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Abstract

Background: Various methods based on k-anonymity have been proposed for publishing medical data while
preserving privacy. However, the k-anonymity property assumes that adversaries possess fixed background
knowledge. Although differential privacy overcomes this limitation, it is specialized for aggregated results. Thus, it is
difficult to obtain high-quality microdata. To address this issue, we propose a differentially private medical microdata
release method featuring high utility.

Methods: We propose a method of anonymizing medical data under differential privacy. To improve data utility,
especially by preserving informative attribute values, the proposed method adopts three data perturbation
approaches: (1) generalization, (2) suppression, and (3) insertion. The proposed method produces an anonymized
dataset that is nearly optimal with regard to utility, while preserving privacy.

Results: The proposed method achieves lower information loss than existing methods. Based on a real-world case
study, we prove that the results of data analyses using the original dataset and those obtained using a dataset
anonymized via the proposed method are considerably similar.

Conclusions: We propose a novel differentially private anonymization method that preserves informative values for
the release of medical data. Through experiments, we show that the utility of medical data that has been anonymized
via the proposed method is significantly better than that of existing methods.
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Background
Introduction
In the last few decades, significant volumes of medical
data have been collected and stored; consequently, there
have been developments in the ability to process these
data. Analytics on such stored data can help realize effi-
cient healthcare services. For instance, data mining tech-
niques applied to medical and social media data enable
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disease monitoring as well as health-based trend analy-
ses. Furthermore, analyzing data of varying natures can
help acquire new knowledge and intelligence, explore new
hypotheses, and identify hidden patterns [1, 2].
Although possessing medical data benefits the data

holders, it is occasionally necessary to release these data.
For example, if data holders are not experts in conduct-
ing data analyses, they should outsource such analyses
to a third-party. However, privacy concerns must take
precedence during such a release of data, because the
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data might include sensitive information, such as the dis-
ease statuses of individuals. Several privacy models have
been proposed to protect the privacy of individuals. These
models can be broadly categorized into two types: (1) k-
anonymity and its extensions [3–6] and (2) differential
privacy [7].
The concept of k-anonymity was introduced by

Sweeney and Samarati [3]. In this model, each record of an
individual contained in a released dataset cannot be dis-
tinguished from the records of at least k-1 other individ-
uals. k-anonymity can reduce the risk of privacy breaches
under certain assumptions; however, various studies have
indicated the vulnerability of k-anonymity and proposed
stronger privacy models such as l-diversity, t-closeness,
and p-sensitive [4–6]. These privacy models are similar to
k-anonymity as they guarantee privacy through syntactic
conditions; thus, they are termed syntactic privacymodels.
Although syntactic privacy models can effectively pro-
tect privacy under certain conditions, they are inherently
vulnerable to various attacks [8].
In contrast to syntactic privacy, differential privacy (also

known as semantic privacy) provides a more rigorous
guarantee of privacy, regardless of the background knowl-
edge of adversaries. Dwork et al. introduced the concept of
ε-differential privacy [7], which provides amathematically
provable guarantee of protecting the privacy of individu-
als. The goal of differential privacy is that the output of a
query should not be considerably influenced when a sin-
gle record is added or removed. Differential privacy has
emerged as the de-facto standard for privacy-preserving
data analyses.
Differential privacy typically targets privacy-preserving

data mining, which responds to query processing of the
data rather than the publishing of microdata. Although
some methods for publishing differentially private data
based on non-interactive settings have been proposed,
these methods focus on aggregated results such as his-
tograms or contingency tables [9, 10]. However, if the
domain of informative attributes used for the analysis
is large, such as the disease attributes in medical data,
it is difficult to create a contingency table. In several
real-world data publishing scenarios, releasing microdata
is even more suitable due to the flexibility it yields to
data analysts. Consequently, in this paper, we propose
a method called IPA (Informative attribute Preserving
Anonymization) for publishing medical microdata under
differential privacy. This study focuses on the method
to perturb a raw dataset to provide differentially private
results on a record-by-record basis, while improving data
utility by preserving informative attributes.

Motivation
The most commonly used method to achieve differen-
tial privacy is the addition of noise to the results. In a

Table 1 Original table

Age Gender Disease

10 M Anemia

14 F Gastritis

19 F Pneumonia

12 F Anemia

15 M Pneumonia

previously reported approach, noise was added to a con-
tingency table of the raw dataset under non-interactive
settings [9]. This implies that noise is added to every pos-
sible combination of the domain values for all attributes,
irrespective of the existence of a record that corresponds
to each combination in the raw dataset. For instance, sup-
pose that we prepare a differentially private contingency
table for the raw medical dataset listed in Table 1. The
records are aggregated using all attributes, i.e., Age, Gen-
der and Disease, to create a contingency table, which is
presented as Table 2. Thereafter, noisy counts are added
to every possible combination of the domain values for
each attribute to achieve differential privacy, as shown in
Table 3. If the dataset features many dimensions and/or
the dimensions have large domains, a large amount of
noise should be added. This leads to extreme distortion in
the data.
To reduce the information loss caused by noise,

generalization-based approaches have been proposed
[10]. These approaches generalize original data by con-
verting raw domain values with more general but seman-
tically consistent values; for example, a specific Age value
of 13 can be generalized into the interval [10-19]. Table 4
presents an example of a generalized contingency table.
All the records have been generalized into indistinguish-
able groups, which are called equivalent classes, such as
<[10-19], ∗, and Anemia>. Due to this generalization,
the number of combinations is reduced; consequently, the
total number of noisy counts is decreased.
It should be noted that generalization also distorts data,

although the amount of distortion is less than that caused
by noise. In particular, when informative attributes are
generalized, the quality of data is affected considerably.
Previous methods limit the informative attributes used for

Table 2 Contingency table created using Table 1

Age Gender Disease Count

10 M Anemia 1

12 F Anemia 1

14 F Gastritis 1

15 M Pneumonia 1

19 F Pneumonia 1
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Table 3 Noisy version of contingency table

Age Gender Disease Noisy count

10 M Anemia 2

10 M Gastritis 0

10 M Pneumonia 1

10 F Anemia 0

... ... ... ...

19 F Gastritis 1

19 F Pneumonia 1

analyses to Class attributes (i.e., True or False) and do
not generalize informative attributes. Therefore, it is dif-
ficult to use these methods for publishing medical data,
because such data typically involve informative attributes
with large domains, such as those of diseases and medica-
tions. In this study, we neither generalize the informative
attributes nor do we create contingency tables; instead,
we publish anonymized microdata with raw informative
values.

Contributions
Although several methods for releasing anonymized data
have been proposed, a majority of these methods are
based on syntactic privacy models [11, 12]. As mentioned
above, stronger guarantees of privacy through differen-
tial privacy are required to protect the privacy of an
individual. Furthermore, some of the previous works on
publishing differentially private data are only relevant for
classification analyses [13, 14]. In this paper, we propose a
data anonymization method based on the differential pri-
vacy theory. To the best of our knowledge, this is the first
work to propose a differentially privatemicrodata publish-
ing method for informative attributes with large domains.
We evaluate the performance of the proposed method
in terms of data utility and accuracy, through real-world
analyses. The contributions of this study are as follows:

- We design a data anonymization method in which
informative attributes remain unperturbed, while still
complying with differential privacy. Regardless of the
type and domain of the attribute, the raw informative
values are preserved.

- We devise an algorithm that identifies useful
anonymized datasets. This algorithm provides

Table 4 Generalized noisy version of contingency table

Age Gender Disease Noisy count

[ 10 − 19] * Anemia 3

[ 10 − 19] * Gastritis 1

[ 10 − 19] * Pneumonia 1

differentially private and high-utility anonymized
datasets.

- We conduct extensive experiments and compare the
proposed method with related existing methods. The
experimental results prove that the proposed
algorithm significantly improves data utility and also
provides a rigorous privacy guarantee.

Preliminaries
Differential privacy is a rigorous privacy model that does
not involve any assumptions regarding the background
knowledge of adversaries. It guarantees that almost no dif-
ference will be observed in the output of any query when
a single record is added to or removed from the database.
Formally, differential privacy is defined as follows:
Definition 1 (ε-differential privacy). Assume a mech-
anism A that randomizes query outputs and any pair
of neighboring databases D and D′. Then, A satisfies
ε-differential privacy if and only if:

Pr [A (D) = S] ≤ exp (ε) × Pr
[
A

(
D′) = S

]

where S ∈ Range(A). (1)

�
We assume that D and D′ are neighboring databases

if they differ in exactly one record. In particular, we can
obtain D′ from D by adding or removing an arbitrary
record. If Eq. 1 is satisfied, there is a high probability that
D andD′ produce the same query results. Therefore, even
an adversary withmaximal background knowledge cannot
infer a particular record.
Definition 2 (Sensitivity). For allD andD′, the sensitiv-
ity of the function f is defined as

�f = max
D,D′

∣
∣
∣
∣f (D) − f

(
D′)∣∣∣∣ . (2)

�
Sensitivity is the maximal change inflicted on the

output, when adding or removing an arbitrary record.
Assume that the function f answers count queries over a
datasetD. Then, for any neighboring datasetD′, the result
from f would differ by at most 1; therefore, the sensitivity
of f would be 1.
To satisfy differential privacy, two mechanisms have

been proposed: the Laplace mechanism and the expo-
nential mechanism [7, 15]. The Laplace mechanism adds
noise to the output of the function; this noise is sampled
from a Laplace distribution. The noise is decided based on
the privacy parameter ε and the sensitivity of the function
�f.
Theorem 1 (Laplace mechanism). Let f(D) denote an
output from the database D. The Laplace mechanism sat-
isfies ε-differential privacy if the random noise sampled
from the Laplace distribution with mean μ=0 and scale
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Fig. 1 Taxonomy tree of the Age attribute

b=�f /ε is added to f(D). �

The exponential mechanism is used with maximum
utility when the output of the function is an object and
not a real value. The aim of this exponential mechanism
is to choose the output with the highest score. It assigns
scores to possible outputs using a score function. There-
after, the mechanism randomly selects an output from the
possible result set. The likelihood of selection increases
exponentially for the outputs with higher scores.

Theorem 2 (Exponential mechanism). LetR be the pos-
sible results of the function f. For the score function S :
D × R → R, a mechanism that outputs r ∈ R with a
probability that is proportional to exp

(
εS(D,r)
2�S

)
satisfies

ε-differential privacy, where �S is the sensitivity of S . �

Differential privacy involves two composition prop-
erties: sequential composition and parallel composition
[16]. Sequential composition is applicable to cases
wherein a sequence of computations is performed on a
single dataset, whereas parallel composition is applicable
to a sequence of computations on disjoint datasets.

Theorem 3 (Sequential composition). Let each function
fi provide εi-differential privacy. Thus, sequentially run-
ning all functions fi over the dataset D provides

(∑
i εi

)
-

differential privacy. �

Theorem 4 (Parallel composition). Let each function fi
provide εi-differential privacy. Thus, applying each func-
tion over a set of disjoint datasets Di provides maxi(εi)-
differential privacy. �

Generalization refers to replacing original values with
less specific values. Generalized values are specified
by a predefined generalization hierarchy. Figures 1, 2,

and 3 present taxonomy trees representing the gen-
eralization hierarchies of the attributes Age, Sex, and
Zip, respectively. Suppression involves substituting a spe-
cific value from the original dataset with a special
symbol such as “∗,” which denotes “anything” in the
anonymized dataset. In Figures 1, 2, and 3, ∗ is the
suppressed value.
When anonymizing datasets, we employ the full-

domain generalization algorithm [17], which maps the
entire domain of an attribute in the initial microdata
to a more general domain, based on its domain gener-
alization hierarchy (also known as its taxonomy tree).
Taxonomy trees of the attributes are combined to form a
multi-attribute generalization hierarchical lattice. Figure 4
depicts an example of such a generalization lattice. Each
combination, such as <A1, S0, Z0>, is called a node. The
notation <A1, S0, Z0> indicates that all values in the Age
attribute have been generalized using A1 in the taxon-
omy tree ({[0 − 9] , [10 − 19] , ..., [90 − 99]}) and that the
Sex and Zipcode attributes have been generalized using
S0 and Z0, respectively, (i.e., they are not generalized).
The algorithm generalizes the dataset andmeasures infor-
mation loss in the generalized dataset for each node of
the lattice. The node with the lowest information loss
is returned.

Fig. 2 Taxonomy tree of the Sex attribute
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Fig. 3 Taxonomy tree of the Zip attribute

Methods
Problem settings
Consider that a data holder possesses a dataset D that
contains multi-dimensional records, and each record
belongs to a unique individual. This data holder wants
to release an ε-differential private version of D with high
data utility. It should be noted that all personal identifi-
able information, such as SSNs (Social Security Numbers),
has already been removed.D is defined as a set of records,
and each record consists of a set of dimension attributes
Adim=

{
A1, ...,Aq

}
belonging to individuals, such as their

age and gender. The Adim attribute values of an individual
might be acquired via publicly available data sources such
as those on the world wide web and social networking ser-
vices; thus, adversaries could easily obtain these values.
Additionally, D contains informative large-domain cate-
gorical attributes Ainf that are used for data analyses. The

Ainf attribute values are private information, and adver-
saries cannot obtain these values. Privacy breaches occur
if adversaries gain knowledge regarding the Ainf values.
We assume that each attribute Ai ∈ Adim has a predefined
taxonomy tree.

Basic concepts
In this section, we introduce the overall process of the pro-
posed anonymization method (IPA). IPA consists of three
steps: (1) generating candidates for data perturbation, (2)
utility scoring of all candidates, and (3) choosing the result
based on the scores. Figure 5 presents the process of IPA.
Data perturbation is essential for anonymization, and

several data perturbation techniques are available. We
adopt three data perturbation methods: generalization,
suppression, and insertion; these methods were chosen for
specific reasons. Noise insertion is a typical method of

Fig. 4 Generalization hierarchical lattice
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Fig. 5 Process of IPA

achieving differential privacy; however, the insertion-only
approach involves substantial information loss due to the
amount of noise. In terms of differential privacy, gener-
alization does not help satisfy the privacy requirement.
However, it can be used to improve utility by reduc-
ing noise and the domain size. Suppression is applied to
equivalent classes containing few records. It helps reduce
the number of counterfeit records; its details are described
in subsequent sections. As IPA employs full-domain gen-
eralization, it generates candidates of perturbed datasets
for all nodes in the generalization hierarchical lattice. Sub-
sequently, the score of each dataset is measured based on
the information loss and a result dataset is then selected.
It should be noted that deterministic algorithms cannot
satisfy differential privacy. Therefore, we employed the
exponential mechanism to choose the node that will be
the result dataset. In IPA, we allocate the privacy bud-
get over four different parts, i.e., suppression threshold,
number of counterfeit records, determining the informa-
tive attribute value of a counterfeit record, and choosing
an anonymized dataset, which are proved by Theorems 5,
6, 7, and 8, respectively.

Table 5 Original table

Age Gender Zipcode Disease

17 M 28912 Gastritis

16 M 23512 Pneumonia

13 M 24231 Pneumonia

24 F 31891 Anemia

29 F 34225 Anemia

25 F 37756 Diabetes

67 M 80061 Stroke

Step 1: data perturbation
In IPA, all dimension attributes Adim=

{
A1, ...,Aq

}
are

generalized using a predefined taxonomy tree (line 2
in Algorithm 1). The values of informative attributes
(also known as measure attributes) remain unchanged
during the generalization phase. The domain of gen-
eralized values is determined using the taxonomy tree.
For example, Table 5 is an original table with Adim
=

{
Age, Gender, Zipcode

}
and Ainf = {Disease}. Table 6

presents a generalized version of Table 5. As a result of
this generalization, the values of attributes A1, ...,Aq in
the same equivalent class become indistinguishable. This
implies that the unit of the disjoint dataset has changed
from a single record to an equivalent class. According to
the parallel composition theorem, adding Laplace noise
to each disjoint dataset can achieve differential privacy.
Therefore, noise decreases as the number of equivalent
classes decreases. When determining the generalization
boundary, the privacy budget is not allocated. The gen-
eralization boundary is typically determined using the
predefined taxonomy tree and not through a particular
value or by distributing the dataset. Thus, one record

Table 6 Generalized table

Age Gender Zipcode Disease

[ 10 − 19] M [ 20000 − 29999] Gastritis

[ 10 − 19] M [ 20000 − 29999] Pneumonia

[ 10 − 19] M [ 20000 − 29999] Pneumonia

[ 20 − 29] F [ 30000 − 39999] Anemia

[ 20 − 29] F [ 30000 − 39999] Anemia

[ 20 − 29] F [ 30000 − 39999] Diabetes

[ 60 − 69] M [ 80000 − 89999] Stroke
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does not affect the generalization boundaries of other
records. Therefore, privacy breaches do not occur when
determining the generalization boundary.

Algorithm 1: Data Perturbation Algorithm
Input : Original data OriginalData, Taxonomy trees

Taxonomy, Privacy parameter ε, and Suppression
parameter t

Output: Anonymized data AnonymizedData
1 Inf ← Initialize each informative value in OriginalData;
2 /∗ Generate candidates based on taxonomy tree∗/

3 T̂ = Generalization(OriginalData,Taxonomy);
4 E ← list of equivalent classes in T̂ ;
5 /∗ Suppression ∗/

6 for i = 1 to |k| do
7 if |Ei| <= t + Lap

(
(t − 1)/εsuppression

)
then

8 T̂∗.add(Suppression(Ei));
9 else

10 T̂∗.add(Ei);
11 end
12 end
13 /∗ Record insertion ∗/

14 E ← list of equivalent classes in T̂∗;
15 for i = 1 to |l| do
16 n ← number of records in Ei;
17 n′ ← n + Lap

(
1/εinsertion

)
;

18 for j = 1 to n′ do
19 Determine an informative value v ∈ Inf with

probability

⎛

⎝
exp

(
εvalue
2�S S(Ei ,v)

)

∑
v∈Inf exp

(
εvalue
2�S S(Ei ,v)

)

⎞

⎠;

20 Ei.add(v);
21 end
22 AnonymizedData.add(Ei);
23 end
24 return AnonymizedData

In full-domain generalization, a given value is mapped
to a pre-determined generalized value (or interval) for all
records. Accordingly, an adversary can realize that a spe-
cific record is not present in the original dataset if its
corresponding equivalent class does not exist in the result
dataset. To prevent this type of privacy breach, we adopt
the suppression technique (lines 6-12 in Algorithm 1).
Suppression implies that all dimension attribute values of
a record are substituted with “∗,” which can be mapped
to all the values in the domain. Because of the suppressed
equivalent classes, adversaries will be unable to identify
the equivalent class of the suppressed record. For example,
in Tables 5 and 7, <[60-69], M, [80000-89999], Stroke>
is suppressed to < ∗, ∗, ∗, Stroke>. As the suppressed
record is unknown, adversaries cannot identify the sup-
pressed equivalent class from all other equivalent classes,
except for the equivalent classes in the table. Further-
more, utility can also be improved via suppression. This
is because suppression is performed on the generalized

Table 7 Suppressed table

Age Gender Zipcode Disease

[ 10 − 19] M [ 20000 − 29999] Gastritis

[ 10 − 19] M [ 20000 − 29999] Pneumonia

[ 10 − 19] M [ 20000 − 29999] Pneumonia

[ 20 − 29] F [ 30000 − 39999] Anemia

[ 20 − 29] F [ 30000 − 39999] Anemia

[ 20 − 29] F [ 30000 − 39999] Diabetes

* * * Stroke

dataset and only a small amount of noise is added, as com-
pared to the addition of noise for every possible equivalent
class. We use the hyper-parameter t as the threshold for
suppression. If the number of records in an equivalent
class is less than or equal to t, the equivalent class is sup-
pressed. For example, if we set t = 2, as the equivalent
class corresponding to<[60-69], M, [80000-89999]> con-
tains only one record, it is suppressed. All attribute values
except the measure attributes are represented as “∗.” How-
ever, it should be noted that using a fixed threshold value
can result in a privacy breach. Assume that there are
exactly t records in an equivalent class. Thus, the inclu-
sion or exclusion of one record determines whether or
not the equivalent class is suppressed. Accordingly, IPA
uses the Laplace mechanism to add noise to the thresh-
old value. Let the threshold be t and the Laplace noise
be T ∼ Lap

(
(t − 1)/εsuppression

)
. Then, the noisy thresh-

old is t + Lap
(
(t − 1)/εsuppression

)
(line 7), and sensitivity

of the suppression threshold is (t − 1). More formally,
suppression is defined as follows:
Definition 3 (Suppression). Let OT be the original
table, GT be the generalized table, t be the suppression
threshold, εsuppression be the privacy budget, and Ei(i =
1, ..., k) be an equivalent class in GT. If |Ei| ≤ t +
Lap

(
(t − 1)/εsuppression

)
, Ei is suppressed. �

Theorem 5 (Suppression threshold based on Definition 3
achieves

(
εsuppression

)
-differential privacy.).

Table 8 Inserted table

Age Gender Zipcode Disease

[ 10 − 19] M [ 20000 − 29999] Gastritis

[ 10 − 19] M [ 20000 − 29999] Pneumonia

[ 10 − 19] M [ 20000 − 29999] Pneumonia

[ 10 − 19] M [ 20000 − 29999] Gastritis

[ 20 − 29] F [ 30000 − 39999] Anemia

[ 20 − 29] F [ 30000 − 39999] Anemia

[ 20 − 29] F [ 30000 − 39999] Diabetes

[ 20 − 29] F [ 30000 − 39999] Anemia

* * * Stroke
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Fig. 6 Comparison of the proposed and previous methods in terms of information loss

Proof Let (t − 1) be the sensitivity of a suppression
threshold. Thus, the privacy budget is εsuppression, and a
differentially private version of the suppression thresh-
old is t + Lap

(
(t − 1)/εsuppression

)
. Based on Theorem 1,

adding noise generated using the Laplace distribution
Lap

(
(t − 1)/εsuppression

)
to the suppression threshold

achieves
(
εsuppression

)
-differential privacy.

To comply with differential privacy, counterfeit records
are inserted into equivalent classes as noise (lines 14-23).
Two aspects need to be considered when inserting these
counterfeit records. First, the number of counterfeit
records to be inserted into each equivalent class needs to
be determined. We use the Laplace mechanism to deter-
mine the number of counterfeit records to be inserted.
Let the number of records in an equivalent class be n and
the Laplace noise be C ∼ Lap

(
1/εinsertion

)
. Thus, the size

of an equivalent class, excluding suppressed or empty

records, is n + Lap
(
1/εinsertion

)
(lines 16-17).

Theorem 6 (Inserting n + Lap(1/εinsertion) counterfeit
records achieves

(
εinsertion

)
-differential privacy.).

Proof Let the sensitivity of a count query be 1, privacy
budget be εinsertion, and number of counterfeit records be
n + Lap

(
1/εinsertion

)
. All equivalent classes have exclusive

boundaries determined using Theorems 1 and 4. Thus,
adding independently generated counterfeit records from
the Laplace distribution Lap

(
1/εinsertion

)
to each equiva-

lent class achieves
(
εinsertion

)
-differential privacy.

Thereafter, we need to determine the informative
attribute values of newly inserted records. The smaller the
distortion in the informative value ratio of an equivalent
class, the better the utility. Therefore, in IPA, informa-
tive attribute values are determined using the exponential
mechanism with the ratio of number of informative values

Fig. 7 Information loss with varying ε
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Fig. 8 Information loss of candidate nodes

in an equivalent class. Let Counti(v) be the number of
records that have the informative value v in Ei, where Ei is
an equivalent class, Inf be a domain of informative values
in OriginalData, and Infi be a domain of informative val-
ues in Ei. |Ei| denotes the number of records in Ei,

∣∣Inf
∣∣

denotes the size of Inf, and
∣
∣Infi

∣
∣ denotes the size of Infi.

The score function is calculated as follows:

S(Ei, v) =
{ Counti(v)|Ei|+1 if v exists in Ei

1
(|Ei|+1)∗(|Inf |−|Infi|) otherwise (3)

Based on the scores of all candidates for the informative
values, the exponential mechanism selects a candidate v

with the following probability (line 19):
exp

(
εvalue

2�S S(Ei, v)
)

∑
v∈Inf exp

(
εvalue
2�S S(Ei, v)

) (4)

An example is presented in Table 8.
Two records have been inserted: <[ 10 −
19] , M, [ 20000 − 29999] , Gastritis > (Row 4) and
<[ 20 − 29] , F , [ 30000 − 39999] , Anemia > (Row 8).

Theorem 7 (Determining informative attribute val-
ues for inserted records based on Eq. 4 achieves(
εvalue

)
-differential privacy.).
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Fig. 9 Results of the analysis queries

Proof Let Inf be the set of candidate values from which
an informative attribute value is to be chosen. The IPA
method selects a value v ∈ Inf with the probability given
in Eq. 4, where S(Ei, Inf ) is a score function and �S is
the sensitivity of function S. Based on Theorem 2, choos-
ing an informative value with a probability proportional to
exp

(
εvalue

2�S

)
satisfies

(
εvalue

)
-differential privacy.

Step 2: scoring all candidates
We employ the information loss caused by data perturba-
tion as a score function. In IPA, there are three factors that
cause information loss.

The first factor is generalization. To measure the infor-
mation loss caused by generalization, we introduce the
concept of the NCP (Normalized Certainty Penalty) [18].
Let v be a value, |v| be the number of leaf nodes covered
by v corresponding to the generalization hierarchy, and
|L| be the total number of leaf nodes in the generalization
hierarchy. Then, the NCP of a value is defined as follows:

NCPvalue(v) =
{
0, |v| = 1(v is leaf )
|v|
|L| , otherwise

(5)
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Fig. 10 Results of the analysis queries

NCP(D̂) =
∑

∀r∈D̂
∑

∀Adim∈D̂ NCPvalue(v)

|D̂| (6)

The value of NCP lies between 0 (i.e., minimum gener-
alization) and 1 (i.e., maximum generalization). Therefore,
the sensitivity of �NCP

(
D̂

)
is 1.

The second factor involves the distortion caused by
inserted records. To measure this distortion, we employ
the EMD (Earth Movers’s Distance) measure, which eval-
uates the dissimilarity between two multi-dimensional
distributions [5]. For two distributions of the original and

anonymized datasets, i.e., PD = (p1, p2, ..., pm) and QD̂ =
(q1, q2, ..., qm), respectively, the EMD is defined as follows:

EMD
[
PD , QD̂

] = 1
2

m∑

k=1

∣∣pk − qk
∣∣ (7)

The EMD of two completely different equivalent classes
is at most 1. Thus, the sensitivity of the EMD
�EMD

[
PD , QD̂

]
is 1.

Finally, the third factor in loss is the proportion of coun-
terfeit records in equivalent classes, which can be defined
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as follows:

Rateclass(Ei) =
∣
∣Counterfeiti

∣
∣

|Ei| (8)

where Counterfeiti| denotes the number of counterfeit
records inserted into Ei, and the sensitivity �Rateclass(Ei)
is 1. Rate of the anonymized dataset D̂ is defined as
follows:

Rate(D̂) =
∑

∀Ei∈D̂ Rateclass(Ei)
The number of equivalent classes

(9)

We use the sum of these three metrics to determine the
total information loss.

IL(D̂) = NCP
(
D̂

)
+ EMD

[
PD , QD̂

] + Rate
(
D̂

)

(10)

As sensitivity of each metric is 1, the sensitivity of infor-
mation loss �IL

(
D̂

)
is 3.

Step 3: choosing the result
In this section, we discuss the method of choosing a result
from the set of candidates. Furthermore, we prove that
IPA is differentially private.
We first measure the score of all candidates and then

choose a result. To assign a high score to the dataset with
low information loss, the score function u is calculated as
follows:

u
(
D̂

)
=

(
3 − IL

(
D̂

))
(11)

Let Candidatesi be the set of candidate anonymized
datasets; thus, the result is selected using probability:

exp
(

εcandidates

2�u u
(
D̂

))

∑
result∈Candidatesi exp

(
εcandidates

2�u u
(
D̂

)) (12)

Algorithm 2 illustrates the algorithm for choosing a
result node. The algorithm begins with the creation of
the hierarchical generalization lattice (line 1). Thereafter,
the algorithm perturbs the original dataset for each node
and calculates information loss (lines 2-5). After perturb-
ing the dataset, a result is determined (line 7). The source
code for Algorithms 1 and 2 is publicly available at GitHub
[19].
Theorem 8 (Choosing an anonymized dataset according
to Algorithm 2 achieves

(
εcandidates

)
-differential privacy.).

Proof Let Candidatesi be the set of candidate datasets
from which a single anonymized dataset is chosen. IPA
selects the dataset result ∈ Candidatesi using the proba-
bility in Eq. 12, where u

(
D̂

)
is a score function and �u

is the sensitivity of the function u. Based on Theorem 2,

choosing an informative value with a probability propor-
tional to exp

(
εcandidates

2�u

)
achieves

(
εcandidates

)
-differential

privacy.

Algorithm 2: Algorithm for Choosing a Result Node
Input : Original data OriginalData, Generalization

lattice Lattice, Privacy parameter ε, and
Suppression parameter t

Output: Anonymized data result
1 Candidatesi ←
list of anonymized results and information loss

2 for each node oi ∈ Lattice do
3 temp =

DataPerturbation(OriginalData, Latticeoi , ε, t); //
Algorithm 1

4 Candidates.add(temp,u(temp));
5 end
6 Determine a result ∈ Candidatesi with probability⎛

⎝
exp

(
εcandidates

2�u u
(
D̂

))

∑
result∈Candidatesi exp

(
εcandidates

2�u u
(
D̂

))

⎞

⎠;

7 return result

Thus, we have proven that each part of IPA guaran-
tees differential privacy. These parts run on the same
dataset; therefore, according to Theorem 3, IPA achieves(
εsuppression + εinsertion + εvalue + εcandidates

)
-differential

privacy.
Theorem 9 (IPA achieves(
εsuppression + εinsertion + εvalue + εcandidates

)
-differential

privacy.).
Proof IPA consists of four parts: (1) determining

the suppression threshold, (2) adding noisy records,
(3) choosing an informative value, and (4) choosing
a node. We showed that each operation is differen-
tially private on its own. As these operations run on
the same dataset, based on Theorem 3, IPA achieves(
εsuppression + εinsertion + εvalue + εcandidates

)
-differential

privacy.

Results and discussion
In this section, we present the experimental evalua-
tion of IPA with respect to the utility of the output
data and real-world analyses. For this evaluation, we
use the NPS (National Patients Sample) dataset from
HIRA (Health Insurance Review and Assessment which
is a service in Korea) [20]. The NPS dataset consists
of EHRs(Electronic Health Records) sampled from 3%
sampled Korean people, in 2011. We analyze 1,361,000
records with 6 attributes: Age, Sex, Length of stay in hospi-
tal, Location Surgery status, and Disease. We consider the
disease attribute as the informative attribute.
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Table 9 Result of query Q1

Age group Original The proposed method k-anonymization

5 1.0 1 6.3

10 2.0 1 6.3

15 1.0 4 6.3

20 9.0 4 6.3

25 12.0 12 6.3

30 13.0 12 6.3

35 27.0 34.5 186.2

40 44.0 34.5 186.2

45 104.0 150.5 186.2

50 205.0 150.5 186.2

55 341.0 367.0 186.2

60 396.0 367.0 186.2

65 472.0 452.5 329.8

70 442.0 452.5 329.8

75 430.0 386.5 329.8

80 360.0 386.5 329.8

85 197.0 141.5 329.8

90 78.0 141.5 329.8

Data utility
We measure the amount of distortion in the anonymized
dataset in comparison with its raw version. We compare
the proposed method with k-anonymization [17] and dif-
ferentially private histogram methods [10]. In medical

Table 10 Result of query Q2

Age group Original The proposed method k-anonymization

5 0.0 1.0 4.5

10 2.0 1.0 4.5

15 7.0 8.0 4.5

20 8.0 8.0 4.5

25 4.0 4.5 4.5

30 6.0 4.5 4.5

35 10.0 17.5 101.7

40 26.0 17.5 101.7

45 63.0 79.5 101.7

50 102.0 79.5 101.7

55 178.0 201.0 101.7

60 231.0 201.0 101.7

65 279.0 298.0 379.2

70 326.0 298.0 379.2

75 457.0 489.5 379.2

80 525.0 489.5 379.2

85 445.0 363.5 379.2

90 243.0 363.5 379.2

Table 11 Result of query Q3

Age group Original The proposed method k-anonymization

10 1.0 2.2 8.9

20 1.4 1.4 8.9

30 2.1 5.7 8.9

40 2.7 5.5 14.5

50 3.4 4.2 14.5

60 4.0 4.1 14.5

70 3.6 4.8 15.7

80 4.3 4.5 15.7

90 5.8 6.5 15.7

privacy settings, epsilon is typically set as 0.1-2 [14, 21,
22]. According to previous studies, 10-anonymity can be
achieved when epsilon is equal to 1 [23]. Therefore, we set
the parameter values as ε = 1 and k = 10. Figure 6 illus-
trates the information loss of anonymized datasets, where
ε is 1 and εsuppression, εinsertion, εvalue, and εcandidates are 0.1,
0.3, 0.3, and 0.3, respectively. The information loss of IPA,
k-anonymization, and the histogram are 0.28, 0.43, and
0.69, respectively, as shown in the figure. For each exper-
iment, we executed 10 runs and averaged the results of
all the runs. IPA achieves lower information loss than the
other methods, while guaranteeing more rigorous privacy.
Figure 7 illustrates the information loss while varying

the privacy budget ε. As expected, the information loss
tends to decrease when ε increases. Figures 8, 9, and 10
provide the details. The proportions of NCP, EMD, and
Rate in total information loss are represented by blue, red,
and yellow lines, respectively. The x-axis denotes the node
level in the hierarchical generalization lattice, and the area
shaded with gray blocks represents the range from which
experimental results are selected. For example, in Fig. 8a,
the average information loss is 0.28, and the range is 0.16
to 0.38. As ε decreases, the proportions of EMD and
Rate become larger than that of NCP, the gray block area
increases, and the overall information loss increases. The

Table 12 Result of query Q4

Age group Original The proposed method k-anonymization

10 3.0 1.0 15.0

20 3.0 1.4 15.0

30 7.7 2.8 15.0

40 1.7 2.4 11.7

50 2.7 3.6 11.7

60 3.5 3.2 11.7

70 3.5 4.7 21.1

80 5.6 6.1 21.1

90 8.0 8.5 21.1
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range in Fig. 8d is narrower than that in Fig. 8c because
lower level nodes are not selected by the score function as
the overall information loss increases.

Real-world analysis
We present a real-world analysis to illustrate the useful-
ness of IPA. We compare the results of IPA with those of
the original dataset and of k-anonymity, using aggregation
queries. The queries used for data analysis are as follows:

• Q1: SELECT FLOOR(Age/5)*5 AS AgeGroup,
COUNT(*) FROM NPS dataset WHERE Sex = ‘M’
and Surgery status = ‘N’ and Disease = ‘stroke’
GROUP BY FLOOR(Age/5)*5

• Q2: SELECT FLOOR(Age/5)*5 AS AgeGroup,
COUNT(*) FROM NPS dataset WHERE Sex = ‘F’
and Surgery status = ‘N’ and Disease = ‘stroke’
GROUP BY FLOOR(Age/5)*5

• Q3: SELECT FLOOR(Age/5)*5 AS AgeGroup,
AVG(Length of stay in hospital) AS Average length
of stay in hospital FROM NPS dataset WHERE
Sex = ‘M’ and Surgery status = ‘N’ and Disease =
‘stroke’ GROUP BY FLOOR(Age/5)*5

• Q4: SELECT FLOOR(Age/5)*5 AS AgeGroup,
AVG(Length of stay in hospital) AS Average length
of stay in hospital FROM NPS dataset WHERE
Sex = ‘F’ and Surgery status = ‘N’ and Disease =
‘stroke’ GROUP BY FLOOR(Age/5)*5

Q1 and Q2 represent the number of stroke patients for
each age group (0-4, 5-9,...,86-90).Q3 andQ4 represent the
average duration of stay in a hospital.
Figures 9 and 10 and Tables 9, 10, 11, and 12 present

the results of the analysis queries. In Fig. 9, the x-axis
represents the age group (which corresponds to the first
projection column of Q1 and Q2) and the y-axis repre-
sents the number of stroke patients (which corresponds to
the second projection column of Q1 and Q2). In Fig. 10,
the x-axis represents the age group (which corresponds
to the first projection column of Q3 and Q4) and the y-
axis represents the average duration of stay in a hospital
for stroke patients (which corresponds to the second pro-
jection column of Q3 and Q4). In each figure and table,
the results of IPA are more similar to those of the original
data, compared to the results of k-anonymity.

Conclusions
Publishing anonymized microdata bestows additional
flexibility to data recipients, as compared to providing
sampled data or answers to specific queries. Considering
this, we proposed a differentially private medical micro-
data releasing method that preserves measure attribute
values; this proposed method is called IPA. To achieve
this notion of privacy, we adopt differential privacy, which

does not make any assumptions regarding the background
knowledge of adversaries. To improve utility while pre-
serving privacy, IPA employs three data perturbation
methods: generalization, insertion, and suppression. IPA
generalizes attribute values, except for measure attributes,
to reduce the number of counterfeit records. Thereafter,
it adds noisy records to achieve differential privacy; it
also suppresses equivalent classes to avoid the addition of
counterfeit records to empty equivalent classes. Through
the results of our experiments, we demonstrated that
IPA can reduce noise with an appropriate level of gen-
eralization. In addition, an experimental evaluation of
a real-world data analysis proved that IPA can reduce
information loss and also improve the utility of medical
microdata published via differential private methods.
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