Fang et al. BMC Medical Informatics and Decision Making (2020) 20:111 . .
https:/doi.org/10.1186/512911-020-01144-8 BMC Medical Informatics and

Decision Making

RESEARCH ARTICLE Open Access

Early warning score validation ®
methodologies and performance metrics: a
systematic review

Andrew Hao Sen Fang1*®, Wan Tin Lim? and Tharmmambal Balakrishnan?

Check for
updates

Abstract

Background: Early warning scores (EWS) have been developed as clinical prognostication tools to identify acutely
deteriorating patients. In the past few years, there has been a proliferation of studies that describe the
development and validation of novel machine learning-based EWS. Systematic reviews of published studies which
focus on evaluating performance of both well-established and novel EWS have shown conflicting conclusions. A
possible reason is the heterogeneity in validation methods applied. In this review, we aim to examine the
methodologies and metrics used in studies which perform EWS validation.

Methods: A systematic review of all eligible studies from the MEDLINE database and other sources, was performed.
Studies were eligible if they performed validation on at least one EWS and reported associations between EWS
scores and inpatient mortality, intensive care unit (ICU) transfers, or cardiac arrest (CA) of adults. Two reviewers
independently did a full-text review and performed data abstraction by using standardized data-worksheet based
on the TRIPOD (Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis)
checklist. Meta-analysis was not performed due to heterogeneity.

Results: The key differences in validation methodologies identified were (1) validation dataset used, (2) outcomes of
interest, (3) case definition, time of EWS use and aggregation methods, and (4) handling of missing values. In terms of
case definition, among the 48 eligible studies, 34 used the patient episode case definition while 12 used the
observation set case definition, and 2 did the validation using both case definitions. Of those that used the patient
episode case definition, 18 studies validated the EWS at a single point of time, mostly using the first recorded
observation. The review also found more than 10 different performance metrics reported among the studies.

Conclusions: Methodologies and performance metrics used in studies performing validation on EWS were
heterogeneous hence making it difficult to interpret and compare EWS performance. Standardizing EWS validation
methodology and reporting can potentially address this issue.
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Background

Early warning scores (EWS) are simple tools to help
detect clinical deterioration to improve patient safety in
hospitals. EWS are often implemented as part of a wider
early warning system, also known as “rapid response
system”, whereby detection of a likely deterioration will
trigger an alert or pre-planned escalation of care by
healthcare providers [1, 2]. These EWS use objective pa-
rameters such as vital signs and laboratory results, and
may include subjective parameters (e.g. “nurses’ worry”)
[3] as input; and then output an integer score. A higher
score generally indicates a higher likelihood of clinical
deterioration, but is not a direct estimate of risk.

The first EWS was published in 1997 [4], and the con-
cept gradually gained traction with the National Institute
for Health and Clinical Excellence (NICE) recommend-
ing the use of early warning systems to monitor all adult
patients in acute hospital setting in a 2007 guideline [5].
Currently there are many different EWS that have
become available and are routinely used in hospitals
globally, including USA, UK, Netherlands, Denmark and
South Korea [6—8]. The recent advancements in machine
learning (ML) have also opened up a new paradigm of
novel EWS development, using ML techniques such as
random forests and deep neural networks, giving rise to
arguably better EWS [9-11].

As EWS have an impact on patient care, it is critical
that they are rigorously validated [12]. In this regard,
several systematic reviews have already looked at the
performance of various EWS [6-8]. Notably, these sys-
tematic reviews drew conflicting conclusions about EWS
performance — Smith ME et al. concluded that EWS
perform well, while Gao et al. and Smith GB et al. found
conflicting and unacceptable performance. A possible
reason for this disagreement is a lack of consistency in
the methods used to validate EWS [8].

An example of difference in validation methods of
EWS is between a study by researchers from Google and
another study that validated the National Early Warning
Score (NEWS) [13, 14]. Although both study teams vali-
dated their respective EWS ability to predict inpatient
mortality, the former validated its EWS being used once,
at the start of the admission (AUROC 0.93-0.94), while
the latter validated their EWS using its score for every
observation set of vitals measured for the entire admis-
sion (AUROC 0.89-0.90). In terms of case definition, we
consider the former to have used the “patient episode”
definition, while the latter used the “observation set”
definition. Case definition is one of several differences in
validation methods.

The aim of this review is to examine the different
methodologies and performance metrics used in the
validation of EWS so that readers will pay attention to
specific aspects of the validation when making
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comparisons between EWS performance from published
studies. As far as we are aware, there has not been any
similar work done before. It is not this review’s intention
to identify better performing EWS or to perform quality
or bias assessment of the studies.

Methods

Search strategy

We used PubMed to search the MEDLINE database
from inception to 22 Feb 2019 for studies of EWS in
adult populations. We used the keywords “early warning
score”, “predict”, “discriminate”, and excluded “paediat-
rics”, “children” and “systematic review”. For complete-
ness, we also sought to include publications that we
found but were not returned in the PubMed search. This
involved looking at studies from other EWS review
papers [6—-8], and consulting with experts.

To assess the validation of EWS, we included only arti-
cles that performed validation on at least one EWS, in
which investigators reported associations between EWS
scores and inpatient mortality, intensive care unit (ICU)
transfers, or cardiac arrest (CA). Systematic review
papers were excluded as they lacked granularity in
description of the data handling and statistical analysis.
We also excluded studies which did prospective valid-
ation whereby the EWS was already in operation to in-
fluence care decisions and impact patient outcomes. In
these cases, the validation did not purely evaluate the
discriminative ability of the EWS, but also included
other factors such as staff compliance and availability of
rapid response resources.

Investigators then reviewed titles and abstracts of cita-
tions identified through literature searches, and eligible
articles were selected for full-text review and data
abstraction.

Data abstraction

Pre-defined data for abstraction was largely based on the
TRIPOD Checklist for Prediction Model Validation [15],
with some added elements which the study team felt
were pertinent to EWS.

A full-text review of each eligible study was performed
by two investigators independently. Data for abstraction
included the specific EWS validated, validation dataset
used, number of subjects, population characteristics,
outcome of interest (inpatient mortality, ICU transfer,
cardiac arrest), method of validation (case definition,
time of EWS use, type of aggregation for methods with
multiple scores), method of handling missing values, and
reported metrics. For discrepancies in the abstracted
data, the investigators would perform a repeat review of
the paper together to reach a consensus.
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Results

The PubMed search yielded a list of 125 study abstracts.
From reviewing the study abstracts, 47 studies were
selected for full-text review (Fig. 1). Of these, we
excluded a further 12 studies — 11 (unable to access full
study article) and 1 (full study article in Korean, only ab-
stract in English). We included 13 additional relevant
studies that we found from review papers and from con-
sulting with experts. In total, 48 studies were included in
the final review [3, 9, 11, 14, 16-59].

A summary table of the selected studies and data ab-
stracted are found in Table 1 (see Additional file 1). 8 of
the 48 studies were published in 2018 or later. Majority
of the study populations were from UK (23) and USA
(10), with 5 from South Korea and one each from
Canada, China, Denmark, Hong Kong, Israel, Italy,
Netherlands, Singapore, Sweden and Turkey.

Altogether, there were 54 unique EWS that were
reviewed by the different studies, excluding the 33 other

125 studies from
search

‘(25 studies not related
'L to EWS

A

EWS

100 studies related tcﬂ

9 studies did not do
}Lvalidation on at least

\ one EWS

91 studies did
validation on EWS

&6 studies not done in
inpatient setting

A

65 studies done in }

inpatient setting 18 studies did not

include either
inpatient mortality,
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cardiac arrest as an
outcome

A

47 studies for full-
text review

Fig. 1 Flow chart describing inclusion of articles for full-text review
from search result list
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EWS assessed in the study by Smith in 2013 [14], and
the 44 MET criteria assessed in the study by Smith in
2016 [27]. The most reviewed EWS were the Modified
Early Warning Score (MEWS) and National Early Warn-
ing Score (NEWS), which were included in 22 and 16
studies respectively.

Validation dataset

16 of the studies performed an internal validation, where
a proportion of the entire study dataset was used to
develop the EWS (training set), with the remaining pro-
portion was used for validation (validation set) [9, 11, 17,
18, 20, 22, 24, 28, 32, 34, 35, 38, 39, 41, 44, 46, 57]. Vary-
ing proportion sizes were used for the validation set ran-
ging from 25.0 to 100%. The other studies did an
external validation with a study population different
from that used to develop the EWS.

The study size used ranged from 43 to 269,999.
Slightly over half (25 of 48) of the studies were
performed on general admission cases, with the others
focused on populations with specific conditions (e.g.
chorioamnionitis [48], community-acquired pneumonia
[31, 50, 51]), patients admitted to a certain specialty (e.g.
Obstetrics [39], Haematology [28]), or only a subset of
the general admission population (e.g. those reviewed by
MET [33, 56], those with NEWS >1 [21]).

Outcomes of interest

All the studies included at least one of the outcomes of:
inpatient mortality, ICU transfer or cardiac arrest, or a
combination of them (Fig. 2).

For the 24 studies that evaluated more than one out-
come, 17 studies validated EWS using a composite of all
the outcomes as the endpoint, while the others validated
EWS for each of the individual type of outcomes.

Case definition, time of EWS use and aggregation method
There were two different ways a case was defined — a
patient episode or an observation set — and this defin-
ition had impact on the subsequent validation steps
(Fig. 3). The patient episode definition considered an
entire admission as a single case and used either a single
or multiple recordings of vital signs and other parame-
ters from the admission, while the observation set defin-
ition considered each observation set of vital signs and
other parameter recordings from the same admission as
independent of one another.

In the observation set definition, recordings from each
observation set would be used to compute a score to evalu-
ate the EWS association with an outcome within a certain
time window from the time of recording of the observation
set. In the patient episode definition, because multiple re-
cordings were available, study teams either chose to use a
single score, or multiple scores to validate the EWS. This
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(Number in circle refers to number of studies that assess the specific outcomes)

Fig. 2 Summary of studies with various combinations of outcomes

reflected how study teams intended for the EWS to be used Among the 48 studies, 34 used the patient episode
in practice, so we termed this component as “time of EWS  method while 12 used the observation set method, and 2
use”. If the time of EWS use was multiple, then the series  did the validation using both methods.

of scores would be aggregated in evaluating the EWS with Of the studies that used the patient episode method,

the outcome of the patient episode. 18 studies used a single point of time score to validate
P
Patient episode definition Observation set definition
Patient | EWS Recording Outcome Patient | EWS Death
o
e |1 || X-hour
of score
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Fig. 3 lllustration of how different case definition affect EWS validation for 2 patients
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the EWS, most of which used the first recorded observa-
tion. For the 18 studies that used multiple recordings, 13
studies used use the maximum score as to aggregate the
scores for each patient episode to compare with the out-
comes. Most studies used all recordings from the patient
episode, but there were 2 studies that excluded readings
just prior to outcome to account for the “predictive”
ability of the EWS [28, 44].

For the studies that used the observation set method,
all of them used EWS values generated within the 0-24
hour time window prior to outcome to validate the
EWS, with the exception of one study [11] that used
EWS values within the 30 minute to 24 hour time
window.

Handling of missing values

As the validation datasets were obtained from real-world
data, missing values were inevitable. In general, there
were two ways the missing values were handled — either
exclude or impute values. 19 studies excluded the miss-
ing values, 15 used imputations, 4 used a combination of
both methods, and in 10 studies it was not stated. There
were a variety of imputation methods used. The most
commonly used were imputing a value from the last
observation (6 studies), imputing a median value (3 stud-
ies), a combination of the last observation and median (5
studies) and imputing with a normal value (4 studies).
There were also some sophisticated imputation methods,
such as using random forest [17] and multiple imput-
ation [23].

Performance metrics

For performance metrics, we grouped them into two
types — discrimination and calibration metrics. Discrim-
ination is the measure of the EWS ability to differentiate
significantly between cases with outcome and cases
without outcome. Calibration is an evaluation of the
extent to which estimated probabilities of the EWS
scores agree with observed outcome rates [60]. Where
an integer EWS was validated, it would not be possible
to assess calibration.

The most commonly reported discrimination metric
was the area under the curve of the receiver operating
characteristics (AUROC). Only 6 studies did not use this
metric. Twenty-two studies reported using any one of
sensitivity, specificity, or predictive value (positive and
negative). A lesser used alternative to the AUROC was
the area under the precision-recall curve (AUPRC)
which was used in two more recent studies by Kwon et
al [11] and Watkinson et al [20]. The authors reasoned
that this is a more suitable metric for verifying false-
alarm rates with varying sensitivity.

The EWS efficiency curve was another measure used
to visualize the discriminatory ability of EWS in 8
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studies. The EWS efficiency curve was first introduced
in the study by Smith et al. to provide a graphical depic-
tion of the proportion of triggers that would be gener-
ated at varying EWS scores [13].

Six studies performed a statistical test of model cali-
bration. Four used the Hosmer-Lemeshow goodness-of-
fit test, one calculated the calibration slope and one used
both metrics. Another six studies did not perform a
statistical test of calibration, but provided a visualization
of the model calibration.

Discussion

Studies that validate EWS used a wide variety of validation
methods and performance metrics [4, 9, 11, 14, 16-45].
Given that these variations have a bearing on EWS per-
formance measurement, one should be mindful of them
when interpreting and comparing bottom-line metrics,
like AUROC values.

While the TRIPOD checklist for prediction model val-
idation provides a standardized framework for multivari-
able predictive model validation reporting [15], it lacks
the finer details for EWS which are more multi-faceted
than typical prediction models. Unlike clinical prediction
tools, EWS are unique in that they may be intended for
use at multiple time-points over a patient episode. Some
key differences in validation methodology we found in
our review, and propose EWS evaluators take note of,
are the validation dataset, outcomes of interest, case def-
inition, time of EWS use, aggregation method, and hand-
ling of missing values. These differences could explain
the reason for conflicting opinion on whether EWS per-
form well or otherwise [6—8].

In terms of EWS performance reporting, our review
also had similar findings from previous reviews, that
studies tended to give more prominence to discrimin-
ation and have rarely assessed model calibration [12,
61]. We concur with the TRIPOD recommendation
that both discrimination and calibration should be
considered when judging a model’s accuracy [15].
Also, this review found some reporting metrics that
can be considered as promising alternatives to
AUROC in EWS performance reporting. The AUPRC
mentioned earlier is one of them. It was noted to be
suitable for verifying false-alarm rates with varying
sensitivity [21, 22]. Another would be to exclude mea-
surements within a time window just prior to out-
come, to account for the “predictive” ability of the
EWS [21, 27, 44].

We acknowledge that a limitation of our review may
be the fairly narrow search strategy to include EWS
studies with keywords “predict” and “discriminate”, and
thus might have unwittingly excluded other studies that
performed EWS validation. Future reviews may consider
broadening the scope of the initial search.
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Conclusions

Current EWS validation methods are heterogenous and
this probably contributes to conflicting conclusions
regarding their ability to discriminate or predict the
patients at risk of clinical deterioration. A standardized
method of EWS validation and reporting can potentially
address this issue.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512911-020-01144-8.

Additional file 1: Table S1.. Detailed summary of the 48 selected
studies, with selected data for abstraction.
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