Vandewiele et al. BMC Medical Informatics and Decision Making 2020, 20(Suppl 4):191
https://doi.org/10.1186/s12911-020-01134-w

BMC Medical Informatics and
Decision Making

RESEARCH Open Access

MINDWALC: mining interpretable,
discriminative walks for classification of
nodes in a knowledge graph

Gilles Vandewiele”

Check for
updates

, Bram Steenwinckel, Filip De Turck and Femke Ongenae

From The 4th International Workshop on Semantics-Powered Data Analytics SEPDA 2019
Auckland, New Zealand. 27 October 2019

Abstract

Background: Leveraging graphs for machine learning tasks can result in more expressive power as extra information
is added to the data by explicitly encoding relations between entities. Knowledge graphs are multi-relational, directed
graph representations of domain knowledge. Recently, deep learning-based techniques have been gaining a lot of
popularity. They can directly process these type of graphs or learn a low-dimensional numerical representation. While
it has been shown empirically that these techniques achieve excellent predictive performances, they lack
interpretability. This is of vital importance in applications situated in critical domains, such as health care.

Methods: We present a technique that mines interpretable walks from knowledge graphs that are very informative
for a certain classification problem. The walks themselves are of a specific format to allow for the creation of data
structures that result in very efficient mining. We combine this mining algorithm with three different approaches in
order to classify nodes within a graph. Each of these approaches excels on different dimensions such as explainability,
predictive performance and computational runtime.

Results: We compare our techniques to well-known state-of-the-art black-box alternatives on four benchmark
knowledge graph data sets. Results show that our three presented approaches in combination with the proposed
mining algorithm are at least competitive to the black-box alternatives, even often outperforming them, while being
interpretable.

Conclusions: The mining of walks is an interesting alternative for node classification in knowledge graphs. Opposed
to the current state-of-the-art that uses deep learning techniques, it results in inherently interpretable or transparent
models without a sacrifice in terms of predictive performance.

Keywords: Knowledge graphs, Data mining, Explainable Al, Decision tree, Random forest, Feature extraction

Background
Introduction

that they explicitly model interactions between individual
units (i.e. nodes) in the form of edges [1], which enriches

Graphs are data structures that are useful to represent
ubiquitous phenomena, such as social networks, chemical
molecules, biological protein reactions and recommen-
dation systems. One of their strengths lies in the fact

*Correspondence: gilles.vandewiele@ugent.be
IDLab, Ghent University — imec, Technologiepark-Zwijnaarde 126, 9000 Ghent,
Belgium

K BMC

the data. Today, graphs are increasingly being leveraged
for various machine learning tasks [2]. For example, one
might recommend new friends to a user in a social net-
work [3], predict the role of a person in a collaboration
network [4], or classify the role of a protein in a bio-
logical interaction graph [5]. Knowledge graphs (KG) are

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-020-01134-w&domain=pdf
http://orcid.org/0000-0001-9531-0623
mailto: gilles.vandewiele@ugent.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

representations of domain or expert knowledge encoded
as a collection of triples having the form (subject,
predicate, object). These triples can be directly
mapped onto a named edge (the predicate) linking
together two named nodes (the subject and object). KGs
have been gaining a lot of attention, as many of them,
such as YAGO [6], DBpedia [7], NELL [8], Freebase [9],
and the Google Knowledge Graph [10], have already been
successfully applied to various real-world applications.

Recently, the use of deep learning techniques to either
learn representations of nodes in the graph, or to directly
learn a model for the task at hand, has been gain-
ing immense popularity. While these techniques achieve
good predictive performances, they can be considered
black-box and thus lack interpretability. The explain-
able and transparent aspects of a predictive model are
of vital importance for applications situated in critical
domains, such as health care and finance, as a wrong
decision could have significant negative repercussions.
Therefore, a new shift of focus within research towards
explainable Al is taking place [11, 12]. Currently, tech-
niques exist that can give post-hoc local explanations
for a black-box model’s predictions of certain samples,
such as which features contributed most towards giv-
ing a certain prediction [13, 14]. Unfortunately, these
techniques are not able to deliver a global explana-
tion, making it infeasible to grasp all the internals
of the black-box model. Moreover, they exhibit other
weaknesses such as susceptibility to adversarial attacks
[15]. In contrast to making black-box techniques more
transparent, we could instead focus on using inherently
interpretable techniques, especially for critical domain
applications [16].

Classical machine learning approaches, such as Random
Forest (RF) and Logistic Regression (LR), require a numer-
ical representation of the data (in the form of a matrix)
as input. As a graph itself is not numerical, an interme-
diary step is required that transforms the nodes in our
graph into numerical vectors. In this paper, we introduce
an algorithm that generates a numerical representation
for the nodes in a graph. It does this by efficiently mining
for graph substructures of a specific type. These sub-
structures are informative for an entity belonging to a
specific class, when found in its neighborhood. Moreover,
we present three different approaches to combine with
our mining algorithm to classify nodes or entities in a KG.
First, we apply the algorithm recursively in order to induce
a decision tree. The resulting model is fully interpretable,
since we can easily visualize the entire tree or highlight
the taken path in our decision tree to form a prediction.
We demonstrate this by inspecting and discussing induced
decision trees on benchmark data sets. Second, we induce
multiple decision trees, each with a subsample of both
training entities and possible substructures, in order to

Page 2 of 15

form a forest. This ensemble technique often results in
better predictive performances, but comes at a cost of
lower interpretability and longer training time. Finally, we
decouple the modeling and mining by performing a sin-
gle pass over the data to mine a collection of informative
walks. These walks can then be used to create high-
dimensional binary feature vectors that can be passed to
any classification algorithm. This final technique is fast, as
it requires only a single pass over the data. It also achieves
high predictive performances, as we will show empirically.
Nevertheless, even when used in combination with inter-
pretable techniques, such as LR, the interpretability can
be considered the lowest of all three techniques due to its
high dimensionality.

The remainder of the paper is organized as follows. In
the next section, we discuss some related approaches that
are used to tackle the problem of node classification in
KGs, and what their shortcomings are. In “Context’, we
provide the necessary background to discuss, in “Method-
ology’, the different steps taken to mine informative graph
substructures and how they can be used for classification.
Then, in “Results’, we elaborate on the setup we used for
different experiments and provide the obtained results.
We discuss these results in “Discussion”. Finally, we con-
clude our paper and provide future research directions in
“Conclusion and future work” sections.

Related work

Different types of approaches can be identified in order
to create predictive models using KGs. A first type of
approaches are classical ones. Here, information about the
structure of the graph is explicitly encoded into a fea-
ture vector, which can then be fed to a machine learning
model [17]. Examples of such features are indications of
the presence of local neighborhood structures [18] and
graph statistics [19]. When features that make sense to
humans are used within the pipeline, these approaches
can be classified as being interpretable if the features are
fed to a white-box model. Unfortunately, the disadvantage
of this type of approach is that it is not task-agnostic: they
need to be tailored specifically for the task and applica-
tion domain at hand. This results in an increased creation
effort. Another popular classical approach, which is more
task-agnostic, is applying kernel methods [20]. These
methods measure the similarity between two knowl-
edge bases, either directly on their graph representation
[21-23] or based on description logics [24]. Unfortu-
nately, using pairwise similarity measures as features is
often less interpretable than using human-understandable
variables.

A second type of approach, which has been gaining
immensely in popularity, is representation learning, often
known as embedding techniques. The goal of representa-
tion learning is to map the graph-based structures onto



Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

a low-dimensional numerical vector that can be used for
downstream machine learning tasks [25]. One possibility
to create these numerical vectors is by applying matrix or
tensor factorization. These methods represent the KG in
a large 3-dimensional binary matrix, which is then factor-
ized into different vectors [26]. Another possibility is to
build on popular unsupervised deep learning techniques,
such as Word2Vec [27]. Here, the sentences that are nor-
mally fed to Word2Vec are replaced by walks taken in
the graph. These walks can either be completely random
[28], or guided by some metric, called biased walks [29,
30]. Representation learning can be seen as completely
task-agnostic since representations can be reused for mul-
tiple tasks. Also, these techniques often tend to achieve
higher performances than, for example, their kernel or
classical feature-based counterparts. The disadvantage of
these approaches is that by mapping an entity to a low-
dimensional latent representation, all interpretability is
lost.

A final and very recent type of approach involves adap-
tations of neural networks that can directly work on
graph-based data [31, 32], which have already been suc-
cessfully applied to KGs [33]. Again, these techniques can
be seen as black-boxes, making it very hard or even impos-
sible to extract any insights from the model. In this work,
the objective is to design a technique that resembles the
predictive power of black-box approaches, while allowing
for explainability.

Context

In this section, we first explain some fundamental con-
cepts and notation, which will be used in the remainder of
this work.

Entity classification: problem definition

Given a multi-relational directed KG G = (V, E, £), con-
structed from a collection of triples, where V are the
vertices or entities in our graph, E the edges or predicates
and £ a labeling function that maps each vertex or edge on
its corresponding label. Moreover, we are provided with a
data set D = (V, y), with V a list of vertices and y their
corresponding labels. We shall denote a specific training
vertex or entity as v; and its corresponding label with y;.
Our goal is to construct a model or hypothesis %(.) based
on V that minimizes a loss function £(.) to y, and which
generalizes well to unseen vertices:

argmin L(y, h(V)) (1)
h

Converting KGs

As done by de Vries et al. [23], we first simplify the KG
by removing its multi-relational aspect. To do this, we
represent each (subject, predicate, object)
triple from the original KG as three labeled nodes and

Page 3 of 15

two unlabeled edges (subject — predicate and
predicate — object), as depicted in Fig. 1. This
transformation reduces the complexity of the further elab-
orated procedures, without a loss of correctness, since a
distinction between entities and predicates is no longer
needed.

Neighborhoods, walks and wildcards

We characterize each instance v € V, by its neighbor-
hood N'(v) of a certain depth d. The neighborhood is a
subgraph that contains all vertices that can be reached by
traversing d edges from the instance v. It can be extracted,
for example, by performing a breadth-first-traversal.

We define a walk as a sequence of vertices. The first ver-
tex within this walk is often called the root of the walk.
This root can be seen as a placeholder, which is replaced
by a specific vertex depending on the context. We denote
awalkas root — v —> vy = vy — ...

We introduce a new special type of hop for our walks,
which we call a ‘wildcard’ and notate by an asterisk *. The
interpretation of this wildcard is that any edge or vertex
label can be matched on that position in the sequence.
This enables the walks to have more expressive power. To
illustrate this, imagine that the presence of an entity of a
specific type T is very discriminative for a certain class. It
is possible that only the fact that this entity is of that type
carries information, while the specifics of the entity itself
are unimportant. As such, this could be represented by a
walk root — * — x — rdf:type — 7.

Methodology

In the following section, we elaborate upon the steps of
our walk mining algorithm and show three different tech-
niques to use in combination with the mining algorithm
to classify entities.

Discriminative walk mining

In this study, we will focus on a special type of walk. A
walk of depth [ has a root placeholder, followed by [ — 1
wildcards and ending in a specific vertex with label :

root — % — .. —> *—> X (2)
~———
-1
As mentioned, the first hop, root, is replaced by v when-
ever we want to search for it in its neighborhood N (v).
Alternatively, we can represent these walks by a tuple: w =

(v, 1), which is the notation we will use for the remainder
of this work. When extracting a neighborhood of depth

(0 => (@)
e )

Fig. 1 Converting a triple consisting of two labeled nodes and a

labeled edge to three labeled nodes




Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

d, we keep track of d different sets {N;(v) |1 <i <d},
where N;(v) stores the nodes that can be reached in
exactly i hops. Whenever we want to search for a cer-
tain walk w = (v, /) in a neighborhood, we only need to
check whether v appears in A/;(v). This avoids the need
to traverse parts of the graph. Due to the nature of our
walk and the use of this data structure, we are able to
search for these types of walks in a neighborhood in con-
stant time. Moreover, these types of walks already possess
a rich amount of expressive power, as we will demonstrate
further empirically.

Our goal is to mine a walk w = (v, /) that maximizes
information gain (IG) on a given data set D:

argmax IG(D, w) (3)
w

For each candidate walk, we can calculate its mutual
information or information gain [34], on a given data set
D. This is defined as the weighted reduction in entropy
obtained by partitioning the data:

1G(D, w) = H(D) — H(D | w) (4)

where H(D) is called the prior entropy, and H(D | w) the
conditional entropy of the data obtained by partitioning
the data based on (the presence of) w. We can calculate
the (prior) entropy of a data set D = (V, y) using its label
vector consisting of discrete labels y; € {1,...,C}, with C
the number of classes:

(e}

H(D) = - pi *logpx (5)
k=1

with py the fraction of labels having value k in y:
lyl-1

1
== 10i=k ©)
=

Page 4 of 15

1 being the identity function which is equal to 1 in case the
condition is true, else it is 0. To calculate the entropy con-
ditioned on a walk, H(D | w), we first partition our data.
One partition consists of labels corresponding to vertices
for which the walk can be found in its neighborhood. The
other partition consists of labels corresponding to vertices
for which the walk cannot be found:

Dy ={(vi, y)) | w e N(w)}
Dyr = {(vi, yi) | w ¢ N (vi)}

After partitioning, we can calculate H(D | w) as follows:

\Dy| Ds|
HD|w) = —2 «H(Dy) +
) M)+

(7)

* H (Dyf) (8)

Example

To further clarify our algorithm, we provide an example
of a binary classification problem using a simple artificial
graph in Fig. 2. The nodes in the graph with a letter have
a corresponding label or class (its color), while the nodes
with a number are unlabeled vertices. The walk maximiz-
ing the information gain in this example is root -> 1
or (1, 1).

Implementation
We now present pseudo-code for the mining algo-
rithm. It consists of three different procedures: (i)
EXTRACT NEIGHBORHOOD (Algorithm 1) will create
the data structure for each training vertex in order
to test for the presence of a certain walk effi-
ciently, (ii) 1nFo_cain (Algorithm 2) will calculate
the information gain of a walk for the provided train-
ing neighborhoods and labels, and (iii) MINE_WALKS
(Algorithm 3) is the main procedure that uses the two
other procedures to mine the # most informative walks.
It is important to note that, due to the conversion dis-
cussed in “Converting KGs” section, (v, /) candidates,
with / being an odd value, correspond to predicates in the

Algorithm 1: extracTt NE1GHBORHOOD(G, T00t, depth)

# Create a list of sets and init with Ny
N +— [{root }]

# Keep a list of nodes we will explore next
frontier < { root }

# Create vertex sets that can be reached in d + 1 hops

# by performing breadth-first traversal
for d in ranGE(depth):

new + { }

for v in frontier:

for n in GeT NEIGHBORS(G, v):
|  mew.app(n)
N .apPEND(new)
frontier < new

return N/




Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

Page 5 of 15

Algorithm 2: 1vro cain(walk, Nirain, Ytrain)

# Calculate the prior entropy
Hp'rio'r <~ ENTRDPY(yt'rain)

# Split data into labels belonging to vertices where the walk can be found for and

vertices where the walk cannot be found for
labels_found, labels_not_found <« [], []
for i in RANGE(|N trainl):
Nv Yy tru.in[i ' ytrain[i]
if walk.vertexr in Nwalk.depth]:
| labels_found.apPEND(y)
else:
| labels_not_found.apPEND(y)

# Calculate entropies based on the two partitions
Hy =
H,; =

labels_found
labelsfound| % gyrpopy(labels_found)
‘yt'r'a'i'n,‘

labels not_found
Habels-notfound| % pyrpopy(labels_not_found)
[Ytrainl

# Calculate information gain
return Hprior - (Hf + Hpy)

original KG. Therefore, to mine walks that require k hops
in the original KG (i.e. visit k entities), the depth parame-
ter needs to be set to k x 2. Additionally, candidates with
odd depths can often be skipped in Algorithm 3 as the
presence or absence of predicates often carries little to no
information.

Computational complexity

The algorithm itself will calculate the information gain
for each possible (v, /) combination. In total, there are
|V| vertices, and the maximal depth of the walks, d, is
a hyper-parameter of the algorithm. As such, there are
O(d|V]) possible walk candidates. In order to calculate
the information gain of a candidate, we have to test for
its presence in all the training neighborhoods. This scales
linearly in function of the number of training instances

|Vtrain|- As such, the total computational complexity to
mine the most informative walk, and in addition calculate
the information gain of all other candidates, is equal to
OV grainl| V). It should be noted that the number of
training entities, |V yqin|, is often much smaller than the
number of entities in the entire graph, |V/|. As such, the
complexity scales linearly in function of the total number
of vertices in the graph.

Classification with discriminative paths

We described how to mine a walk that maximizes infor-
mation gain. Often, one walk is not enough to create a per-
fect separation between the different classes in the feature
space, especially when dealing with a multi-class prob-
lem. Therefore, we propose three different techniques to
combine with our proposed walk mining algorithm. Each

@

found not found

H=0 H=0.637

=0.2908

Fig. 2 An example of our walk mining algorithm on a simple artificial graph

IG=0.673-(0.4*0+0.6 *0.637)

C RORO)

found  not found

® @ 0

found not found

found not found

'H=0637 | H=0693' H=0 H=0562 ' H=0637 | H=0693

IG =0.0136 IG = 0.2234 IG =0.0136




Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

Page 6 of 15

Algorithm 3: mine wALKS(G, Virgin, Ytrain, depth, n, sample)

# Extract the neighborhoods
Ntv‘ain — [ ]

for Vtrain 111 ‘/t'r'a'i,n:

| N train.APPEND(EXTRACT NEIGHBORHOOD(G, Virqin, depth))

# Create a list with all possible candidates
walks < []
for d in ranGe(depth):

for v in G.vertices:

# Optionally, we apply sampling on the possible candidates

if ranooM() < sample:
| walks.apPEND((v, d))

# Sort descending by information gain and return the n first walks
return SORT(walks, reverse=True, key=lambda w: 18F0 GAIN(W, Ntrain, Ytrain)[:1])

of the presented techniques has different characteristics,
making them ideally suited for different use cases.

Decision tree induction

One straightforward approach is to mine these walks
recursively in order to create a decision tree. In each iter-
ation, we mine the most discriminative walk. After this,
we partition our data into a collection of instances for
which the walk can be found in its neighborhood, and
a collection of instances for which this walk cannot be
found. These two partitions form the left and right child
of a node respectively. We then continue recursively on
these two new child nodes, until the labels of a certain
partition are all from the same class (stop condition) at
which point we create a leaf node for the tree. Exam-
ples of such decision trees are provided in “Interpretable
characteristics” section.

While decision trees possess excellent interpretabil-
ity characteristics, they can be prone to over-fitting
[35]. Therefore, two hyper-parameters are introduced
that allow for pre-pruning, which halts the algorithm
preemptively by extending the stop condition. On the
one hand, the algorithm halts when a certain depth

(max_depth) is reached. On the other hand, the algo-
rithm stops when the number of samples in a partic-
ular node of the decision tree is lower than a speci-
fied number (min_samples). The pseudo-code for this
technique is depicted in Algorithm 4 We call the pro-
cedure for building a single tree that tests all possi-
ble walk candidates, by setting sample equal to 1.0 and
curr_depth to 0.

It should be noted that our proposed induction
approach shares a lot of similarities with already existing
algorithms such as CART [36] and €5.0 [37]. These algo-
rithms work on feature matrices and recursively mine for
the most informative feature to induce a tree. Finding the
most informative feature is done by calculating a split-
ting criterion such as information gain or Gini coefficient
for all possible feature and threshold combinations. Our
technique replaces this phase where the most informative
feature is sought, by mining the most informative walk.
This allows our algorithm to work directly on graph data.

Extending to RF
Decision trees are often able to achieve high predic-
tive performances, while being completely interpretable.

Algorithm 4: BuiLp TREE(G, Virain, Ytrain, depth, max depth, min_samples,

sample, curr_depth)

# Check stop condition to create leaf node

if |Ytrain| < min_samples or curr_depth > max_depth or |set(Ytrain)| == 1:

| return Tree(class=MODE(Ytraqin ), walk=None)

# Mine most informative walk

walk < MINEWALKS(G, Virgin, Ytrain, depth, 1, sample)

# Partition data and create left and right children of node recursively

Vi, Y1, Ve, yr < PARTITION(walk, G, Virain, Ytrain)

node < Tree(class=None, walk=walk)

node.left < BuiLp_TREE(G, Vi, yi, depth, maz_depth, min_samples, curr_depth + 1)
node.right < BUILD_TREE(G, V., yr, depth, max_depth, min_samples, curr_depth + 1)

return node




Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

Page 7 of 15

Algorithm 5: BuiLp FOREST(G, Virain, Ytrain, depth, max_depth, min_samples,

vertex_sample, bootstrap, n_trees)

# Create a list of varying decision trees
trees < []
for d in RANGE(n_trees):
if bootstrap:
‘ Vbs: Ybs BDDTSTRAP(‘/trainv ytrain)
else:
‘ Vbs: Ybs ‘/t'ra,i'n,u Ytrain

tree < BUILD_TREE(G, Vps, Ybs, depth, max_depth, min_samples, vertex_sample, 0)

trees.APPEND(tree)
return trees

However, they can be susceptible to a high variance or
over-fitting. A RF is a technique that reduces the variance
by creating an ensemble of decision trees, in which each
tree is constructed from a fraction of training instances
and features. This often results in an increase in predic-
tive performance, as has been shown empirically [38]. In
our implementation, as shown in Algorithm 5, the type
and amount of sampling can be controlled through two
hyper-parameters. To construct each tree using different
weightings of the samples, the bootstrap parameter
can be set to true, which will sample |D| times with
replacements from D. To make sure each tree uses dif-
ferent features, the vertex_ sample parameter can be
used, which is a value between 0 and 1 and which cor-
responds to the fraction of candidates that are randomly
sampled to create each internal node of the decision trees.

While an ensemble of decision trees often results in a
better predictive performance, this comes at the cost of
lower interpretability and higher computational runtime
for both training and inference. The loss of interpretabil-
ity is due to the fact that different trees need to be studied
in order to grasp the model. Nevertheless, some inter-
pretability is still present, as the most important features
for the model can easily be listed. This can be done by
counting how many times a certain walk is used in the
different decision trees of the ensemble, additionally tak-
ing into account the position of the walk in the tree (as
a root node is often more important than a node at a
higher depth), which we will show in “Interpretable char-
acteristics” section. The computational runtime scales
linearly in function of the number of trees in the ensem-
ble. The pseudo-code for this approach is presented in
Algorithm 5.

Feature transform

By performing a single pass over all possible walk candi-
dates and keeping track of the K highest-scoring walks, we
can decouple the walk mining from the model induction.
This is done by using the K mined walks to create
K-dimensional binary feature vectors for the training
and testing instances and feeding these to any modeling
technique. Each feature in this vector corresponds to the

presence of a certain walk in an instance’s neighborhood.
The advantage of this approach is that the runtime is
low, since only a single pass over the data has to be per-
formed. The disadvantage is that the information gain for
each of these candidates will be calculated on the entire
data set, as opposed to specific partitions of the data set,
as happens for the tree-based techniques. Especially for
imbalanced data sets, only performing a single pass could
result in favoring the walks that are only able to distin-
guish between the majority class and all other classes.
To illustrate this, we created a very simple graph that is
depicted in Fig. 3. The network represents a three-class
classification problem that is imbalanced, as the pur-
ple class has eight samples while the yellow and green
class only have two samples. Clearly, two walks would
be enough to have perfect separation between all three
classes: {(v1,1), (vo, 1)} with v; € {1,2,3,4,5} and vy €
{6,7}. The decision tree approach would first mine one
(v1,1) as the information gain is highest for those walks,
and then partition the data into a data set with only pur-
ple nodes and a data set with the two yellow and green

O,
@

ONORONONO
00000000
OO0

Fig. 3 A simple artificial example where 6 walks would have to be
extracted by the feature transform approach in order to obtain
perfect separation, while the tree-based approaches only need 2




Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

Page 8 of 15

Algorithm 6: FEaTURE TRANSFORM(G, Virain, Ytrain, K)

# Create a set with all unique classes, and only 1 class for the binary case

classes + set(Ytrain)
if |classes| == 2:
| classes < classes|0]

# Mine walks for each unique class
walks < []
for class in classes:
Ynew  []
for Yi in Ytrain?
if y; == class:
| Ynew APPEND(1)
else:
| Ynew- APPEND(0)

walks.EXTEND(MINE_WALKS(G, Virgin, Ynew, depth, ﬁ 1.0))
return walks
nodes. Afterwards, it would mine the (v;,1) in the lat- Datasets

ter partition as the information gain would be highest in
that partition of the data. As such, due to the partition-
ing, walks are mined that are discriminative for specific
parts of the data. In contrast, we would have to set K > 5
to obtain perfect separation, as the information gain of all
{(vi,1) | 1 € {1,2,3,4,5}} is higher than {(v3,1) | v» €
{6,7}} in the context of the entire data set.

To combat this, we perform C passes over multi-class
data instead, by mapping the targets y onto binary vectors

yi with k € {1,...,C} to mine % walks:
_ 1 ifyl' =k
Yhi = { 0 else ©)

The pseudo-code for the feature transform approach is
listed in Algorithm 6.

Results

In this section, we will evaluate the three proposed tech-
niques in terms of predictive performance, runtime and
interpretability.

We extracted four benchmark data sets, describing KGs,
available from a public repository set up by Ristoski et
al. [39]. The AIFB data set describes scholarly data of
178 researchers in the Institute of Applied Informatics
and Formal Description Methods. The goal is to clas-
sify for each of these researchers to which of the four
research groups they belong. The BGS data set, stem-
ming from the British Geological Survey, describes geo-
logical measurements of 146 rock units. The goal is
to classify whether certain rocks are fluvial or glacial.
The MUTAG data set describes 340 complex chemical
molecules. Here, we need to determine for each of these
molecules whether or not they are potentially carcino-
genic. Finally, the AM data set describes 1000 historical
artifacts from the Amsterdam Museum, which need to be
classified into one of eleven categories. For each of these
data sets, we remove triples with specific predicates that
are too correlated with the target from our KG, as pro-
vided by the original authors. Moreover, a predefined split
into train and test set, with the corresponding ground
truth, is provided by the authors, which we used in our

Table 1 The properties of the four KG benchmark data sets used within this study

AIFB BGS MUTAG AM

Triples 29,226 916,421 74,567 5,700,371

Entities 8,285 333,863 23,644 1,498,566

Relations 47 105 24 100

Classes 4 2 2 1

Train entities 141 117 272 802

Test entities 37 29 68 198

Label predicates affiliation hasLithogenesis isMutagenic objectCategory
employs hasLithogenesisDescription material

carriedOutBy hasTheme




Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

Page 9 of 15

Table 2 The accuracy scores of Relational Graph Convolutional Networks (R-GCN), RDF2VEC and our proposed approaches on four

benchmark data sets

data set R-GCN RDF2VEC Tree Forest Transf+LR Transf+RF
AIFB 95.83 + 0.62 88.88 £ 0.00 85.83 £243 90.83 £2.29 8528 £1.34 86.39 £ 0.88
BGS 83.10 £ 0.80 87.24 £0.89 8758 £1.78 9138 £ 244 8931 £1.09 93.10+0
MUTAG 7323 £ 048 6720+ 1.24 68.97 £ 4.46 7441 + 2.88 78.82 + 1.86 7324 +£1.16
AM 8929 £0.35 8833 £ 061 86.81 £1.27 8833+£0.73 90.05 + 0.05 89.89 £ 1.14

experiments. The train set is used to mine the walks and
induce the models, which are then evaluated on the test
set. We summarize the properties of these data sets in
Table 1.

Predictive performance

To assess the predictive performance of our pro-
posed approaches, we compare our three approaches
to two well-known techniques: (i) an adaptation of
Graph Convolutional Networks (GCN) specifically made
for relational data (R-GCN) [40], and (ii) RDF2VEC
which learns a representation for the nodes in the
graph in an unsupervised, task-agnostic manner [28].
We used the following configurations for each of our
approaches:

e For the Tree approach, we tune the maximal depth of
the tree using cross-validation on the training set.
The possible values for the maximal depth were
{3,5,10, None}. None corresponds to growing trees
until there is perfect classification on the training set.

e For the Forest approach, three different
hyper-parameters were tuned using cross-validation
on the training set: (i) we tuned the maximal depth of
the trees in the forest to be either 5 or None, (ii) the
amount of vertex sampling to be equal to 0.5 or 0.9,
and (iii) the number of trees in the forest to be one of
{10, 25, 50}.

e The Transform approach extracted 10000 walks
using the training set in order to transform both
training and test set into binary feature matrices.
Walks that could only be found for one of the
training instances or all training instances were
immediately removed. The resulting matrices were
then fed to a LR (with /; regularization) and RF
Classifier. The (inverse of the) regularization strength
(C) of the LR classifier was tuned to be in
{0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0}. For the
RF classifier the maximum depth of the trees and the
number of trees were tuned to be in {5, 10, None} and
{10, 100, 250} respectively.

For each data set, we performed 10 runs. The average
accuracy scores achieved on the test set and their corre-
sponding standard deviations are summarized in Table 2.
The results for the Relational Graph Convolutional

Network (R-GCN) and RDF2VEC are taken directly from
Schlichtkrull et al. [40].

Runtime

For each of the accuracy measurements taken in
“Predictive performance” section, we also measured the
time it took to fit the model. The average fitting times (in
seconds) and their corresponding standard deviations for
the 10 taken measurements are listed in Table 3.

Interpretable characteristics
In this section, we inspect interesting parts of induced
decision trees on the different data sets.

AIFB

For the AIFB we set the maximum depth of this deci-
sion tree to 5 and the maximum path depth to 6 such
that the tree and extracted paths do not become too
complex. The accuracy score of the decision tree,
presented in Fig. 4, on the predefined test set, is
equal to 86.11%. In the root node, we find the walk
root
viewProjektOWL/id68instance. When this walk
can be found in the neighborhood of an instance, it can
no longer be of the research affiliation id4instance, as
this leaf does not occur in the subtree on the right. More-
over, this type of walk already demonstrates the added
value of having a fixed depth, by the use of wildcards, in
our walk. As a matter of fact, we could end up in an entity
which is of a type Project in only two hops (e.g. root
-> % -> viewProjektOWL/idé68instance) from
an instance in AIFB, but this results in a lot less infor-
mation gain than when six hops need to be taken. When
inspecting the original KG, it appears that only two
people, who are both from affiliation id3instance,
are directly involved in the Project idé8instance,

-> % =-> *x -> % -> *x -> % ->

Table 3 The computational runtime (in seconds) required to fit
the predictive models for our three proposed techniques on the
four KG benchmark data sets

data set Tree Forest Transform
AIFB 2483 £1.04 132.36 £ 63.31 24.22 £ 0.61
BGS 1241 £043 65.71 £ 3449 6.63 £ 0.29
MUTAG 1451 £ 0.60 104.88 + 32.84 466 +£037
AM 64329 +£12.25 7620.88 £ 2419.94 880.96 & 22.04




Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

Page 10 of 15

idlinstance id4instance id2instance

id3instance

root -> * -> * -> * -.> Personen/viewPersonOWL/id29instance
root -> * -> Projekte/viewProjektOWL/id5linstance

root -> * -> * .> * .> Copenhagen, Denmark
root -> * -> * .> * .> Personen/viewPersonOWL/id2instance

Noukhwnp

root -> * -> * .> * .> * .> * .> Projekte/viewProjektOWL/id68instance

>
$
S <,
& Yo
*»
&
idlinstance id2instance
3
\\
) %
«© %y,
> (4
o°/
idlinstance id3instance

root -> * -> Publikationen/viewPublikationOWL/id858instance

root -> * -> * .> * .> * .5 * .5 Publikationen/viewPublikationOWL/id1265instance

Fig. 4 An induced decision tree with a maximum depth of 5, on the AIFB data set

or in other words where this path with only two hops
could be matched. On the other hand, it appears that
these two people have written quite a large amount of
papers with the other researchers in their affiliation. As
such, a walk that first hops from a certain person (the
root) to one of his or her papers, and going from there
to one of the two people mentioned earlier through

an author predicate can be found for 45 people from
affiliation id3instance, 3 people from id2instance
and 2 people from idlinstance. The remaining nodes
in the right subtree from the root are less informative,
since these will try to split the 5 people from both affil-
iation id2instance and idlinstance from the 45
others.

GLACI

1. root -> * -> * .> * .> * _.> * .> RockName/DMTN
2. root -> * -> * -> * .> Division/?
3. root -> * -> SpatialScope/GENRAL

Fig. 5 An induced decision tree with a maximum depth of 3, on the BGS data set




Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

BGS

For the BGS we set the maximum depth of this decision
tree to 3 and the maximum path depth to 8. The simple
tree presented in Fig. 5 achieves an impressive accuracy
of 89.66%. In the root node, the walk root
-> RockName/DMTN can be
found. DMTN stands for diamicton [41], which is a term
often applied to unsorted glacial deposits, which is
informative for the GLACI (glacial) class, as it can be
found for 32 out of the 43 glacial training instances. When
retrieving walks of depth 6 that end in RockName /DMTN,
we find a pattern of an instance hopping through the
skos :broader predicate to one out of eleven different
geographical groupings present in the KG (e.g. the British
Coastal Deposits Group) that have diamicton sediment.
When the walk in the root node is not found, the presence
for the following walk, is tested: root -> % -> * ->
* -> Division/?.The walkisveryinformative for the
FLUV (fluvial) class, which is sediment produced by rivers,
with 38 out of 74 fluvial training instances for which it can
be found. It reaches Division/? again through a geo-
graphical grouping and ends up in the node through the
hasPredominantAge predicate. This means that the
predominant geological age of the geographical grouping
is undefined. The final walk corresponds to root -> =

-> * ->

*x —-> * —-> % —-> *

Page 11 of 15

-> SpatialScope/GENRAL, which is rather informa-
tive for the fluvial class if the walk is not found, with
27 out of the remaining 36 fluvial samples ending up
in this partition, but in combination with 5 out of the
11 remaining glacial samples. SpatialScope/GENRAL
corresponds to when the applicability of the KG’s
definition is generally applicable.

AM

For the AM data set, a higher max depth is required in
order to achieve a good predictive performance. This is
due to the fact that there are 11 different classes in this
data set. We therefore set the maximum depth to 9 and the
maximum depths of the paths to 8. The induced decision
tree is depicted in Fig. 6. The accuracy on the test set
of this tree is 79.29%. When inspecting the depth of the
decision trees induced for the results in “Predictive per-
formance” section, we see that a max depth of around 30
is required to achieve good accuracies. Such deep trees
are of course somewhat harder to visualize and would
require an interactive interface where parts of the tree
can be collapsed. It should also be noted that it is always
possible to highlight the path taken in the decision tree to
generate a prediction, which serves as an excellent local
explanation.

. root -> * -> am:t-12936
root -> * -> am:t-9340
root -> * -> am:t-10381
root -> * -> am:t-11124
root -> * -> am:t-13104
root -> * -> ¥ .> * -> am:t-27008
. root -> * -> am:t-11067

.root ->*->%*.>%*.>"'p, 174 nr 1'
. root -> * -> * -> ¥ .> '30428" &
10. root -> * -> 'stereokaart’ go"
11. root -> * -> * .> * .> am:t-13861
12. root -> * -> * -> * -> terms/Proxy
13. root -> * -> am:t-13287

14. root -> * -> am:t-9299

15. root -> * -> '1895-01-30'

. root -> * -> am:t-5298

CINOUPWNR

foung

t-22507 t-22504 t-5504

t-15579 t-22503

collections/nl/am/

foung

t-22505 t-22503 t-5504

t-15606

found

%
A}a o"”d

t-22506 t-5504
%0
%
O
&
5 %
o
x} ‘I”d
t-22508 t-15459

(+)
Y,
o
t-5504

Fig. 6 An induced decision tree with a maximum depth of 9, on the AM data set. am: is a prefix for the namespace http://purl.org/



http://purl.org/collections/nl/am/
http://purl.org/collections/nl/am/

Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

If we look at the mined walks, we see that they are
very shallow, i.e. there 5 walks of depth 4 and 11 walks
of depth 2. As such, the most discriminative informa-
tion is located in the close neighborhood of the training
entities. In the root, we find the walk root -> * ->
am:t-12936. If this walk can be found in the neigh-
borhood of a training entity, this is informative for class
t-22503. am:t-12936 appears to be associated with
the objectName predicate, which can be found for 228
of the 278 training entities of class t-22503 and for 1
of the 102 training entities of t -5504. The walk straight
to the right of the node therefore solely exists to iso-
late the only entity of t-5504 from the others. Then
for the first three children on the left-most path of the
tree, we find three walks (walk 2, 3 and 4) that are
informative for classes t-22505, £-14592, t-15606
in respective order. Walk 5 can be found for all of the
training instances of class t-22506 and for 2 of the
remaining 101 training entities of class t-5504. Walk 6
then partitions the remaining classes in two large groups:
(i) classes t-22506, t-15459, t-22508, t-22503
and (ii) £-22504, t-22507, t-15579. Class t-5504
appears in both subtrees.

When looking at the confusion matrix, the classes with
the largest error are t-15459 and t-15579. They both
appear only once in the leaf nodes. If we look at walk 14,
the parent of the leaf node with class t-15459, we see
that not finding the walk is more informative for class
t-22508 than finding the walk for class t-15459. As a
matter of fact, walk 14 can only be found in 3 of the 40
training entities of class t-15459. A higher depth will
most likely be required in order to classify entities of that
class accurately. Similarly, walk 9, the parent of the only
leaf node with class t - 15579, can only be found in 26 out
of 93 training entities.

MUTAG

For the final data set, we demonstrate how insights can be
still be retrieved from the less interpretable approaches,
the Transform & Forest approach. We first apply the
feature transform in order to extract 10000 different
walks. Of these walks, 9463 of them only appear once in
the neighborhood of an entity and are therefore removed.
This results in a 537-dimensional binary feature vector for
each of the train and test entities. Using these feature vec-
tors, a LR classifier with Lasso regularization is fit. The
accuracy of this classifier, on the test set, is 79.41%. Due
to the Lasso regularization, 302 of the 537 coefficients
have been set to 0. The interpretation of a coefficient
x; is that if the walk corresponding to that coefficient is
found in the neighborhood of an entity, the prediction
(before applying a sigmoid function to it) will increase
with x;. We can therefore inspect the walks that have cor-
responding coefficients with the highest (positive) values

Page 12 of 15

or lowest (negative) values. The walks with the highest
positive coefficients are:

® root -> % -> x -> % -> 0.016
(coef=44.19)

® YOOt -> % -> % -> % -> % -> x ->
0.016 (coef=42.55)

® root -> % -> x -> % -> 0.588
(coef=18.41)

® root -> %x -> x -> % -> -0.006

(coef=17.22)

If one of these walks is present in the neighborhood, the
probability of being positive increased. On the other hand,
we have the following walks associated with the lowest
(negative) values:

® OOt -> * -> *x -> % -> x -> % ->
0.146 (coef=—15.27)

® root -> * -> x -> % -> 0.016
(coef=—12.95)

® root -> * -> x -> % -> 0.027
(coef=—11.95)

® root -> % -> % -> % -> Alcohol

(coef=—11.54)

These walks decrease the probability of being positive.
We repeat this analysis for the forest approach. We fit a
forest of 25 different trees, each on 50% of the vertices in
the graph with no maximum depth. We can now inspect
the walks in the root nodes of the 25 trees, as these are the
most important ones. The accuracy of the decision tree of
this model is equal to 75%. Additionally, walks in the entire
tree can be inspected, and a metric that takes into account
the decrease in information gain or the position within the
tree can be used to measure its importance. In the 25 root
nodes, a total of 6 unique walks can be found, which are
displayed below with their corresponding count:
® root
Carbon-10 (count=8)
® root
(count=7)
root -»> * -> Five ring (count=6)

-> % —-> * -> % —-> % -> % ->

-> % -> % -> % -> Carbon-10

root -> % -> x -> x -> Carbon-16
(count=2)

® root -> ¥ -> x -> % -> Ester
(count=1)

® root -> % -> x -> % ->
Non ar_hetero 5 ring (count=1)

It appears that the presence of Carbon-10 (either 4 or 6
hops away from the entity) is very informative.

Discussion

Predictive performance

The results of Table 2, obtained in “Results” section,
clearly show that all three of the proposed techniques are



Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

competitive to the current state-of-the-art for node clas-
sification in KGs. The Tree approach is only slightly worse
than both techniques for AIFB and AM, while being bet-
ter than RDF2VEC for MUTAG and outperforming both
techniques for BGS. The Forest approach outperforms
the two techniques on BGS and MUTAG. The Trans-
form approach achieves the best predictive performance,
achieving state-of-the-art results on three of the four data
sets when the feature vectors are provided to both a LR
and RF classifier. Only on the AIFB data set, the R-GCN
outperforms all our proposed techniques. We speculate
that this is due to the fact that the graph for AIFB is very
dense, with a high average degree for the nodes within
the immediate neighborhood of the training entities. The
average degree of the entities that are 1 hop away from the
training entities in the KG is equal to 11.61 for the AIFB, as
opposed to 2.26, 3.68 and 10.57 for MUTAG, BGS and AM
respectively. The R-GCN is able to efficiently aggregate
information of these neighborhoods in an iterative fash-
ion that implicitly allows the model to capture complex
interactions that are not picked up by our techniques. The
fact that the increase in predictive performance in AM
is the smallest, can most likely be attributed to the same
reason.

It should further be noted that accuracy is often not
the ideal metric to measure the predictive performance
with. Although it is one of the most intuitive metrics,
it has several disadvantages such as skewness when data
is imbalanced. Nevertheless, the accuracy metric is the
only one allowing for comparison to related work, as
that metric was used in those studies. Moreover, the
used data sets are merely benchmark data sets and
the goal is solely to compare the performance of our
algorithms with the current state-of-the-art. We recom-
mend using different performance metrics, which should
be tailored to the specific use case. An example is
using the area under the receiver operating character-
istic curve (AUC) in combination with precision and
recall at a certain probability threshold for medical data
sets.

Runtime

From the results provided in Table 3, we can see that
the Transform technique is faster than the Tree approach,
when the number of classes, which determines the num-
ber of passes over the entire data set, in the classifi-
cation problem is low. For the Forest approach, we see
the highest runtimes with a large variance caused by the
fact that the tuned hyper-parameters were often different
over the runs due to random partitioning of the cross-
validation applied on the training data. Hyper-parameters
such as the maximal depth of all the trees, and the num-
ber of trees in the forest have a large impact on the
runtime.

Page 13 of 15

Table 4 A comparison of the three proposed techniques across
different dimensions

Decision Tree Random Forest Feature Transform

Runtime + + 4
Interpretability + 4+ + S
Predictive performance + ++ a4

* the feature transform approach is only interpretable if the model where the
features are fed to is interpretable

Comparison

For completeness, we provide an estimated ranking of the
three proposed techniques across three dimensions: (i)
computational runtime, (ii) interpretability, and (iii) pre-
dictive performance. The comparison is given in Table 4.
The rankings are estimated based on the experience of
the authors and based on the presented results. When
interpretability and transparency matter, the decision tree
technique is the most suitable candidate. Alternatively,
when excellent predictive performance is of importance,
the RF and feature transform techniques are preferable.
Of these two, the feature transform approach is the fastest
option.

Conclusion and future work

In this paper, we presented an algorithm that allows
mining for a specific type of walks that are informative
for certain (groups of) classes, in the context of node
classification for KGs. Moreover, we show that this
algorithm is a good basis for a predictive model, when
used in combination with one of three different tech-
niques proposed in this work. Experiments on four KG
benchmark data sets show that our proposed approaches
outperform the current state-of-the-art while, in contrast
to these techniques, being completely interpretable. This
is of great importance for applications situated in critical
domains.

It should be noted that we only focused on a very spe-
cific type of walk in this study, which allows for very effi-
cient mining, but has a somewhat limited expressiveness
and is less interpretable when compared to walks without
wildcards. Nevertheless, by using multiple of these walks,
good predictive performances can be achieved, as we
demonstrated empirically. Future work should focus on
algorithms that mine more expressive walks, e.g. by filling
in some of the wildcards on the walk or by replacing nodes
by subgraphs, while still being efficient. Moreover, the size
of the data sets used in this study was rather moderate. An
evaluation on larger data sets in terms of computational
time and predictive performance would therefore be an
interesting future step.

Abbreviations
KG: Knowledge graph; LR: Logistic regression; RF: Random forest; R-GCN:
Relational graph convolutional network; RDF: Resource description framework



Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

Acknowledgements
N/A

About this supplement

This articles has been published as part of BMC Medical Informatics and
Decision Making Volume 20 Supplement 4 2020: Selected articles from the Fourth
International Workshop on Semantics-Powered Data Analytics (SEPDA 2019). The
full contents of the supplement are available at https://
bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-
20-supplement-4

Authors’ contributions

GV and BS were responsible for the implementation of the proposed
algorithm and techniques, and for conducting the experiments, using
valuable advice of FT and FO. Moreover, the authors would like to thank
Michael Weyns for proof-reading this work. All author(s) have proofread and
approved the final manuscript.

Authors’ information
N/A

Funding

GV (1531417N) and BS (1SA0219N) are both funded by a strategic base
research grant of Fonds Wetenschappelijk Onderzoek (Fwo). Publication costs
are funded by Fwo.

Availability of data and materials

An implementation of the proposed algorithms, and code to reproduce the
experiments, are available on Github!. The benchmark data sets used for our
experiments are available from the original authors?.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 May 2020 Accepted: 18 May 2020
Published: 14 December 2020

References

1. Hamilton WL, Ying R, Leskovec J. Representation Learning on Graphs:
Methods and Applications. Prepr article to appear in the IEEE Data Eng
Bull. 2017. https://doi.org/10.1038/nature23018.1709.05584.

2. Wilcke X, Bloem P, De Boer V. The Knowledge Graph as the Default Data
Model for Machine Learning. Data Science. 2017;1:1. https://doi.org/10.
3233/DS-170007.

3. Liben-Nowell D, Kleinberg J. The link-prediction problem for social
networks. J Am Soc Inf Sci Technol. 2007;58(7):1019-31.

4. Backstrom L, Leskovec J. Supervised Random Walks: Predicting and
Recommending Links in Social Networks. Proc Fourth ACM Int Conf on
Web Search Data Min. 2011. https://doi.org/10.1145/1935826.1935914.
1011.4071.

5. Hamilton WL, Ying R, Leskovec J. Inductive Representation Learning on
Large Graphs. In: In: NIPS; 2017. p. 1-19. http://arxiv.org/abs/1706.02216.

6. Suchanek FM, Kasneci G, Weikum G. YAGO: a core of semantic
knowledge. Proc the 16th Int Conf on World Wide Web. 2007697-706.
https://doi.org/10.1145/1242572.1242667.

7. AuerS, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z. DBpedia: A
nucleus for a Web of open data. In: Lecture Notes in Computer Science
(including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) vol. 4825 LNCS. Springer; 2007. p. 722-735.
https://doi.org/10.1007/978-3-540-76298-052.

https://github.com/IBCNServices/ MINDWALC
2http://w3id.org/swdml-datasets

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Page 14 of 15

Carlson A, Betteridge J, Kisiel B. Toward an Architecture for Never-Ending
Language Learning. Proc Conf Artif Intell (AAAI). 2010;2010:1306-13.
https://doi.org/10.1002/ajp.20927.

Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase. In:
Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data - SIGMOD '08; 2008. p. 1247. https://doi.org/10.
1145/1376616.1376746 http://citeseer.ist.psu.edu/viewdoc/summary?
https://doi.org/10.1.1.538.7139.

Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T,
Sun'S, Zhang W. Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD '14; 2014. p.
601-610. https://doi.org/10.1145/2623330.2623623. arXiv:1301.3781v3.
Holzinger A. From machine learning to explainable ai. In: 2018 World
Symposium on Digital Intelligence for Systems and Machines (DISA).
Berlin: Springer; 2018. p. 55-66.

Holzinger A, Biemann C, Pattichis CS, Kell DB. What do we need to build
explainable ai systems for the medical domain? arXiv preprint. 2017.
arXiv:1712.09923.

Lundberg SM, Lee S-I. A unified approach to interpreting model
predictions. In: Advances in Neural Information Processing Systems. New
York: Curran Associates; 2017. p. 4765-74.

Ribeiro MT, Singh S, Guestrin C. why should i trust you?" explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. New
York: ACM; 2016. p. 1135-44.

Slack D, HilgardS, JiaE, Singh'S, Lakkaraju H. How can we fool lime and
shap? adversarial attacks on post hoc explanation methods. arXiv preprint
arXiv:1911.02508. 2019.

Rudin C. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nat Mach Intell.
2019;1(5):206-15.

Latouche P, Rossi F. Graphs in machine learning: an introduction. ESANN.
2015207-18. https://doi.org/1506.06962.

Liben-Nowell D, Kleinberg J. The Link Prediction Problem for Social
Networks. Proc Twelfth Annual ACM Int Conf Inf Knowl Manag (CIKM).
2003;2003:556-9. https://doi.org/10.1002/asi.v58:7.arXiv:1010.0725v1.
Bhagat S, Cormode G, Muthukrishnan S. Node classification in social
networks. Soc Netw Data Analytics. 2011. https://doi.org/10.1007/978-1-
4419-8462-351101.3291.

Vishwanathan SVN, Schraudolph N, Kondor R, Borgwardt KM. Graph
Kenrels. J Mach Learn Res. 2010;11:1201-42. https://doi.org/10.1142/
97898127724350002.0807.0093.

Losch U, Bloehdorn S, Rettinger A. Graph kernels for rdf data. In:
Extended Semantic Web Conference. Berlin: Springer; 2012. p. 134-48.
de Vries GK. A fast approximation of the weisfeiler-lehman graph kernel
for rdf data. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Berlin: Springer; 2013. p. 606-21.

de Vries GKD, de Rooij S. Substructure counting graph kernels for
machine learning from rdf data. Web Semant Sci Serv Agents World Wide
Web. 2015;35:71-84.

Fanizzi N, d’Amato C, Esposito F. Statistical learning for inductive query
answering on owl ontologies. In: International Semantic Web Conference.
Berlin: Springer; 2008. p. 195-212.

Goyal P, Ferrara E. Graph embedding techniques, applications, and
performance: A survey. Knowl-Based Syst. 2018;151:78-94. Elsevier.

Nickel M, Murphy K, Tresp V, Gabrilovich E. A review of relational
machine learning for knowledge graphs. Proc IEEE. 2015;104(1):11-33.
Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781. 2013.
Ristoski P, Paulheim H. Rdf2vec: Rdf graph embeddings for data mining.
In: International Semantic Web Conference. Berlin : Springer; 2016. p.
498-514.

Cochez M, Ristoski P, Ponzetto SP, Paulheim H. Global rdf vector space
embeddings. In: International Semantic Web Conference. Berlin: Springer;
2017. p.190-207.

Saeed MR, Prasanna VK. Extracting entity-specific substructures for rdf
graph embedding. In: 2018 IEEE International Conference on Information
Reuse and Integration (IRI). IEEE; 2018. p. 378-85.


https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-4
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-4
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-4
https://doi.org/10.1038/nature23018.1709.05584
https://doi.org/10.3233/DS-170007
https://doi.org/10.3233/DS-170007
https://doi.org/10.1145/1935826.1935914. 1011.4071
https://doi.org/10.1145/1935826.1935914. 1011.4071
http://arxiv.org/abs/1706.02216
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1007/978-3-540-76298-0 52
https://github.com/IBCNServices/MINDWALC
http://w3id.org/sw4ml-datasets
https://doi.org/10.1002/ajp.20927
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
http://citeseer.ist.psu.edu/viewdoc/summary?
https://doi.org/10.1.1.538.7139
https://doi.org/10.1145/2623330.2623623.
https://doi.org/1506.06962
https://doi.org/10.1002/asi.v58:7. arXiv:1010.0725v1
https://doi.org/10.1007/978-1-4419-8462-3 5 1101.3291
https://doi.org/10.1007/978-1-4419-8462-3 5 1101.3291
https://doi.org/10.1142/9789812772435 0002. 0807.0093
https://doi.org/10.1142/9789812772435 0002. 0807.0093

Vandewiele et al. BMIC Medical Informatics and Decision Making 2020, 20(Suppl 4):191

31.

32.

33

34.
35.

36.

37.

38.
39.

40.

41.

Defferrard M, Bresson X, Vandergheynst P. Convolutional neural
networks on graphs with fast localized spectral filtering. In: Advances in
Neural Information Processing Systems. New York: Curran Associates;
2016. p.3844-52.

Kipf T. N, Welling M. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907. 2016.
Schlichtkrull M, KipfT. N, Bloem P, Van Den Berg R, Titov |, Welling M.
Modeling Relational Data with Graph Convolutional Networks. In:
European Semantic Web Conference. Springer; 2018. p. 593-607.
Quinlan JR. Induction of decision trees. Mach Learn. 1986;1(1):81-106.
Schaffer C. When does overfitting decrease prediction accuracy in
induced decision trees and rule sets?. In: European Working Session on
Learning. Berlin: Springer; 1991. p. 192-205.

Breiman L. Classification and Regression Trees. Abingdon-on-Thames:
Routledge; 2017.

Kuhn M, Weston S, Coulter N, Quinlan J. R. C50: decision trees and
rule-based models. 2004. https://cran.r-project.org/web/packages/C50/.
Accessed 9 June 2020.

Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.

Ristoski P, de Vries GKD, Paulheim H. A collection of benchmark datasets
for systematic evaluations of machine learning on the semantic web. In:
International Semantic Web Conference. Berlin: Springer; 2016. p. 186-94.
Schlichtkrull M, KipfT. N, Bloem P, Van Den Berg R, Titov |, Welling M.
Modeling relational datawith graph convolutional networks. In: European
Semantic Web Conference. Berlin: Springer; 2018. p. 593-607.

Flint RF, Sanders J, Rodgers J. Diamictite, a substitute term for
symmictite. Geol Soc Am Bull. 1960;71(12):1809-10.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 15 of 15

o fast, convenient online submission

 rapid publication on acceptance

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research? Choose BMC and benefit from:

o thorough peer review by experienced researchers in your field
o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC



https://cran.r-project.org/web/packages/C50/

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Introduction
	Related work
	Context
	Entity classification: problem definition
	Converting KGs
	Neighborhoods, walks and wildcards


	Methodology
	Discriminative walk mining
	Example
	Implementation
	Computational complexity
	Classification with discriminative paths
	Decision tree induction
	Extending to RF
	Feature transform


	Results
	Data sets
	Predictive performance
	Runtime
	Interpretable characteristics
	AIFB
	BGS
	AM
	MUTAG


	Discussion
	Predictive performance
	Runtime
	Comparison

	Conclusion and future work
	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

