than those
with diameters < 6 cm.
Usually, pheochromocytoma patients have a higher in-

cidence of heart disease than those with essential hyper-
tension [53]. Because the myocardium and coronary
arteries are exposed to abnormally elevated levels of CAs
for prolonged periods, this can lead to collagen depos-
ition and fibrosis formation in the myocardium. How-
ever, this factor was not included in this study.
Other effective predictors for IHD involvement are

the use of α adrenoreceptor antagonists, crystal/col-
loid, and blood transfusion for volume expansion be-
fore surgery. It was confirmed that PMP is
important to decrease fluctuations in blood pressure
during the perioperative period [59, 60]. All patients
with pheochromocytoma should receive PMP and
volume expansion to block the effects of released
CAs [61]. However, these factors were not included
in our study. This may be due to the relatively small
sample size and number of events included in this
study, and may lead to underestimation of its

predictive effect. Nevertheless, both PMP and vol-
ume expansion are very important to achieve a good
treatment outcome.
There were several limitations to this study. First,

some variables related to IHD were not considered,
such as patient symptoms, genomic characteristics,
and the dosage and duration of preoperative medical
preparations. Second, the random forest program
does not generate traditional statistical measurement
values (e.g., p value and test statistics). There are
many alternative protocols to obtain these statistical
data, but it may be challenging to implement a com-
pletely different analysis framework. For example,
the random forest algorithm provides two measures
for the importance of variables, and it may be bene-
ficial or not for the predictor depending on the
measurement scale or the number of categorical
variable sets. The measurement of importance is
criticized because the above-mentioned variables are
highly sensitive to the number of trees in the forest
and the number of selected prediction variables, and
they are both user-defined parameters. The import-
ance of variables is not necessarily identical to the
statistical significance. A variable may be very im-
portant in the random forest model but not statisti-
cally or clinically significant. Some investigators have
proposed a method to test the statistical significance
of variables in the random forest framework, but
there is no direct and recognized approach for such
an application [45, 62, 63].

Conclusions
Surgery for pheochromocytoma may induce excessive
release of CA into the blood circulation, thereby
producing a high risk for IHD and increased mortal-
ity. This study analyzed clinical data of 283 patients
with pheochromocytoma surgery using feature selec-
tion and a classification method for imbalanced data,
and determined the optimal model for predicting
IHD during pheochromocytoma surgery. The im-
proved random forest model had the best AUC and
accuracy among all tested models. The BMI, mean
age, 24 h urine vanillylmandelic acid/upper normal
limit value, tumor size, and enhanced computed
tomography difference were important indicators
predicting occurrence of IHD during pheochromocy-
toma surgery.
The current trends of increasing use of electronic

medical records and generating ever increasing volumes
of medical data ensure that data mining technologies
will be increasingly applied in clinical and medical
decision-making, and provide continually expanding
support for the diagnosis, treatment, and prevention of
various diseases.
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