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Abstract

Background: Patients increasingly turn to search engines and online content before, or in place of, talking with a
health professional. Low quality health information, which is common on the internet, presents risks to the patient in
the form of misinformation and a possibly poorer relationship with their physician. To address this, the DISCERN
criteria (developed at University of Oxford) are used to evaluate the quality of online health information. However,
patients are unlikely to take the time to apply these criteria to the health websites they visit.

Methods: We built an automated implementation of the DISCERN instrument (Brief version) using machine learning
models. We compared the performance of a traditional model (Random Forest) with that of a hierarchical encoder
attention-based neural network (HEA) model using two language embeddings, BERT and BioBERT.

Results: The HEA BERT and BioBERT models achieved average F1-macro scores across all criteria of 0.75 and 0.74,
respectively, outperforming the Random Forest model (average F1-macro = 0.69). Overall, the neural network based
models achieved 81% and 86% average accuracy at 100% and 80% coverage, respectively, compared to 94% manual
rating accuracy. The attention mechanism implemented in the HEA architectures not only provided ’model
explainability’ by identifying reasonable supporting sentences for the documents fulfilling the Brief DISCERN criteria,
but also boosted F1 performance by 0.05 compared to the same architecture without an attention mechanism.

Conclusions: Our research suggests that it is feasible to automate online health information quality assessment,
which is an important step towards empowering patients to become informed partners in the healthcare process.

Keywords: Machine learning, Information quality, Natural language processing, Neural networks, Health
communication

Background
Patients often turn to search engines and online content
before, or in place of, talking with a health professional [1].
However, online health information is not regulated, and
prior studies have found wide variations in information
quality [2]. Poor risk communication, biased writing, and
lack of transparency about the source of the information
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plague online health texts [3, 4]. This presents a real
risk to patients, in the form of misinformation [5–7] and
negatively affecting their interactions with health care
providers [8, 9].
In response to this problem, many organizations, such

as the Health on the Net Organization, the Journal of the
American Medical Association, and the National Health
Service of the UK, have established guidelines for assess-
ing the quality of online health information [10]. These
guidelines describe a set of criteria an article must meet to
be considered of high quality. It is worth noting that qual-
ity is distinct from accuracy. While these guidelines check
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for indicators of well written, unbiased, and evidence
based articles, they do not attempt to verify the scientific
accuracy of the information (a significantly more chal-
lenging problem). Similarly, the concept of quality is also
distinct from that of credibility, or how likely a reader is to
believe the information. The propensity to which readers
believe the content they consume is influenced not only
by information accuracy, but also structural aspects of the
media, such as a website’s design, appearance, and over-
all readability [11]. Thus, quality guidelines form a basis
by which systems may affect individual’s perceptions of
credibility, without breaching into the field of information
accuracy assessment.
The implementation strategies of these quality guide-

lines so far fall into two categories: Distributed Guide-
lines and Centralized Approvers. However, both of these
strategies have scalability issues that limit their reach and
prevent them from broadly affecting patient information
consumption [10]. In the following section, we describe
both of these implementation approaches in use today,
and then describe a third solution that addresses the issue
of scalabilty.

Distributed Guidelines One approach to helping
patients find high quality health information is to develop
a criteria and publish it as a public tool citizens can
use. An example of this approach is the DISCERN
instrument [12]. The DISCERN instrument’s criteria
are specifically designed to be able to be understood
and applied by any lay person; no medical knowledge
is required. This implementation approach puts a sig-
nificant burden on the patient. For this approach to be
successful, the patient has to be aware of the guideline,
learn how to evaluate the criteria, and take considerable
time to apply the guidelines to every website the patient
encounters.

Centralized Approvers The second implementation
approach in use today is Centralized Approvers. In
this approach, an organization manually assesses web
pages for health information quality. An example of this
approach is the Health on the Net Foundation, which
developed the HONcode guidelines. It assesses websites
for quality, and allows those that pass their criteria to dis-
play a HONcode badge on their webpage [13]. A variant
on this approach is to register all manually approved con-
tent in a centralized repository. Patients can search the
repository with the confidence that all listed sites have
been vetted for quality.
The Centralized Approver approach is not scalable in

the face of a massive and rapidly growing internet. Qual-
ity assessment is a costly manual process. Not only do
new pages need to be evaluated, but previously-evaluated

pages need to be re-evaluated on a regular basis in case of
content changes [10].

Automated Assessment An automated quality assess-
ment process is key to providing the public with scalable
tools for assessing online health information quality.
Initial attempts to automate the assessment of health

information used simplistic approaches, such as read-
ability scores, and did not capture more complex issues
with health information, such as tone and bias [4]. A
machine learning model developed by the HON organi-
zation showed promising but limited initial results [14].
But with the recent developments inmachine learning and
natural language processing methods, there is a renewed
opportunity for tackling this problem. Neural Language
Models have been successfully applied in many domains,
including translation, question answering, andmanymore
[15–18], capturing details and nuances in language that
made information quality assessment an expensive man-
ual process for so long.

Research objectives
In this research, we study and develop machine learn-
ing models to automate the application of the DISCERN
instrument. The DISCERN instrument was developed
by Charnock et al. [12] at Oxford University and funded
by the National Health Service (UK). The instrument
consists of 15 questions to help a lay-person to evaluate
the quality of online health information regarding treat-
ment options. The validity of the DISCERN instrument
has been evaluated in multiple studies, and is commonly
used among researchers [19]. The DISCERN instrument
suffers from the same sustainability issues as all dis-
tributed guidelines do: patients are unlikely to take the
time to apply this criteria to each website they find.
In this study, we built and evaluated machine learning
models for the automated annotation of the Brief DIS-
CERN criteria [20]. We focus on the Brief DISCERN
criteria [20], which is a 6 question subset of the DISCERN
crieria that has been shown to capture the quality of health
information as reliably as the complete DISCERN instru-
ment. Separatemodels were developed and tested for each
of the five Brief DISCERN questions (one question, Q13,
was excluded due to low interrater reliability). We com-
pared the use of traditional machine learning (Random
Forest) with feature engineering vs. hierarchical encoder
attention-based neural network (HEA) models. We also
compared the performance of neural models with the
attention mechanism (HEA) and without it (HE). Addi-
tionally, for both neural architectures, we experimented
with the use of two pre-trained neural language models
BERT [21] and BioBERT [22] as embeddings in the HEA
and HE models. Thus, in total, we trained and compared
5 different architectures: RF, HE+BERT, HE+BioBERT,
HEA+BERT, and HEA+BioBERT.
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Table 1 Description of the dataset by health topic

Topic Breast Cancer Arthritis Depression

Number of Articles 79 88 102

Number of Sentences 10,170 10,950 13,790

Number of Tokens 125,891 129,759 160,597

Avg Sentences per Article 129 124 135

Avg Tokens per Article 1,549 1,475 1,574

Positive Class Prevalence

Q4: References 13% 14% 14%

Q5: Date 20% 26% 24%

Q9: How Treatment Works 85% 28% 52%

Q10: Treatment Benefits 89% 80% 65%

Q11: Treatment Risks 63% 16% 33%

Methods
Data collection
Using Google Trends, we identified breast cancer, arthri-
tis, and depression as medical topics with the highest
search volume since 2004. Using Google and Yahoo search
engines, we identified a total of 269 Web pages (HTML
articles) with a focus on treatment choices and options
across the 3 topics. Two raters (master’s students) were
trained for 2 months on using the DISCERN instrument
and scoring platform. Both raters scored all articles on
DISCERN’s 5 point scale. Interrater agreement for the
DISCERN criteria was adequate to high, ranging between
0.61–0.91 as measured by the Krippendorf score. The pro-
cess of building the training corpus is described in more
detail in [23]. The dataset is described in Table 1.

Data preprocessing
We converted the scores for each question in the DIS-
CERN instrument, which ranges from 1-5, into a binary
classification, where score 3-5 is passing and score 1-2 is
failing the criteria. The texts from the HTML articles were
extracted and cleaned using the beautifulsoup library1.

Neural network model
We designed and implemented a Hierarchical Encoder
Attention-based (HEA) model in PyTorch [24] taking into
consideration the structure of our problem and the lim-
its of our training data. The model architecture design
is primarily motivated by the intrinsic hierarchy of the
documents (i.e. sequences of word/tokens represent a sen-
tence, and sequences of sentences represent a document).
In addition, our attention-based modeling architecture
reflects the property that passing or failing the DISCERN
criteria depends on only small fragments throughout the

1https://www.crummy.com/software/BeautifulSoup/.

article. This architecture enables the model to "pay atten-
tion" to single sentences within a larger article.
HEA’s architecture is composed of a hierarchical struc-

ture with two encoders and a classifier (Fig. 1). The
first encoder is a sentence encoder SentEncoder (Fig. 2)
which is based on a bidirectional recurrent neural net-
work (RNN) that encodes each sentence (i.e. sequence of
tokens) into a dense vector representation. The second
encoder is a document encoderDocEncoder (Fig. 3) which
is also based on a bidirectional RNN that encodes the
sequence of sentences’ representation (i.e. vectors com-
puted from the first encoder) and uses an attention mech-
anism [15] along with a global context vector to compute
a dense vector representation for the whole document.
A decoder/classifier maps the document’s learned vector
representation to the labels using an affine map followed
by softmax layer computing a probability distribution on
the labels for the processed document. An overview of the
HEA model architecture can be found in Fig. 1.

Sentence encoder (SentEncoder)
Formally, given an input sentence S =[w1,w2, · · · ,wTS ]
where wt represents the token representation at position
t (i.e. 1-of-K encoding where K is the size of vocabulary
V – the set of all tokens in the training corpus), a vanilla
RNN will compute a hidden vector at each position (i.e.
state vector ht at position t), representing a history or con-
text summary of the sequence using the input and hidden
states vector form the previous steps. Equation 1 shows
the computation of the hidden vector ht using the input
wt and the previous hidden vector ht−1 where φ is a non-
linear transformation such as ReLU(z) = max(0, z) or
tanh(z) = ez−e−z

ez+e−z .

ht = φ(Whwwt + Whhht−1 + bhw) (1)

Whh ∈ R
Dh×Dh , Whw ∈ R

Dh×Dw , bhw ∈ R
Dh , represent

the RNN’s weights to be optimized and Dh, Dw are the
dimensions of ht andwt vectors respectively. Note that the
weights are shared across the network and Dw could be
equal to K the size of the vocabulary (i.e. in case of 1-of-K
encoding) or the size of a dense embedding vector gener-
ated using a languagemodel such as BERT [21]. The use of
RNN allows the model to learn long-range dependencies
where the network is unfolded as many times as the length
of the sequence (sentence in our case) it is modeling.
Although RNNs are capable of handling and represent-
ing variable-length sequences, in practice, the learning
process faces challenges due to the vanishing/exploding
gradient problem [25–27]. In this work, we used gated
recurrent unit (GRU) [28, 29] to overcome the latter chal-
lenges by updating the computation mechanism of the
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Fig. 1 Overview of the HEA neural network architecture. In lieu of traditional feature engineering, the HEA architecture learns representations at the
word, sentence, and document level before making a classification. Word representations are generated by the pre-trained BERT embedder. An
attention mechanism aids in learning a document representation from amongst many sentences

hidden state vector ht through the specified equations
below.

zt = σ(Wz
hwwt + Wz

hhht−1 + bzhw) (update gate)

rt = σ(Wr
hwwt + Wr

hhht−1 + brhw) (reset gate)

h̃t = φ(Wh̃
hwwt + rt � Wh̃

hhht−1 + bh̃hw) (new state/memory cell)

ht = (1 − zt) � h̃t + zt � ht−1 (hidden state vector)

The GRU model computes a reset gate rt that is used
to modulate the effect of the previous hidden state vec-
tor ht−1 when computing the new memory vector h̃t . The
update gate zt determines the importance/contribution of
the newly generated memory vector h̃t compared to the
previous hidden state vector ht−1 when computing the
current hidden vector ht . The weights Wz

hw, W
r
hw, W

h̃
hw

Fig. 2 HEA’s SentEncoder architecture for computing sentence embedding



Kinkead et al. BMCMedical Informatics and DecisionMaking          (2020) 20:104 Page 5 of 13

Fig. 3Model architecture for converting a document’s sentence embeddings into a document prediction

each ∈ R
Dh×Dw and Wz

hh, W
r
hh, W

h̃
hh each ∈ R

Dh×Dh . The

biases bzhw, b
r
hw, b

h̃
hw each ∈ R

Dh where Dh and Dw are the
dimensions of ht and wt vectors respectively. The opera-
tor σ represents the sigmoid function, φ the tanh or ReLU
function, and � the element-wise product (i.e. Hadamard
product).
The SentEncoder uses a bidirectional GRU that computes
two hidden state vectors

−→
ht and

←−
ht for each token wt in

sentence S corresponding to left-to-right and right-to-left
GRU encoding of the sentence. We experimented with
two options for computing sentence representation vector
S: (1)concatenation [

−→
hTS

�;
←−
h0�]�, and/or (2) summation

[
−→
hTS +

←−
h0 ] of the computed left and right hidden state

vectors of the last wTS and first w0 tokens respectively in
sentence S.

Document encoder (DocEncoder) with attention
Originally, each documentDoc in our corpus is composed
of a sequence of sentences (i.e. Doc =[ S1, S2, · · · , STDoc ]
where Si represents the ith sentence and TDoc is the
number of sentences in Doc). Each sentence Si is
composed of a sequence of tokens (as described in
“Sentence encoder (SentEncoder)” section above) that are
processed using SentEncoder model to compute the sen-
tence vector representation Si. As a result, the processed
document Docproc is a sequence of sentences’ vector rep-
resentation (i.e. Docproc =[ S1, S2, · · · , STDoc ]) that is used
as input to DocEncoder model. The DocEncoder uses a
bidirectional GRU that computes two hidden state vectors

−→
li and

←−
li for each sentence representation Si correspond-

ing to left-to-right and right-to-left GRU encoding of the
sentences in Docproc. We experimented with two options
for joining both hidden state vectors

−→
li and

←−
li into one

vector using: (1)concatenation [
−→
li �;

←−
li �]�, and/or (2)

summation [
−→
li +

←−
li ] that will be denoted by

−→←−
li from now

on. Hence, the output of the DocEncoder is a sequence of

joined hidden state vectors O =[
−→←−
l1 ,

−→←−
l2 , · · · ,

−−→←−−
lTDoc ] that is

fed to an attention layer to compute the weights associ-
ated with each vector which in turn are used to compute a
weighted vector sum to obtain a document vector repre-
sentation z.

Attention layer
For many of the DISCERN criteria, pass or fail of the
criteria depends on only small fragments throughout the
article. For example, for the question “Is it clear when
the information used or reported in the publication was
produced?”, there is likely only one line among a 200+ sen-
tence article (i.e. “Last reviewed on...”) that determines
whether the article passes the criteria. Our attention-
based modeling architecture reflects this problem struc-
ture: the model can “pay attention” to single sentences
within a larger article. We adapt the idea of global atten-
tion model [16] in which a global context/query vector
q (i.e. trainable parameters in the model) was used along

with the output O =[
−→←−
l1 ,

−→←−
l2 , · · · ,

−−→←−−
lTDoc ] from DocEncoder
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to generate document representation vector z. The objec-

tive is to compute attention weights for every
−→←−
li vector

such that z = ∑TDoc
i=1 αi

−→←−
li where αi is the normalized

weight computed using Eq. 2.

αi = exp (score(q,
−→←−
li ))

∑TDoc
k=1 exp (score(q,

−→←−
lk ))

(2)

For the attention scoring function, we experimented with
two options inspired by the additive approach [16, 30] and
the scaled dot-product work in [15] (see Equations 3 and
4 respectively). In Eq. 3, the score is computed using three

operations: (1) a weight matrix Wl
ql ∈ R

Dq×Dl maps
←−−→
li

to a fixed-length vector of dimension equal to the query
vector q (i.e. Dq), (2) a non-linear transformation tanh
is applied, and (3) a dot-product with q is performed. In
contrast, in Eq. 4, the score is computed by performing

a dot-product between the query vector q and
−→←−
li scaled

by Dl which is the dimension of both vectors in similar
approach to [15]. Our choice of attention score functions
from the vast array of options in the literature [16, 30], was
based on limiting the number of parameters in our model
given the size of our dataset.

score(q,
−→←−
li ) = q�tanh(Wl

ql

−→←−
li ) (3)

score(q,
−→←−
li ) = q�

−→←−
li√
Dl

(4)

Decoder/output classifier
The last layer in the HEA model takes as input the
computed document representation vector z from the
DocEncoder layer and performs an affine transformation
followed by softmax operation to compute a probability
distribution on the labels for the document under consid-
eration. That is, the outcome ŷ for a given Brief DISCERN
criterion is computed using Eq. 5

ŷ = σ(WVlabelzz + bVlabel ) (5)

where WVlabelz ∈ R
|Vlabel|×Dz , bVlabel ∈ R

|Vlabel| represents
the classifier’s weights to be optimized, Vlabel ∈ {0, 1} is
the set of admissible labels for a criterion (binary vari-
able in our case), |Vlabel| is the number of labels, Dz is the
dimension of z (document representation vector), and σ

is the softmax function. As a result, the outcome ŷ rep-
resents a probability distribution over the set of possible
labels Vlabel.

Objective function
We used cross-entropy loss as our objective function for
each Brief DISCERN criterion model. The loss function
for a jth document is defined by Eq. 6 where yc ∈ {0, 1}
is equivalent to 1

[
y = c

]
(i.e. a boolean indicator equal to

1 when c is the reference/ground-truth class), and ŷc is
the probability of the class c. The objective function for
the whole training set Dtrain is defined by the average loss
across all the documents in Dtrain plus a weight regular-
ization term (i.e. l2-norm regularization) applied to the
model parameters represented by θ (see Eq. 7).

l(j) = −
|Vlabel|∑

c=1
y(j)
c × log(ŷ(j)

c ) (6)

L(θ) = 1
N

N∑

j=1
lj + λ

2
||θ ||22 (7)

In addition to the l2-norm regularization, we also experi-
mented with dropout [31] by deactivating neurons in the
network layers using probability pdropoout . Moreover, we
used pre-trained language models such as BERT [17, 21]
and BioBERT [22] to extract token embeddings that are
used as input to HEA’s model (i.e. representation of token
wt).
We additionally implemented a neural-based model

(HE) that follows the same architecture of HEA model
but without the attention layer such that the output of
the DocEncoder representing a sequence of joined hidden

state vectors O =[
−→←−
l1 ,

−→←−
l2 , · · · ,

−−→←−−
lTDoc ] is mean pooled (i.e.

averaged) to obtain an overall document vector represen-
tation z.

Hyperparameter optimization for neural models
We developed a multiprocessing module that used a uni-
form random search strategy [32] that randomly chose
a set of hyperparameters configurations (i.e. layer depth,
embedding size, attention approach, etc.) from the set of
all possible configurations. Then the best configuration
for each model (i.e. the one achieving best performance
on the validation set) was used for the final training and
testing.

Baseline machine learning models
For the traditional modeling approach, the content of
each article was converted into a bag of words repre-
sentation and weighted using the term frequency–inverse
document frequency (TF-IDF) weighting scheme.We also
computed a set of features based on the existence of
HTML links, bibliography keywords, references to medi-
cal terms (extracted usingMetaMap Lite [33]), and named
entities within the text, as well as a measure of text polar-
ity. Recursive feature elimination with cross validation was
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used to identify the optimal subset of features. For its
ease of interpretability and good performance on feature
sets with many categorical variables, we implemented a
Random Forest model with scikit-learn [34] to predict if
the criterion is fulfilled or not for every criterion in Brief
DISCERN.

Experimental setup
We followed a stratified 5-fold cross-validation scheme
where each fold was defined as a distinct 80%-20% train-
test split. Due to the imbalance in outcome classes, train-
ing examples were weighted inversely proportional to
class/outcome frequencies in the training data. Articles
from the three health topics were randomly distributed
between the 5 folds. Within each fold, parameter selec-
tion was performed with a validation set consisting of 10%
of the training set. During the training of the models, the
epoch in which the model achieved the best F1-macro
score on the validation set was recorded, and model state
as it was trained up to that epoch was saved. This best
model, as determined by the validation set, was then
tested on the test split.
Model performance was evaluated using F1-macro and

classification accuracy. In this quality assessment prob-
lem, we value precision equally with recall, so F1 is a good
measure that captures both. The evaluation of the trained
models was based on their average performance on the
test sets of the five folds.
We also performed a coverage analysis to determine

how the model could be adapted to handle uncertainty.
In addition to classifying articles as low or high qual-
ity, we also have the option of allowing the model report
that it is unsure about a criteria. In instances when the
model has a low confidence in its prediction, it is more
valuable to the user for the model to convey that uncer-
tainty, than to make a less accurate prediction. In addition,
there is also the option to send articles where the model
has low confidence to a human for manual evaluation.
However, there is a direct trade-off between the quality
(accuracy) and the quantity the predictions; by requir-
ing a higher threshold of confidence, the model will by
definition make a fewer number of predictions. The fre-
quency with which the model makes prediction above a
certain confidence threshold, i.e. outputs a prediction to
the user, is called coverage. We calculated the models’
accuracy at different levels of coverage and their asso-
ciated confidence thresholds. For example, to calculate
the accuracy associated with a coverage of 80%, we com-
puted the 20th percentile prediction confidence score,
and computed accuracy metrics on only the articles with
prediction confidence scores (i.e. the probability from soft-
max layer) that exceed the 20th percentile. Predictions
that are below this threshold are considered unsure. These
are instances where the model would abstain frommaking

a prediction, or the article could be sent for manual
review.

Code availability
The data preprocessing and the models’ implementation
(training and testing) workflow is made publicly available
at https://github.com/uzh-dqbm-cmi/auto-discern.

Results
We compared the performance of the five trained models
(Random Forest, HEA with BERT and BioBERT embed-
dings, andHEwith BERT and BioBert embeddings) across
all five folds using F1-macro scores (Table 2 and Fig. 4).
Overall, the HEA architecture perforemd the best, scoring
an average F1-macro score of 0.75 with BERT embeddings
and 0.74 with BioBERT embeddings. In comparison, the
HE architectures without the attention mechanism aver-
aged 0.70 on both embeddings. The Random Forest model
achieved an average F1-macro score of 0.69.
Almost all models performed the best on question

4 (“Is it clear what sources of information were used
to compile the publication [other than the author or
producer]?”) with HEA BERT, HEA BioBERT and Ran-
dom Forest scoring 0.86, 0.80, and 0.83 respectively.
The HE models performed worse on this question, with
0.72 with BERT and 0.71 with BioBERT. All five mod-
els achieved high F1-macro scores on question 5 (“Is
it clear when the information used or reported in the
publication was produced?”) with HEA BioBERT com-
ing first (0.82), HE BioBERT second (0.78), HEA BERT
and HE BERT tying for third (0.77), and Random Forest
last (0.70).
For treatment related questions, HEA BioBert per-

formed the best. On question 9 (“Does it describe how
each treatment works?”), HEA BioBERT came first with
an average F1-macro score of 0.72, and the remaining
models ranging between 0.68 and 0.66). For question 11
(“Does it describe the risks of each treatment?”), both
neural models using the BioBERT Embeddings performed
the best: the HEA- and HE BioBERT models scored 0.81
and 0.80 respectively, with the remaining models follow-
ing betwwen 0.76 and 0.72. In contrast, for question 10
(“Does it describe the benefits of each treatment?”), the
neural models using the BERT embeddings performed
better, with HEA BERT at 0.66 and HE BERT at 0.60, with
the remaining models ranging between 0.56 and 0.53. It
worth mentioning that Q10 has the greatest class imbal-
ance (i.e. 77% of the articles in the data set described the
benefits of the treatment).
Asmeasured by F1-macro, HEA-BioBert took first place

in 3 of the 5 questions, and HEA-Bert took first in the
remaining 2 questions (see Table 2). However, when com-
puting the average score on all questions, HEA BERT
and BioBERT performed comparably, and the variance

https://github.com/uzh-dqbm-cmi/auto-discern
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Table 2 Average F1-macro scores with standard deviation by model architecture

Model Architecture Q4: References Q5: Date Q9: How Treatment Works

Random Forest 0.83 ( 4) 0.70 ( 6) 0.66 (10)

HE BERT 0.72 (14) 0.77 ( 3) 0.66 (13)

HE BioBERT 0.71 (13) 0.78 ( 5) 0.66 (11)

HEA BERT 0.86 ( 3) 0.77 ( 4) 0.68 (10)

HEA BioBERT 0.80 ( 7) 0.82 ( 6) 0.72 (10)

Model Architecture Q10: Tt. Benefits Q11: Tt. Risks All Questions Avg

Random Forest 0.53 (15) 0.72 ( 4) 0.69

HE BERT 0.60 (11) 0.74 ( 4) 0.70

HE BioBERT 0.56 (11) 0.80 ( 4) 0.70

HEA BERT 0.66 ( 2) 0.76 ( 3) 0.75

HEA BioBERT 0.54 ( 9) 0.81 ( 5) 0.74

across folds was lower for HEA BERT compared to HEA
BioBERT (see Fig. 4).
We explored the relationship between model’s coverage,

accuracy, and confidence (prediction probability thresh-
old) focusing on the BioBERT model (see Fig. 5). The
trend is that as the model’s coverage decreases, the higher
is the confidence (i.e. outcome probability) and the accu-
racy of the model. At 80% coverage, the model achieves
86% average accuracy with average confidence equal to
0.79 (see Table 3).
Table 4 compares the machine learning model (HEA

BioBERT) performance to humanmanual performance on

the DISCERN and HON guidelines. We report the DIS-
CERN Manual Performance as the frequency with which
each of our two raters’ agree with the aggregated average
of both raters (i.e. percent agreement to aggregate). The
manual rater accuracy score on our data set averaged 94%
(spanning 88% - 97% across criteria). Compared to the
DISCERN raters’ manual performance of 94%, the mod-
els performance was adequate (81% accuracy across all
questions at 100% coverage). In order to bring the model’s
performance closer to the DISCERN raters’ manual per-
formance, we could reduce the model coverage to 80%,
which would yield an accuracy of 86%.

Fig. 4 Performance comparison of the model architectures on each of the Brief-DISCERN questions. Each point represents the performance of the
architecture on each of the 5 cross validation folds
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Fig. 5 Relationship between Prediction Coverage, Confidence Threshold, and Model Accuracy. This data is for the HEA BioBERT architecture

As an additional comparison, Table 4 also contains
HON organization manual percent agreement scores that
were computed while developing training sets for their
own machine learning models [14]. The average percent
agreement among the HON raters was 85% on their full
criteria, and this drops to 81% when only considering
criteria that are shared with Brief DISCERN (Reference,
Date, and Justifiability). Overall, the machine learning
model achieved a competitive performance at full cover-
age compared to HON raters: the model averaged 83%
accuracy at 100% coverage on the questions that overlap

with HON, and the HON raters had percent agreement of
81%.
Table 5 shows top-3 sentences (based on attention prob-

ability score) belonging to most confidently predicted
documents as determined by the prediction probability
score for each question in the three medical topics.
Lastly, the time and space requirements for the different

architectures were very different. For the neural models,
running the full hyperparameter search and training rou-
tine took between 25-30 hours on a GPU node with 256
GB of RAM parallelized across 5 Nvidia GTX 1080 GPUs.

Table 3 Comparison of performance metrics for the HEA BioBERT architecture at 80% and 100% coverage. Coverage refers to the
percent of articles the model makes a prediction for (as opposed to abstaining from making a prediction when the model has a
confidence below the Threshold). The Precision, Recall, and Accuracy scores reflect the accuracy of the model on the resulting 80% of
predicted articles

Question Coverage Threshold Precision Recall Accuracy

Q4: References 80% 0.79 0.87 0.79 87%

Q5: Date 80% 0.79 0.87 0.88 87%

Q9: How Treatment Works 80% 0.81 0.84 0.71 82%

Q10: Treatment Benefits 80% 0.70 0.66 0.55 83%

Q11: Treatment Risks 80% 0.86 0.90 0.90 91%

Q4: References 100% 0.50 0.83 0.80 84%

Q5: Date 100% 0.50 0.83 0.83 83%

Q9: How Treatment Works 100% 0.50 0.77 0.72 78%

Q10: Treatment Benefits 100% 0.50 0.57 0.54 77%

Q11: Treatment Risks 100% 0.50 0.81 0.81 81%
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Table 4 Performance Comparison between 525 Human Manual Rating and Deep Learning Model. Manual performance 526 is
reported as percent agreement. Automated performance is reported as Implementation Accuracy (see Table 3).

Question Manual Performance Automated Performance

DISCERN HONcode HEA BioBERT

2 raters 3 raters 80% coverage 100% coverage

Q4: References (HoN: Reference) 96% 89% 87% 84%

Q5: Date (HoN: Date) 88% 80% 87% 83%

Q9: How Treatment Works 92% 82% 78%

Q10: Treatment Benefits 95% 83% 77%

Q11: Tt. Risks (HoN: Justifiability) 97% 74% 91% 81%

average 94% 81% 86% 81%

In comparison, the baseline model trained in 15 minutes
on a machine with 4 CPUs and 16 GB of RAM.

Discussion
In this research, we developed an attention-based neural
network model with the aim to automatically determine
the quality of online health information.
The experiments suggest that a neural network model

with trained language embeddings on large text corpora
(generic or medical) has better performance than a con-
ventional baseline model (Random Forest). Importantly,
this superior performance was achieved without the need
to hand-craft input features, as was the case with the base-
line model. However, it is worth noting that this comes at
the trade-off of much higher computing requirements for
the neural network models.
Our results reiterate the success of using trained lan-

guagemodels [15, 17], and transfer learning [18] in achiev-
ing competitive results even on small datasets (as in our
case). The BioBERT embeddings show a slight advantage
in comparison to BERT ones (Table 2), and we believe this
could be due to the medical topics and the language used
to describe treatments in each topic.
Our results suggest that the neural attention mecha-

nism not only provided a performance boost over a mean
pooled neural architecture, but also enabled greatermodel
explainability. The HEA models performed 7% higher in
F1-macro compared to the HE models (Table 2). In addi-
tion, inspecting Table 5, it can be seen that the HEA
BioBERT model provided reasonable context sentences
(i.e. sentences supporting a prediction). In other words,
the models identify textual snippets (surrogates, or proxy)
in the articles. For question 4 (References), the model
identified sentences containing citations, and in question
5 (Date), the model identified text referring to dates when
the article was “reviewed”, “revised”, or “updated”. Ques-
tions 9 (How Treatment Works) and 10 (Treatment Bene-
fits) are related questions, and we see that the textual snip-
pets identified by themodel for these questions overlap, as

expected. However, question 10 achieved poorer accuracy
scores, which is probably due to class imbalance in the
training data for that question (only 33% of articles were
in the negative class). For question 11 (Treatment Risks),
themodel often identified section headings containing the
phrase “side effects”.
We compared the models’ quality assessment perfor-

mance to humans manually performing the same task.
Our raters achieved an average of 94% agreement across
criteria. Similarly, the HON organization reported an
average percent agreement of 85% on their criteria, and
this drops to 81% when only considering criteria that are
shared with Brief DISCERN. While the HEA BioBERT
model performed lower than manual raters used in this
study (81% vs. 94%), it showed competitive results when
compared to HON raters (83% vs. 81% average accu-
racy). Restricting the HEA BioBERT model’s prediction
coverage to 80%, we could further improve the predic-
tion performance achieving 86% average accuracy across
all criteria. In this case, the model refrains from mak-
ing a prediction when its prediction probability score, or
confidence, is below the 20th percentile. This model or
a similarly trained model could be effectively used for
pre-screening health web pages and for assisting man-
ual raters in the quality assessment task. As suggested
by the HON organization, assisting manual rating with
automated systems could reduce manual effort [14].

Future work
We are seeking to further improve our models’ perfor-
mance to more closely achieve human performance in
assessing online health information quality. One straight-
forward approach is to train on a larger data set using the
same model architecture. To achieve this aim, we could
look beyond manually labeling more health articles. For
example, we could construct a larger corpora by com-
bining our current dataset with other existing bodies of
online health information that have independently been
assessed as being of high quality. For example, articles
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Table 5 Example sentences that the models paid the most attention to for each disease category. These are the sentences with the
highest attention weight for the top three most confidently predicted documents as determined by the prediction probability score.
These results are from the HEA BioBERT model.

Question 4: Sources

Breast Cancer Arthritis Depression

2010 Aug 10;28(23):3784-96. Nat Rev Rheumatol. J Abnorm Psychol.

2008;148(5): 358-69. Leuk Res. J Abnorm Psychol.

Lancet 2007; 369(9555):29–36. Kelley’s Textbook of Rheumatology. American Journal of Geriatric Psychiatry.

Question 5: Date

Breast Cancer Arthritis Depression

Review Date: 11/17/2012. Review Date: 9/26/2011. Review Date: 3/8/2013.

Last Revised: 10/01/2013. All rights reserved. All rights reserved.

Review Date: 6/5/2012. Article updated: 31 October 2012. Page last updated: 1-Oct-2013.

Question 9: How TreatmentWorks

Breast Cancer Arthritis Depression

During this surgery, the surgeon
removes the axillary lymph nodes
as well as the chest wall muscle in
addition to the breast.

In this surgery, the healthcare provider actually
removes the inflamed synovial tissue.

The basis of this therapy is that behaviours such as
inactivity and ruminating on certain thoughts can be
key factors in maintaining depression.

Radiation therapy is typically done
using a large machine that aims the
energy beams at your body (external
beam radiation).

One part of such therapy involves working with a
physical therapist to perform dedicated exercises for
muscle strengthening, increasing range

Gentler martial arts which focus on internal control,
breathing andmental discipline can be especially use-
ful for combating depressed thinking and improving
relaxation skills.

Three-dimensional conformal radia-
tion therapy (3D-CRT): As part of this
treatment, special computers create
detailed three-dimensional pictures

Hydrotherapy differs from swimming because it
involves special exercises that you do in a warm-water
pool.

Psychoanalytic therapists rely on suggestion, hyp-
nosis, and reeducation to reform self-esteem, and
helps the person construct coping strategies to deal
with grief, sadness, disappointment, achievement,
and pleasure.

Question 10: Treatment Benefits

Breast Cancer Arthritis Depression

Treating early breast cancer. Getting Established on DMARD Therapy. Cognitive Behavioral Therapy for Depression.

Targeted therapy for breast cancer. Medications will not JIA; rather they can help to symp-
toms and keep disease activity under .

Themindfulness approach usesmeditation, yoga, and
breathing exercises to focus awareness on the present
moment and break negative thinking

Adjuvant and Neoadjuvant Therapy
for Breast Cancer.

Treatment for Juvenile Rheumatoid Arthritis. CBT is based on two specific tasks: cognitive restruc-
turing, in which the therapist and patient work
together to change thinking patterns, 192 and behav-
ioral activation – in which patients learn to overcome
obstacles to participating in enjoyable activities.

Question 11: Treatment Risks

Breast Cancer Arthritis Depression

The side effects vary depending on
which biological therapy drug you
have.

Risks: Always talk to your doctor or pharmacist before
taking NSAIDs as they may cause serious side effects
compared to paracetamol.

Side Effects of ECT .

Side effects . Risks: Always talk to your doctor or pharmacist before
taking NSAIDs as they may cause serious side effects
compared to paracetamol.

Common side effects of SSRIs include:.

Are there side effects or risks from hor-
mone therapy?

Common side effects include a rise in blood pressure,
increased hair growth, increased swelling of the gums
and an increased risk of developing an infection.

What Are the Risks?

approved by HON could be used as positive examples
in an augmented training set. An additional avenue is
to use semi-supervised learning and unsupervised data

augmentation approaches [35, 36] where unlabeled data is
incorporated to improve classification performance with-
out additional annotation burden.
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In future experiments, we plan to further develop our
use of language embeddings. For example, in this research
we simply used the last layer embeddings from the BERT
and BioBERT models. However, recent experiments sug-
gest using different layers (the BERT network contains 12
layers) or further training the embedding networks can
yield performance improvements.
Finally, the DISCERN instrument is designed to be

applied to articles describing treatment options. Thus, our
model’s applicability is limited to these types of articles.
Similarly, our model does not extend to the medium of
social media, which online users are increasingly using
to share and consume health information [11]. More
research is needed to develop models for assessing the
quality of other types and mediums of health information.

Conclusion
Our study demonstrates that neural models are able to
perform online health information quality assessment in
accordance with an existing quality criteria (Brief DIS-
CERN) with a performance above 80% accuracy. The
neural approach achieves a better performance than a
conventional approach using Random Forest. In addi-
tion, we observe that existing biomedical language models
improve performance on this task. Finally, we show that
attention-based neural approaches are able to retrieve rel-
evant supporting sentences from the text, which makes
model decisions more explainable to users.
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