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Abstract

Background: Transient ischemic attack (TIA) is a brief episode of neurological dysfunction resulting from cerebral
ischemia not associated with permanent cerebral infarction. TIA is associated with high diagnostic errors because of
the subjective nature of findings and the lack of clinical and imaging biomarkers. The goal of this study was to
design and evaluate a novel multinomial classification model, based on a combination of feature selection
mechanisms coupled with logistic regression, to predict the likelihood of TIA, TIA mimics, and minor stroke.

Methods: We conducted our modeling on consecutive patients who were evaluated in our health system with an
initial diagnosis of TIA in a 9-month period. We established the final diagnoses after the clinical evaluation by
independent verification from two stroke neurologists. We used Recursive Feature Elimination (RFE) and Least
Absolute Shrinkage and Selection Operator (LASSO) for prediction modeling.

Results: The RFE-based classifier correctly predicts 78% of the overall observations. In particular, the classifier
correctly identifies 68% of the cases labeled as “TIA mimic” and 83% of the “TIA” discharge diagnosis. The LASSO
classifier had an overall accuracy of 74%. Both the RFE and LASSO-based classifiers tied or outperformed the ABCD2
score and the Diagnosis of TIA (DOT) score. With respect to predicting TIA, the RFE-based classifier has 61.1%
accuracy, the LASSO-based classifier has 79.5% accuracy, whereas the DOT score applied to the dataset yields an
accuracy of 63.1%.

Conclusion: The results of this pilot study indicate that a multinomial classification model, based on a combination
of feature selection mechanisms coupled with logistic regression, can be used to effectively differentiate between
TIA, TIA mimics, and minor stroke.

Keywords: Diagnostic error, TIA, Transient ischemic attack, Stroke, Stroke mimic, Feature selection, Classification,
Machine learning, Prospective study, TIA clinic, Clinical decision support

Background
Transient ischemic attack (TIA) is defined as a brief epi-
sode of neurological dysfunction resulting from cerebral
ischemia not associated with permanent cerebral

infarction [1]. Diagnosis or suspicion of TIA has become
essential in stroke prevention due to the higher risk of
subsequent stroke among TIA patients [2]. However,
due to the lack of clinical biomarkers and subjective na-
ture of the findings in most patients, accurate diagnosis
of TIA is challenging [3–5]. While TIA underdiagnosis
can have significant consequences, studies have indi-
cated a high rate of TIA overdiagnosis [6, 7] which can
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be a burden for healthcare systems [8]. Researchers have
developed several clinical risk scores [9] for predicting
recurrence following a cerebral ischemic episode, includ-
ing the well-studied ABCD2 scoring system [10]. How-
ever, the reliability of these scoring system for
differentiating between a TIA and its mimics is ques-
tionable [11–13].
There is an increasing body of medical literature that re-

lies on advanced statistical tools for analysis, classification,
and prediction of health care-derived data. Examples of
such methodologies include both binomial and multi-
nomial logit models, coupled with multivariate models
among others. At the same time, there is also a growing
need to refine these models to better understand and pre-
dict the key contributing factors and their associations
with respect to the specific condition under investigation.
The goal of this study was to design and evaluate a novel

multinomial classification model, based on a combination
of feature selection mechanisms coupled with logistic re-
gression, to predict the likelihood of TIA, TIA mimics,
and minor stroke. Methods based on logistic regression
approaches have been employed by several of the current
scoring systems for TIA and stroke [14], to predict 30-day
recurrence in either stroke or TIA [15]. Other various
multivariate models have been successfully used to com-
pute, among other outcomes, reliable risk scores for pa-
tients with [16] and without [17] atrial fibrillation (AF)
admitted with acute ischemic stroke or TIA.

Methods
Patient population
We analyzed consecutive patients with TIA-like symp-
toms who presented to the emergency department in
one of our three tertiary stroke centers or our single
TIA clinic in central and northeast Pennsylvania during
a 9-month period. TIA-like symptoms were defined as
abrupt but transient (less than 24 h) a) hemisensory or
hemimotor symptoms affecting the face, arm and leg, b)
aphasia or dysarthria, c) visual defect, d) lack of aware-
ness, and e) vertigo or loss of balance or coordination.
Our system TIA guidelines mandate both the primary
care and ED providers to refer all suspected TIA pa-
tients, regardless of their risk profile, for urgent inpatient
or outpatient (same-day TIA clinic) evaluation. Patients
with low ABCD2 score are usually referred to our
same-day TIA clinic; however, patients with high risk
profile or patients who present over weekends are ad-
mitted to the hospital. All hospitalized patients with
an initial diagnosis of TIA were initially evaluated by
an emergency department (ED) provider, to exclude
other possible etiologies causing the symptoms
(hypoglycemia, infection, significant electrolyte abnor-
malities), and subsequently by a neurologist within 24
h. Each patient had at least one hospital discharge

follow-up visit with a board-certified neurologist or
vascular neurologist within 3 months. For this study,
we used the tissue based definition of TIA [1] that
excludes patients with permanent cerebral infarction.
Therefore, patients who did not have a brain MRI
were excluded from the study, to eliminate a perman-
ent cerebral infarction. Patients who did not have an
outpatient follow-up visit were also excluded from
this study. The Institutional Review Boards of Gei-
singer and Bucknell University approved this study;
written informed consent was waived.

Verification of diagnosis
In order to build the benchmark dataset, we validated
each patient’s final diagnosis. We manually reviewed
all patients’ baseline characteristics including demo-
graphics, vascular risk factors, clinical work-up, neu-
roimaging, as well as discharge diagnoses. We also
carefully reviewed patients’ initial symptoms, the se-
quence of the events, duration of symptoms, the na-
ture of symptoms (focal vs. non-focal), corresponding
vascular territory, the anatomy of symptoms, associ-
ated symptoms, and other possible differential diagno-
ses. The final diagnosis was classified as either TIA,
TIA mimics, or minor stroke. The TIA diagnosis cat-
egory includes all the patients who had the diagnosis
of TIA or probable TIA (where a cerebrovascular
diagnosis was the most likely, but other diagnoses
were considered as well). The minor stroke category
contains patients who had a positive neuroimaging
for acute stroke while their symptoms resolved within
24 h. Patients with TIA mimic had other diagnoses
that were mimicking cerebral ischemia and resolved
within 24 h (e.g., migraine headache, Todd’s paralysis,
etc.).
The final diagnosis was made independent of the

hospital discharge diagnosis. Among patients who had
a hospital discharge follow-up visit outside of our
stroke clinic, the final diagnosis was made by consen-
sus between our stroke research fellow and one of
our vascular neurologists, who reviewed the cases in-
dependently. For the remaining patients who were
seen in our stroke clinic by one of our vascular neu-
rologists, the final diagnosis was independently veri-
fied by our stroke research fellow based on all clinical
information. In either situation, when there was not a
consensus, a second vascular neurologist reviewed the
case and acted as a tiebreaker.

Predictive analytics model
Dataset preparation and sampling
We used 269 consecutive patients with a TIA initial
diagnosis to develop our model. In order to address
the relative imbalance among the classes, we
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performed data augmentation using the Synthetic Mi-
nority Over-sampling Technique (SMOTE) algorithm
[18]. SMOTE generates synthetic data points via con-
vex combinations of nearest-neighbors from each
class. These additional points are added to each
member class of the predictor in a controlled manner,
such that under-represented classes are over-sampled
and over-represented classes are under-sampled. In
the end, each category in the predictor class had a
combination of real and synthetic data points, with
the proportion of points in each category being con-
trolled exogenously. For our analysis, we chose to
sample up to 300 observations, broken down in a
100:150:50 split across the three classes of interest
so that the incidence of the phenotype with lower
prevalence is still low and does not distort the rela-
tive original proportions; thus the “TIA mimics”
class is under-sampled, whereas the “TIA” and
“minor stroke” classes are over-sampled. This final
data set was partitioned into a training set contain-
ing 70% of the data and a testing set comprising the
remaining 30% of the data. We also standardized all
continuous variables.

Feature selection
The second step of the analysis involved selecting an
appropriate set of features that are relevant for the
predictive procedure. The original data contains a mix
of 62 clinical and demographical features, and while
it is easy to include all of them in a predictive model,
it is quite likely that not all of them may have pre-
dictive power. The data mining literature is rich re-
garding feature selection methods and we ultimately
decided on implementing, for comparison purposes,
two different feature selection methods: Recursive
Feature Elimination (RFE) [19] and Least Absolute
Shrinkage and Selection Operator (LASSO) [20, 21].
RFE recursively “prunes” features deemed not to be
important for predicting the discharge diagnosis by
optimizing at each step the training cost function and
then assigning a rank to each feature that contributes
to the objective. The feature with the lowest rank is
eliminated and RFE runs again recursively on the
smaller set of features. If there is an improvement in
the objective function, a new feature is eliminated,
otherwise, the procedure terminates. The final set of
features is then passed to a multinomial logit
classifier.

Model development
Recall that in a multinomial logistic model with K total
features and where the predictor has J different categor-
ies, the probability of the i-th observation belonging to
category j, 1 < j < J, is given by:

Pr yi ¼ jjx; βð Þ ¼ e

XK
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where for each dependent categorical outcome yi (the
discharge diagnostic), xik is the k-th feature describing
observation i and βkj is the regression estimate for the k-
th feature associated with outcome j. The coefficients
are estimated using the maximum log-likelihood
method, that is, the function
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is maximized using all βkj as decision variables and with
ni denoting the proportion of items belonging to class i
from the dataset. In contrast, the LASSO works by add-
ing a penalty term to the log-likelihood function. The
penalty term is the L1-norm of the coefficients so that
during the minimization procedure there is a strong in-
centive to set the coefficients associated with the weak
predictors to zero, i.e., eliminate the corresponding fea-
ture from the model. The adjusted (penalized) objective
function thus becomes:

Lp βð Þ ¼ L βð Þ−λ
XK

k¼0

XJ−1

j¼1

βkj

���
���

where λ is a regularization parameter (the magnitude of
the penalty). Thus, in the LASSO model, feature selec-
tion happens simultaneously with the actual classifica-
tion, as some of the parameters βkj will be set to 0 in the
optimal solution, to reduce the magnitude of the penalty.
As we will see below, each of these feature selection
mechanisms yields slightly different performances, with
RFE being better at identifying TIA and the LASSO be-
ing more accurate at identifying both “TIA mimic” and
“minor stroke” categories. In the LASSO model, because
of the L1-regularization, the final set of roughly 30 fea-
tures may be different across classes. We implemented
all models in Python 3.7 using the libraries pandas [22],
numpy, imbalanced-learn [23], and scikit-learn [24].

Results
Out of 269 consecutive patients (mean age: 69.9 ± 15.1,
56.5% men) with an initial diagnosis of TIA, 50.2% had
the final diagnosis of TIA. Table 1 presents the patients’
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demographic and clinical information. The supplemental
Table 1 displays the list of clinical and imaging elements
considered for the diagnosis of TIA. The majority
(71.3%) of the patients had a follow-up visit at our

hospital-discharge stroke clinic; however, several patients
(28.7%) had follow-up appointments in general neur-
ology or primary care offices. The inter-rater agreement
for the final diagnosis of TIA was 80.9% (κ = 0.62).
We first present the performance of the multinomial

RFE-based classifier on the synthetic test set (generated
using the SMOTE procedure). Table 2 includes the final
list of predictors left in the multinomial logit model after
applying RFE with a cutoff of 20 features and retaining
only those features with p-values < 0.05 for at least one
category, together with their associated coefficients,
standard errors, corresponding odds ratios, and p-values.
Table 3 below shows the confusion matrix associated

with each of the three categories that are possible for the
discharge diagnosis predicted variable.
Overall, the RFE-based classifier correctly predicts 78%

of the overall observations (70 correct out of 90 total ob-
servations in the test set). In particular, the classifier cor-
rectly identifies 68% of the cases that resulted in a “TIA
mimics” final diagnosis (19 out of 28), correctly identifies
83% of the “TIA” discharge diagnosis (43 out of 52), and
correctly classifies 82% of the “minor stroke” discharge
diagnosis (8 cases out of 10). A second measure used to
evaluate the performance of a classifier is the Area
Under the Curve (AUC), where the curve is the well-
known Receiver Operating Characteristic (ROC). Figure 1
below shows the three ROC curves, with each AUC re-
gion hovering near 0.8, out of a theoretical maximum
value of 1.0. Each AUC value is accompanied by a 95%
confidence interval estimated by bootstrapping the test
set.
We also evaluated the performance of the RFE-based

classifier on the original data, that is, the original cohort
of n = 269 cases. Recall that the original data set has a
low prevalence of patients diagnosed with minor strokes
and in our training phase we have used the SMOTE
method to severely hybridize this set by over- and
under-sampling. Thus, the original data set with all arti-
ficial data points removed is a better secondary bench-
mark, as opposed to a small validation subset which may
suffer from little or no cases belonging to the “TIA” or
“minor stroke” classes, respectively. Table 4 presents the
results of the confusion matrix associated with the ori-
ginal cohort of 269 patients.
Consider that a naïve classifier would assign categories

in accordance with the prior distributions of each class,
that is, about 38% of data would be assigned to class 0,
half the observations would be assigned class 1, and the
remaining 12% would be assigned to class 2. The multi-
nomial classifier outperforms the naïve across all cat-
egories. Specifically, we are able to correctly identify 66%
of the “TIA mimics” discharge diagnostics (48 out of
73), 61% of the “TIA” diagnostics (110 out of 180), and
56% of the “minor stroke” category (9 cases out of 16).

Table 1 Patient demographic information

Total patients, no (%) 269

Gender, Male, no (%) 152 (56.5%)

Age, Mean ± SD 69.9 ± 15.1

Median ABCD2 Score 4

Race

White 261 (97.0%)

Black or African American 7 (2.6%)

Declined to Provide 1 (0.4%)

Medical History

Hypertension 206 (76.6%)

Atrial Fibrillation 43 (16.0%)

Hyperlipidemia 214 (79.6%)

Seizure 12 (4.5%)

Headache (any type) 49 (18.2%)

Migraine without aura 19 (7.1%)

Migraine with aura 11 (4.1%)

Carotid Disease 163 (60.6%)

Anticoagulant Use 26 (10.0%)

Tobacco Use 61 (22.7%)

Clinical Observations

Altered Mental Statusa 51 (19.0%)

Aphasia 51 (19.0%)

Numbness 129 (48.0%)

Weakness 128 (47.6%)

Headache 59 (21.9%)

Dysarthria 87 (32.3%)

Facial Droop 52 (19.3%)

Sudden True Vertigo 11 (4.1%)

Diplopia 6 (2.2%)

Mono-ocular Blindness 4 (1.5%)

Hemianopsia 35 (13.0%)

Ataxia 35 (13.0%)

Seizure-like Activity 6 (2.2%)

Visual Aura 7 (2.6%)

Pre-syncope 43 (16.0%)

Discharge Diagnostic Category

TIA mimics 103 (38.3%)

TIA 135 (50.2%)

Minor Stroke 31 (11.5%)
aAltered Mental Status was assessed based on level of consciousness (LOC),
LOC Questions, and LOC Commands as defined in the National Institutes of
Health Stroke Scale (NIHSS)
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The overall accuracy of the classifier on the entire data
set is 62% (167 cases correctly classified, out of 269
patients).
Like in the analysis for the synthetic test set, we pro-

vide an alternative way of evaluating the performance,
via the ROC curves and the associated AUC measures,
as depicted in Fig. 2 below. Each category exhibits a

good lift, implying that our proposed classifier signifi-
cantly outperforms random guessing, with each of the
AUC measures hovering near 0.7.
We next evaluate the performance of the multinomial

classifier based on the LASSO feature selection. In order
to identify the best value for the penalty parameter λ, we
performed a local grid search and found that the best
performance happens when λ = 3.6 and approximately
30 features are retained. The LASSO-based classifier ex-
hibits strong performance in identifying the three clas-
ses, as shown in Table 5 below. With respect to the
augmented test set, the LASSO classifier has an overall
accuracy of 74% (67 correct out of 90 total observations).
The model is able to correctly identify 61% of the “TIA
mimics” cases (16 out of 26 predictions), 79% of the
“TIA” discharge diagnosis (41 out of 52) and 83% of the
“minor stroke” diagnosis (10 cases out of 12). Note that
in comparison to the performance of the RFE classifier
on the synthetic test set (Table 3), the LASSO

Table 2 Diagnostic discharge predictors – RFE feature selection

Coefficient (βi) SE Odds Ratio P-value

Discharge Diagnosis: TIA mimics

Altered mental Status (0,1)a 0.551 0.420 1.734 0.190

Hx of AF, PAF, A. Flutter (0,1) −1.033 0.505 0.356 0.041

Hx of HTN (on Medication) (0,1) 1.395 0.384 4.034 0.000

Hx of Hyperlipidemia (on Medication) (0,1) 0.675 0.404 1.964 0.095

Hx of Seizure (0,1) −1.657 0.811 0.191 0.041

Language disturbance-Expressive Aphasia (0,1) −0.220 0.405 0.802 0.587

Numbness (Leg, Arm, or facial) (0,1) 0.109 0.356 1.115 0.759

Pre-TIA OAC (0,1) - Coumadin, Pradaxa, Eliquis (apixaban), Xarelto 0.618 0.629 1.855 0.326

Tobacco 0.766 0.406 2.152 0.059

Weakness (general, unilateral arm or leg) (0,1) −0.840 0.328 0.432 0.010

Hx of Carotid Disease −0.202 0.608 0.817 0.740

Intercept −0.637 0.562 0.529 0.257

Discharge Diagnosis: TIA

Altered mental Status (0,1)a −1.494 0.698 0.225 0.032

Hx of AF, PAF, A. Flutter (0,1) 0.036 0.575 1.037 0.950

Hx of HTN (on Medication) (0,1) 1.509 0.540 4.522 0.005

Hx of Hyperlipidemia (on Medication) (0,1) −0.726 0.483 0.484 0.133

Hx of Seizure (0,1) −0.811 0.843 0.444 0.335

Language disturbance-Expressive Aphasia (0,1) 0.330 0.503 1.391 0.511

Numbness (Leg, Arm, or facial) (0,1) −0.784 0.442 0.456 0.076

Pre-TIA OAC (0,1) - Coumadin, Pradaxa, Eliquis (apixaban), Xarelto −0.072 0.771 0.931 0.926

Tobacco −0.498 0.588 0.608 0.397

Weakness (general, unilateral arm or leg) (0,1) 0.443 0.442 1.557 0.316

Hx of Carotid Disease 1.407 0.625 4.084 0.024

Intercept −0.952 0.711 0.386 0.180
a Altered Mental Status was assessed based on level of consciousness (LOC), LOC Questions, and LOC Commands as defined in the National Institutes of Health
Stroke Scale (NIHSS)

Table 3 Confusion matrix for synthetic test set – RFE feature
selection

Predicted Total

TIA Mimics TIA Minor Stroke

Actual

TIA Mimics 19 6 1 26

TIA 8 43 1 52

Minor Stroke 1 3 8 12

Total 28 52 10 90
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outperforms RFE with respect to the “minor stroke”
class; however, it just slightly underperforms RFE with
respect to the other two classes.
The AUC performance on the synthetic test set is com-

parable to the RFE classifier and presented below in Fig. 3.
With regards to performance on the original data, the

LASSO feature selection improves the prediction accur-
acy for all three outcome classes. In the former “TIA
mimics” case, the LASSO-based model correctly predicts
about 72% of the cases (76 correct predictions out of
105), while in the “minor stroke” category, the accuracy
rate is about 68% (25 correct predictions out of 37). Fi-
nally, the “TIA” class prediction exhibits an accuracy of
approximately 80% (101 correct predictions out of 127
cases). Similarly, the ROC curves show rapid growth for
small false-positive rates, which indicate the ability of
the LASSO-based classifier to discriminate correctly be-
tween the classes. Table 6 and Fig. 4 below summarize
the confusion matrix and AUC values, respectively, for
the LASSO classifier.

Another way to evaluate the performance of the pro-
posed classifiers is to compare them to established scor-
ing methods from the existing clinical literature. For
example, a well-known metric used in the ED for pre-
dicting the likelihood of a stroke following a TIA inci-
dent is the ABCD/ABCD2 score, which assigns to each
patient a score from 0 to 7, based on four clinical fea-
tures: Age, Blood Pressure, Clinical Features (such as
unilateral weakness or speech disturbance) and the dur-
ation of symptoms (in minutes). Patients with scores of
6–7 are classified at high risk of experiencing a stroke
within 7 days after a diagnose of TIA, patients with a
score of 4–5 are classified as medium risk, with the
remaining scores between 0 and 3 yielding a classifica-
tion of low risk of stroke. There are some studies that
indicated that higher ABCD2 scores may predict the
diagnosis of a minor stroke, which may contribute to its
predictive usefulness [5, 25]. Interestingly, no patients in
the data set with an ABCD2 score of 6 or 7 ended up
with a discharge diagnosis of stroke (that is, the accuracy

Fig. 1 ROC curve and AUC measure for synthetic test set (n = 90)

Table 4 Confusion matrix for original data set – RFE feature
selection

Predicted Total

TIA Mimics TIA Minor Stroke

Actual

TIA Mimics 48 52 3 103

TIA 21 110 4 135

Minor Stroke 4 18 9 31

Total 73 180 16 269

Fig. 2 ROC curve and AUC measures for original data set (n = 269)

Table 5 Confusion matrix for synthetic test set – LASSO feature
selection

Predicted Total

TIA Mimics TIA Minor Stroke

Actual

TIA Mimics 16 10 0 26

TIA 9 41 2 52

Minor Stroke 1 1 10 12

Total 26 52 12 90
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of the ABCD2 “high risk of stroke given TIA” classifica-
tion is 0%), so we opted to look at the accuracy of
ABCD2 when both “medium risk” and “high risk” cat-
egories are merged to form a prediction for the stroke
class. In a similar fashion, we can compare our two pro-
posed classifiers to the Diagnosis of TIA (DOT) score,
which is another scoring system well-established in the
literature [26]. Table 7 below shows the performance of
both the ABCD2 and DOT scores on the original data-
set, relative to the proposed classifiers.

Discussion
The results of this pilot study indicate that a multi-
nomial classification model, based on a combination of
feature selection mechanisms coupled with logistic re-
gression, can be used to differentiate between TIA, TIA
mimics, and minor stroke. We have also shown that our
classifiers can make a more accurate diagnosis than
DOT and ABCD2. While established methodologies
such as the logistic regression have a more robust pres-
ence in the current literature and practice, in this study

we explored the utilization of a multinomial logit model
to facilitate distinguishing between three distinct
outcomes.
There are not many well-validated tools for the diag-

nosis of TIA. Dawson score [27] and the DOT score
[26] are two diagnostic scores that were developed based
on regression analysis. A set of Explicit Diagnostic Cri-
teria for TIA (EDCT) [28] for differentiating between
migraine and TIA has also been recently proposed. Al-
though these scoring systems have not been adequately
validated and not been established as a useful tool in
clinical practice, the DOT score was shown to perform
better in a direct comparison with the Dawson score in
a cohort of 525 suspected TIA patients (c-statistic 0.89
[0.85–0.92] versus 0.83 [0.79–0.87]) [26]. However, this
comparison was performed in an internal validation of
the DOT score.
Although there are few publications and no widely ac-

cepted definition for TIA mimics [29, 30], our study and
other reports suggest that more than 50% of patients
who are referred to TIA clinics are in fact TIA mimics
[6, 7, 31]. Given a high estimated incidence rate of TIA
in the United States, a high rate of misdiagnosis can be
associated with significant cost burden and missed op-
portunities [32–34]. Misdiagnosing patients that are ex-
periencing TIA carries significant costs for both the
hospital and the patient [6]. These costs can be attrib-
uted to both patients and hospitals, and therefore devel-
oping an automated clinical decision support system to
aid in the diagnosis of TIA is especially valuable. The
prediction models developed in this study are perform-
ing better than the current tools and scoring systems

Fig. 3 ROC curve and AUC measure for synthetic test set (n = 90)

Table 6 Confusion matrix for original data set – LASSO feature
selection

Predicted Total

TIA Mimic TIA Minor Stroke

Actual

TIA Mimic 76 23 4 103

TIA 26 101 8 135

Minor Stroke 3 3 25 31

Total 105 127 37 269

Fig. 4 ROC curve and AUC measures for original data set (n = 269)
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such as ABCD2 and DOT and could be more effective
when combined with other stroke risk stratification tools.
Our study has several limitations. Due to the combined

retrospective and prospective nature of our study and limited
sample size, we cannot implement this system in a clinical
setting without fully validating these predictions prospectively
and using a larger cohort from multiple health care systems.
Also, in general, the problem at hand becomes more compli-
cated due to the relatively large imbalance in the data among
the three classes, coupled with a small TIA and stroke preva-
lence in the population [35, 36]. We addressed this limitation
in part by implementing a data augmentation strategy based
on the SMOTE algorithm, which improved the model per-
formance; the downside of applying an algorithm such as
SMOTE is the unnecessary amount of noise introduced in
the training as set, as well as potential collinearity issues
which may still result in a degradation in performance. Fi-
nally, the majority of patients in this study were Caucasian.
This should be taken into the consideration when generaliz-
ing the results of this study. As a future direction, we plan on
further enhancing our data augmentation strategy by using
advanced machine learning algorithms such as Generative
Adversarial Network (GAN). This will be important for prac-
tical applications of the system, such as improving the detec-
tion of rare conditions causing stroke mimics.
This study also has several key strengths that are

rooted in the nature and source of the data, as well as in
the study design considerations. One key strength is the
use of only electronic health record (EHR) data. Using
EHR data for building predictive models makes the inte-
gration of this automated system into a decision support
system feasible, and without disruption of clinical work-
flow. In addition, the quality of our data is high, as it is
validated by our neurologists. High-quality data trans-
lates into high-quality prediction models. However, we
still understand that providers are likely to be biased in
the information they input into the EHR system. To ac-
count for this shortcoming, in our study we used differ-
ent note types (ED provider, neurology consultation,
history and physical, and discharge summary notes)
written by different providers.

Conclusions
In this study we have developed two different multi-
nomial models incorporating feature selection for

differentiating between TIA and its mimics. The per-
formance of these models seems promising. For other
future directions, we intend to design quality control
and noise filters to improve the quality of the EHR data
to facilitate the implementation of a large-scale auto-
mated system for real-time use. Curated datasets, includ-
ing this gold standard cohort of limited size, will play a
key role in identifying and removing noise for large scale
systematic data curation. Finally, our modeling frame-
work is scalable and could be easily implemented as an
automated tool in healthcare organizations to improve
overall care and access, as well as to enhance secondary
preventive measures and reduce diagnostic error at a
personalized level. A carefully planned EHR-embedded
decision support tool that could assist the ED providers
in making an accurate diagnosis of TIA is an unmet
need. This study suggests that it is feasible to build an
automated decision support system using EHR data and
advanced statistical tools. We also plan to further inves-
tigate if more complex machine learning models can be
designed to enhance the performance, reliability, and ac-
curacy of our models.
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