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Abstract

Background: The accelerated growth of elderly population is creating a heavy burden to the healthcare system in
many developed countries and regions. Electrocardiogram (ECG) analysis has been recognized as effective approach
to cardiovascular disease diagnosis and widely utilized for monitoring personalized health conditions.

Method: In this study, we present a novel approach to forecasting one-day-forward wellness conditions for
community-dwelling elderly by analyzing single lead short ECG signals acquired from a station-based monitoring
device. More specifically, exponentially weighted moving-average (EWMA) method is employed to eliminate the
high-frequency noise from original signals at first. Then, Fisher-Yates normalization approach is used to adjust the
self-evaluated wellness score distribution since the scores among different individuals are skewed. Finally, both deep
learning-based and traditional machine learning-based methods are utilized for building wellness forecasting models.

Results: The experiment results show that the deep learning-based methods achieve the best fitted forecasting
performance, where the forecasting accuracy and F value are 93.21% and 91.98% respectively. The deep
learning-based methods, with the merit of non-hand-crafted engineering, have superior wellness forecasting
performance towards the competitive traditional machine learning-based methods.

Conclusion: The developed approach in this paper is effective in wellness forecasting for community-dwelling
elderly, which can provide insights in terms of implementing a cost-effective approach to informing healthcare
provider about health conditions of elderly in advance and taking timely interventions to reduce the risk of malignant
events.
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Background
The social and economic implications of aging population
are becoming increasingly apparent in many countries
and regions over the worldwide [1, 2]. Take Hong Kong
for instance, the proportion of elderly aged 65 and over
is projected to rise from 15% in 2014 to 36% in 2064
[3]. Since healthcare expenses increase significantly on
average at the end of elderly people’s life, it is a heavy
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burden for local government and families to undertake the
expenditures of medical services [4]. Fortunately, health-
care platforms can mitigate this kind of problems to a
large degree, which provide daily healthcare monitoring
services for elderly people via wearable and portable med-
ical devices [5–7].Most of them are centering on real-time
monitoring rather than long-term forecasting for wellness
conditions. However, long-term forecasting for wellness
conditions has great potential in term of informing the
associated healthcare provider about health conditions
of elderly in advance and taking necessary interventions
to reduce the possibility of malignant events. Therefore,
developing an effective long-term forecasting method for

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-019-1012-8&domain=pdf
http://orcid.org/0000-0003-1571-5394
mailto: yang.zhao@my.cityu.edu.hk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Fan et al. BMCMedical Informatics and DecisionMaking          (2019) 19:285 Page 2 of 14

wellness conditions of elderly has great significance in
improving elderly care services.
In the past decades, many healthcare platforms for well-

ness monitoring have been developed, mainly including
chronic diseases monitoring [5, 6, 8–10], cardiovascu-
lar diseases [11, 12], and general wellness monitoring
[13–16]. He et al. [5, 6] proposed a six-layer healthcare
cloud platform which collected physiological signals and
vital signs from elderly and gave out a health evalua-
tion report about hypertension, diabetes, and arrhyth-
mias. Kara et al. [8] proposed a remote real-time health
monitoring system. This system could provide heart con-
ditions monitoring service and mitigate the problem of
low doctor-to-patient ratio. Paradiso et al. [11] proposed a
health monitoring system calledWEALTHY which moni-
tors individuals affected by cardiovascular diseases. Kailas
et al. [13] proposed a general wellness system which
could enable health-care professionals to master the well-
ness conditions by comprehensive real-time patient data.
These healthcare platforms aforementioned process phys-
iological data and vital signs on-line or off-line in the back-
end, and deliver the corresponding healthcare reports of
wellness conditions to the medical provider and cared
individuals in real time or at fixed time. Thanks to the
development of information technologies, these platforms
become more and more stable and could provide more
healthcare monitoring services. However, current health-
care platforms still have great deficiencies in forecast-
ing long-term wellness conditions of elderly individuals.
Therefore, researchers shifted their focus from healthcare
monitoring to wellness conditions forecasting. Yu et al.
[3] proposed a personalized healthcare monitoring plat-
form to forecast one-day-forward wellness conditions for
elderly. Integrating wearable data and vital signs from
an all-in-one station-based monitoring device, they took
advantage of machine learning tools to predict personal
wellness conditions for elderly. However, their forecasting
model is a highly personal data-dependent which could
not provide an instant wellness forecasting service for
other individuals.
Electrocardiogram (ECG) with the non-invasive and

cost-effective merits is widely utilized to monitor heart
health conditions such as atrial fibrillation [17], myocar-
dial ischemia [18], and hypokalemia [19]. Due to the
advanced technology of internet of things (IOT), single-
lead ECG signals can be acquired conveniently by wear-
able/portable monitoring devices without the limits of
time and locations [20]. In this study, we propose a
one-day-forward forecasting method of wellness condi-
tion for community-dwelling elderly based on single lead
short ECG signals. The proposed method mainly con-
sists of exponentially weighted moving-average (EWMA)
[21, 22] as a filter to remove high-frequency noises, Fisher-
Yates normalization [3, 23] to mitigate the skewness of

self-evaluated wellness scores, model selection based on
deep learning and machine learning methods. Finally, the
best fitted model validated by the visualization of learned
features can be deployed into a healthcare platform to
provide a forecasting wellness condition service.
The main contributions of this study are summarized as

follows:

• We propose a novel framework using single lead ECG
signals for forecasting one-day-forward wellness
conditions of community-dwelling elderly using
short ECG signals.

• Fisher-Yates normalization is utilized to adjust the
self-evaluated wellness score distribution among
different individuals.

• Based on deep learning and traditional machine
learning methods, extensive wellness forecasting
models are built and the best fitted forecasting model
is selected for feature analysis and discussion of
performance enhancement through the EWMA.

• The proposed framework can provide insights in
terms of implementing a cost-effective approach to
informing health conditions of elderly in advance and
taking timely interventions to reduce the risk of
malignant events.

The rest of this paper is organized as follows. The
related work of forecasting methods is summarized in
“Related work” section. In “Methods” section, both deep
learning-based and traditional machine learning-based
methods for forecasting elderly wellness conditions are
described in detail. In “Results” section, experimental
results are presented and the best forecastingmodel based
on performance is selected. Feature visualization and opti-
mization schemes are discussed in “Discussion” section.
Finally, the conclusion is drawn in the last section.

Related work
In this section, we review forecasting methods for tem-
poral data particularly with applications to healthcare
domain. These forecasting methods can be divided into
two main categories: (i) traditional machine learning-
based methods and (ii) deep learning-based methods.
For traditional machine learning-based forecasting

methods, two representative approaches are support vec-
tor machine (SVM) and artificial neural network (ANN).
Wu et al. [24] employed SVM to predict heart failure more
than six months via vast electronic health records (EHR).
The highest value of area under curve (AUC) for SVM is
around 0.75. Santillana et al. [25] utilized the SVM to fore-
cast estimates of influenza activity in America. Yu et al.
[3] used the SVM to predict one-day-forward well-
ness conditions for elderly and achieved the forecast-
ing accuracy of around 60%. Meanwhile, the ANN
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also obtained widely application in health care domain.
Suryadevara et al. [26] took advantage of the ANN to fore-
cast the behavior and wellness of elderly and deployed
it into a healthcare prototype system. Srinivas et al.
[27] employed the ANN to predict heart diseases like
chest pain, stroke and heart attack. The prediction per-
formances of these traditional machine learning-based
methods are difficult to meet the precisely forecast-
ing demands of elderly. So, researchers shifted their
attention to cutting-edge deep learning-based forecasting
methods.
In recent years, deep learning-basedmethods like recur-

rent neural network (RNN) has been achieved a big
success in natural language processing, speech recogni-
tion, and machine translation [28–31]. Researchers also
attempted to solve the problems in healthcare domain
using these cutting-edge approaches [32–34]. Ma et al.
[32] proposed an end-to-end simple recurrent neural
network to model the temporality and high dimension-
ality of sequential EHR data to predict patients’ future
health information. The experimental results based on
two real world EHR datasets showed that their model
improved the prediction accuracy significantly. Choi et al.
[33] explored recurrent neural network whether improv-
ing initial diagnosis of heart failure compared to tradi-
tional machine learning-based approaches. Experimental
results proved that recurrent neural network could lever-
age the temporal relations and improved the prediction
performance of incident heart failure. Choi et al. [34]
also proposed an interpretable forecastingmodel based on
recurrent neural network. This deep model was tested on
a large EHR dataset and demonstrated its superior predic-
tion performance. Therefore, two popular deep learning-
based approaches called long short-term memory net-
work (LSTM) [35, 36] and bidirectional long short-term
memory network (BiLSTM) [37] are utilized to forecast
one-day-forward wellness conditions for elderly in this
study.Meanwhile, two traditional machine learning-based
methods of SVM and ANN are also employed for model
selection.

Methods
Figure 1 shows the whole pipeline of the proposed frame-
work for forecasting one-day-forward wellness conditions
of elderly. The proposed framework mainly consists of
data preprocessing stage and model selection stage. More
specifically, to eliminate the influence of high-frequency
noise and skewness distribution, EWMA [21, 22]
and Fisher-Yates normalization methods [3, 23] are
employed in the procedure of data preprocessing. Mean-
while, to obtain a superior forecasting performance of
one-day-forward wellness conditions, the state-of-the-
art methods including deep learning-based and tradi-
tional machine learning-based methods are investigated

for model selection. The details of these approaches are
elaborated as follows.

Problem Formulation
The task of this study is based on single lead short ECG
signals to build a prediction model to forecast one-day-
forward wellness conditions for elderly population. The
input to the prediction model is an ECG signal xi =[
x1i , x2i , · · · , xni

]
with the length of n, where xji is the j-th

element in the i-th ECG signal. Health index (HI) as the
output consists of five health status categories from poor
to excellent, and the corresponding score of HI is from 1
to 5. The HI scores as the ground truth are not suitable
as the outputs of the prediction model directly since the
HI scores are self-evaluated and subjective, which lead to
serious skewness distribution. Therefore, theHI scores are
preprocessed by Fisher-Yates normalization technique[3]
which will be introduced in detail in the subsequent
section. After Fisher-Yates normalization, the normalised
HI scores y are dichotomized into better wellness condi-
tion (y = 0) and worse wellness condition (y = 1) based
on a threshold value 0 (an example refers to Table 1).
Therefore, the problem of this study is transformed into a
classification problem. For a single instance in the train-
ing course, given training set X = {x1, x2, · · · , xm} and
ground truth wellnes condition set Y = {y1, y2, · · · , ym},
the forecasting model aims to minimize the cross-entropy
objective function as follows:

L(X) = 1
m

m∑

i=1

[
yilogŷi + (1 − yi)log(1 − ŷi)

]
(1)

where yi is the ground-truth label, ŷi is the predicted label,
andm is the size of training set.

Data preprocessing
Filtering
ECG signals acquired by a portable monitoring device are
often contaminated by variety of noises. The EWMA [38]
as a low-pass filter is utilized to cancel the high-frequency
noise. The EWMA is a moving average with exponential
diminishing with time, which is somewhat related to the
number of points in a moving average. The EWMA can be
defined as:

EWMAt =
n∑

i=1
(1 − α)n−ixi (2)

where EWMAt is the output of the t-th time point with
the window size n of a moving average. α = 2

1 + n
, which

indicates the rate of weight decline. n refers to the num-
ber of points in a moving average. xi is the i-th point
in the window. As shown in Eq. 2, one can observe that
recent points in a moving average have higher weighting,
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Fig. 1 Overall procedure of the developed wellness prediction model. It mainly consists of data preprocessing and forecasting models. EWMA
means exponentially weighted moving-average. LSTM means long short-term memory network. BiLSTM means bidirectional LSTM. ANN means
artificial neural network. SVM means support vector machine

far previous points have almost no weight. As the num-
ber of points in a moving average increases, the EWMA
filter can produce a smoother signal with larger response
lag. In this study, n is set to a popular value 40 in time
series domain. An ECG signal was sampled out from train-
ing set to cancel high-frequency noise with the EWMA.
As shown in Fig. 2, the ECG signal through EWMA
filtering has reduced random noise greatly, which is help-
ful for improving forecasting performance of subsequent
classifiers.

Segmentation
The length of input ECG signals acquired from elderly
nursing center varies from 20 seconds to 25 sec-
onds. However, most of deep learning-based and tra-
ditional machine learning-based methods require fixed
input length. In this study, an ECG signal is seg-
mented into segments of 5 seconds long with stride
1 second [17], which includes about 4 to 9 heart-
beats. Take a 20-second-long ECG signal for example,
this signal can be segmented into 15 5-second-long
ECG signals with aforementioned scheme. It can greatly
increase the size of training set, which would enhance
the forecasting performance of deep learning-based
methods.

Table 1 Example of health index vs. Fisher-Yates normalization
score

Health index (HI) 3 4 5

Fisher-Yates normalization score -1.332 -0.627 0.449

Binary wellness conditions Worse Worse Better

Normalization
The amplitude of ECG signals vary largely from differ-
ent individuals, even for the same individual with differ-
ent time. In practice, normalization for input data help
machine learning methods to converge quickly, particu-
larly for deep learning-based methods [17]. Regarding the
ground truth self-evaluated HI scores, different elderly
may provide different HI score even if they have the sim-
ilar feeling of wellness condition. Using a normalization
scheme are necessary to balance the bias of subjective
feeling. In this study, min-max normalization technique
is used for normalizing input ECG signals as well as
Fisher-Yates normalization technique [3] for ground truth
label HI.

• Min-max normalization: this technology is one kind
of common used statistic normalizing tools, which
maps all of the values into range [ 0, 1]. The min-max
normalization can be defined as:

Xnew = X − Xmin
Xmax − Xmin

(3)

where Xnew means the output of min-max
normalization. Xmin means the minimum value of the
input ECG signal. Xmax means the maximum value of
the ECG signal.

• Fisher-Yates normalization: generally, Fisher-Yates
normalization has intrinsic ability to remove the
skewness of original data, which is pretty appropriate
for HI transformation. Suppose xij is HI score of the
i -th day of the j -th elderly. Let rij be the rank of the
i -th score among the assessment course of the j -th
elderly, 1 � i � I and 1 � j � P. Then xij can be
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Fig. 2 Filtering effect comparison of an original/EWMA filtered ECG signal. a Original ECG signal, b ECG signal through EWMA filtering

replaced by Ψ −1(.), which is defined as:

FYnorm(xij) = Ψ −1
( rij
I + 1

)
(4)

where FYnorm is an array of Fisher-Yates
normalization scores. To simplify the problem of
forecasting one-day-forward wellness condition, the
FYnorm scores of HI are mapped into binary values 0
and 1. More specifically, FYnorm scores greater than 0
are mapped as value 0 representing better wellness
condition, otherwise as value 1 representing worse
wellness condition. As shown in Table 1, it is an
instance of health index vs. Fisher-Yates
normalization score from an elderly. Since the
recruited elderly only gave three of self-evaluated

health index, this example presents the
corresponding Fisher-Yates normalization scores and
binary wellness conditions. One can observe that HI
score 3 and 4 are mapped as worse condition as well
as HI score 5 are mapped as better condition after
Fisher-Yates normalization. By means of this process,
Fig. 3 shows that the skewness in HI scores is almost
removed.

Classification methods
In this study, the problem of forecasting one-day-forward
wellness conditions can be transformed into a typical
binary classification problem by shifting HI score one-
day-ahead for each elderly. Since the input ECG signal
is a sequence, we utilize both deep learning-based and
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Fig. 3 Skewness comparison between original HI and HI through Fisher-Yates normalization

traditional machine learning-based methods for forecast-
ing one-day-forward wellness conditions by using short
ECG signals. The deep learning-based methods used are
LSTM and BiLSTM. Meanwhile, the employed traditional
machine learning-based methods include ANN and SVM.
These methods have been widely applied in healthcare
domain in recent published literature, which are described
in detail as follows:

Deep Learning-basedmethods
• LSTM: the LSTM is a special kind of recurrent neural

network, which is proposed to solve the problem of
gradient dispersion in the traditional recurrent neural
network (RNN). The LSTM is different from the
RNN mainly in that it adds memory cells (also named
LSTM units) with three gates to the algorithm to
judge whether the information is useful or not. These
three gates are the input gate, the forget gate, and the
output gate, which enable the LSTM units to read,
write, reset, and update historical information over
long distance. As shown in Fig. 4, when a piece of
information enters the LSTM unit, the input gate
determines how much information of the input is
updated into the memory cell. And the forget gate
controls how much information kept for memory
cell. Only a part of historical memory information
that is helpful for final task will be left, the rest parts
of historical memory information are discarded
through the forget gate. The output gate, the control
mechanism like the input gate and forget gate,
determines how much information in the memory
cell outputs. These three control gates employ
individual sigmoid function with a range between 0
and 1 to mimic the gate open and close, which means
how much percentage of information is kept for next
process. The gate techniques empower the LSTM the
capability of learning hidden pattern from a
long-term sequence. Figure 5 shows the architecture

of the LSTM we employ in this study. More
specifically, an ECG signal with fixed length is
segmented into T sequences, each sequence xt is fed
into one LSTM unit. For a LSTM unit in each time
step of the input ECG signal, it can be defined as the
following functions:

it = φ(Wii · xt + bii + Whi · ht−1 + bhi) (5)
ft = φ(Wif · xt + bif + Whf · ht−1 + bhf ) (6)
ot = φ(Wio · xt + bio + Who · ht−1 + bho) (7)
c̃t = tanh(Wic̃ · xt + bic̃ + Whc̃ · ht−1 + bhc̃) (8)
ct = ft · ct−1 + it · c̃t (9)
ht = ot · tanh(ct) (10)

where ct is the cell neuron at time t, ht is the hidden
neuron at time t, ht−1 is the hidden neuron at time
t − 1, and it , ft , ot , c̃t are the input gate, forget gate,
output gate, and cell neuron, respectively. W and b
are the connected weights and bias among the input,
cell neuron, and hidden neuron. φ(·) is a sigmoid
function. As for the final output wellness condition y,
it can be obtained via a Softmax function of the last
output neuron hT of the LSTM, which can be
described as follows:

y = Softmax(hT ) (11)
• BiLSTM: the BiLSTM is a variant from the LSTM

which is widely used in processing sequence data. To
capture the global pattern in a long-term sequence,
the BiLSTM has two hidden layers to store history
information from opposite directions to the same
output. Figure 6 show the architecture of the
BiLSTM network unrolled along the time axis. Like
the LSTM, the BiLSTM also has three of input gate,
forget gate, and output gate in each LSTM unit which
are described in the previous section. In this study,
we concatenate the last hidden neuron from both
forward propagation and backward propagation
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Fig. 4 The LSTM unit. A LSTM unit consists forget gate, input gate, output gate, and input. The sigmoid function φ with range from 0 to 1 mimics the
gate open and close

layers as the concatenated hidden neuron hcon.
Subsequently, a Softmax layer is connected to
forecast the wellness condition. These can be
described from the following functions:

hcon = Concatenate(hT−foreward, h1−backward)
(12)

y = Softmax(hcon) (13)

where hT−foreward is the last hidden neuron in the
forward propagation hidden layer, h1−backward is the
last hidden neuron in the backward propagation
hidden layer, and y is one-day-forward wellness
condition.

Traditional machine learning-basedmethods
• ANN: the ANN is a simulated biological neural

networks formed by several very simple processing
hidden units connected with each other in some way.
The ANN model consists of a large volume of hidden
units. Each unit represents a specific output function
called activation function. Each connection between
two hidden units represents a weighted value of the
signal passing through the connection, called a weight
w, which is equivalent to the memory of the artificial
neural network. Figure 7 shows a simple architecture
of the ANN with an input layer, a hidden layer, and an
output layer. The ANN is suitable for regression and
classification problem and can be described as follows:

Fig. 5 The LSTM network unrolled along the time axis. An ECG signal is segmented into T segments, each segment is fed into one LSTM unit
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Fig. 6 The BiLSTM network unrolled along the time axis. LSTM units in blue constitute the forward layer as well as LSTM units in green constitute the
backward layer

hi = σ

⎛

⎝
n∑

j=1
wl=1
ji · xi + bl=1

i

⎞

⎠ (14)

yi =
m∑

j=1
wl=2
ji · hi + bl=2

i (15)

where hi is the i -th hidden unit, wl
ji is the l -th layer

weight from the i-th unit in the l − 1-th layer such as
input unit to the j -th unit in the l -th unit such as
hidden unit, bli is the i -th correponding bias in the
l -th layer. Function σ is the activation function

Fig. 7 The architecture of the single-layer ANN. It is a simple architecture of the ANN, including an input layer, a hidden layer, and an output layer
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sigmoid. yi is the i -th output unit of one-day-forward
wellness condition in this study. n is the input size
and m is the number of hidden units.

• SVM: the SVM is a generalized supervised linear
classifier that carries out binary classification. Its
decision boundary is the maximum-margin
hyperplane that is solved for learning samples. Given
training set
D = {(x1, y1), (x2, y2), (x3, y3), · · · , (xn, yn)},
yi ∈ {−1, 1}, the hyperplane as shown in Fig. 8 can be
described in equation as follows:

WT · x + b = 0 (16)

where xi refers to ECG segment, yi refers to wellness
condition which has two categories: yi = 1 represents
worse wellness condition and yi = −1 represents
better wellness condition. W is the normal vector,
which determines the direction of the hyperplane,
and b is the displacement, which determines the
distance between the hyperplane and the origin. The
objective of SVM is to maximize the margin L
between two support hyperplanes, which can be
described as follows:

Max L = 2
‖ W ‖ (17)

s.t. yi · (WTxi + b) ≥ 1, i = 1, 2, 3, · · · n (18)

The SVM uses hinge loss function to calculate
empirical risk and has added regularization term into
the solving system to optimize structural risk, which
is a classifier with sparsity and robustness. The SVM
can conduct non-linear classification through kernel
method, which is one of the common kernel learning
methods. In this study, we use the widely used kernel
function radial basis function (RBF) as the SVM
kernel function, which can be described as:

k (x1, x2) = exp
(

−‖ x1 − x2 ‖2
2σ 2

)
(19)

where X is the input, and σ is the standard deviation
to control the shape of mapping features.

Classification performance metrics
All of the forecasting models are tested on the indepen-
dent data set and evaluated by a set of classification per-
formance metrics, which are critical important to assess
the forecasting models’ performance [3]. In this study,
the classification performance metrics mainly consist of
Recall (REC for short), Precision (PRE for short), false pre-
diction rate (FPR for short), and overall accuracy (ACC for
short). A metric of a test’s accuracy called Fscore also be
used as a trade-off evaluation score between recall REC
and precision PRE. These performance metrics can be
defined as:

Fig. 8 Support vectors. It is a example of SVM, which demonstrates support vectors and maximummargin
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REC = TP
TP + FN

(20)

PRE = TP
TP + FP

(21)

FPR = FP
FP + TN

(22)

ACC = TP + TN
TP + FP + TN + FN

(23)

Fscore = 2 · REC · PRE
REC + PRE

(24)

where TP refers to the number of correctly predicted
entries with worse wellness condition. TN refers to the
number of correctly predicted entries with better wellness
condition. FP refers to the number of wrong predicted
entries with worse wellness condition. FN refers to the
number of wrong predicted entries with better wellness
condition. In addition to the aforementioned performance
metrics, the value of area under receiver operating charac-
teristic curve (AUC for short) is also employed to measure
the advantage and disadvantage of forecasting models in
this study. According to the definition, the AUC value can
be obtained by summing the area of each part under the
receiver operating characteristic curve.

Results
Experimental environment
All the experiments in this study run on a powerful com-
puting server equipped with four 4-core Intel(R) Xeon
W-2102 CPUs at 2.90GHz, 64 GBmemories, and two 128-
core NVIDIA GP104GL (Quadro P5000) GPUs at 1.73Hz.
A prevailing linux system Ubuntu 16.04.6 LTS is installed
in the computing server, with a deep learning frame-
work Pytorch 1.0.1 for deep neural networks training and
testing.

Data source
In this study, eleven elderly persons (age: 76±7.8 and gen-
der: 9 females and 2 males) were recruited from an elderly
nursing home of Hong Kong for wellness condition eval-
uation. All participants gave their written informed con-
sent. The data collection period lasted for three months.
During this period, all the participants were invited to
join the daily non-invasive assessments with a commer-
cial healthcare monitoring device TeleMedCare [39]. The
TeleMedCare is a station-based healthcare monitoring
device, which can acquire elderly vital signs like systolic
blood pressure, diastolic blood pressure, single lead ECG
signals. The length of collected ECG signals with sam-
pling frequency 500 Hz is from 20 to 25 seconds. Mean-
while, a 5-point self-evaluated scoring system was utilized
to assess wellness conditions of the participants accord-
ing to a tailor-made questionnaires [40]. As shown in

Table 2, each subject was requested to self-evaluated well-
ness conditions and gave out the appropriate associated
HI score immediately when the TeleMedCare completed
their physiological data collection. In order to guaran-
tee the data quality, the process of data collection were
done under the guidance of trained and qualified research
staffs at the elderly nursing center around 11 am during
the assessment period. Due to personal affairs of elderly
subjects like ill in hospital during the course of assess-
ment, the associated vital signs and physiological data
were missed. Excluding aforementioned missing observa-
tions, total 383 including ECG signals and HI scores can
be used for wellness forecasting model.

Classification performance
In this section, 10-fold cross validation is utilized to eval-
uate the forecasting models’ performance. We implement
the forecasting models of one-day-forward wellness con-
ditions based on both deep learning-based methods and
traditional machine learning-based methods with grid
search scheme to obtain the optimized parameters. For
the ANN model, there are two superior parameters of
hidden size h and learning rate η to optimize. In order
to obtain the best forecasting performance of the ANN,
we take advantage of grid search technique to choose the
optimized hidden size, which ranges from 100 to 1000
with an increase step of 10. The initial learning rate η0
is set to 0.01, which decays automatically by a factor 0.1
every 100 epochs. The total iterated epochs N are set to
500 in this paper. As for the SVM model, we also tune
two superior parameters of penalty parameter C and ker-
nel coefficient � ranging from 10−8 to 108 with a 10 times
increase step. While the optimized superior parameters
of LSTM and BiLSTM are the same, which consist of the
learning rate η, hidden size h, and input size h. The learn-
ing rate η0 is set to 0.6 and decays automatically when the
error loss ε has stopped improving every 10 epochs. The
learning rate is reduced to η times a factor f which is set
to 0.1. With respect to the optimized experimental model
configuration, please refer to Table 3.
As shown in Table 4, one can see that the deep learning-

based models outperform the traditional machine
learning-based models significantly. Specifically, the deep
learning-based models achieve over the accuracy of 90%

Table 2 Self-evaluated health index for wellness conditions

Health index (HI) Wellness condition description

1 Poor

2 Fair

3 Good

4 Very good

5 Excellent
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Table 3 Configuration of the forecasting models for wellness conditions

Models Optimized superior parameters

Deep learning-based
LSTM h: 256, i: 100, η0: 0.6, f : 0.1. Optimized scheme of η: η · f when ε not improving every 10 epochs.

BiLSTM h: 256, i: 100, η0: 0.6, f : 0.1. Optimized scheme of η: η · f when ε not improving every 10 epochs.

Machine learning-based
ANN h: 100, η0: 0.01, f : 0.01. Optimized scheme of η: η · f per 100 epochs
SVM C: 10, �: 0.01, Kernel: RBF Tolerance for stopping criterion: 10−3

while the traditional machine learning-based models
obtain the accuracy not over than 57%. The BiLSTM
with the capability of memorizing historic information
achieves the best forecasting performance with the recall
of 92.51%, precision of 91.48%, accuracy of 93.21%, and
F score of 91.98%. The LSTM also has the ability to
memorize the historic information in sequence obtaining
the accuracy of 90.85%, which is about 3% lower than
that of the BiLSTM. The cause may lie in that the BiL-
STM could capture the global information of sequences
by concatenating two opposite directional information
during the training stage. At the same time, we draw a
figure of receiver operating characteristic curve for the
best fitted forecasting model selection. As shown in Fig. 9
, the traditional machine learning-based methods of the
ANN and SVM perform almost the same, the AUC (area
under the curve) values are around 0.6. While, the deep
learning-based methods could achieve over the AUC
value of 0.9. It obviously demonstrates that the deep
learning-based forecasting models for one-day-forward
wellness conditions outperform the traditional machine
learning-based models via using single lead short ECG
signals.

Discussion
The best fitted forecasting model BiLSTM is selected to
discuss from learned features and performance enhance-
ment via filtering with the EWMA in this section.

Feature visualization
The learned features are extracted from the concatenated
hidden layer of the BiLSTM based on the independent
test data set. The size of the concatenated layer is 512,
which is composed by two final hidden units in the oppo-
site directional network. In order to present the learned
information in a scatter plot, the dimension of learned

features is reduced from 512 to 2 via the principle com-
ponent analysis (PCA) method. The top two extracted
principle components occupy over 98% of explained vari-
ance ratio. As shown in Fig. 10, blue points represent
the better condition while the red points represent the
worse points. One can see that two classes of well-
ness conditions can be separated linearly. It means that
the BiLSTM with the ability to capture global informa-
tion of an ECG signal can well solve the problem of
forecasting wellness condition for community-dwelling
elderly.

Classification performance enhancement with the EWMA
It is well known for us that noises can greatly reduce
the performance of forecasting models. It is necessary
to utilize a filter to remove noises from ECG signals,
where may be contaminated by artifact, baseline wan-
dering, and so on. After spectrum analysis, the noises
in the ECG signals we used are mainly on high fre-
quency, which can be shown in Fig. 2. Therefore, a filter
EWMA widely applied in temporal sequential data is uti-
lized to cancel high-frequency noises in ECG signals with
the window size of 40. As shown in Fig. 11, the fore-
casting accuracy is vibrated around 50% until around
50 iterated epochs of the BiLSTM for original ECG sig-
nals and around 100 iterated epochs of the BiLSTM for
ECG signals through the EWMA filtering. As shown in
the training stage of the BiLSTM, we know that all of
the training data are categorized into either class of bet-
ter condition or class of worse condition. It means there
is just a little difference between these two categories,
which result in dramatic vibration of prediction perfor-
mance in initial iterated epochs due to small parameter
changes of the BiLSTM. It also demonstrates the powerful
learning capability to forecast the wellness conditions for
elderly. The prediction performance of the BiLSTM could

Table 4 Classification Performance of Forecasting Models with Best Fscore

Models REC PRE FPR ACC Fscore

Deep learning-based
LSTM 89.26% 89.26% 7.96% 90.85% 89.25%

BiLSTM 92.51% 91.48% 6.26% 93.21% 91.98%

Machine learning-based
ANN 57.74% 52.58% 37.40% 60.57% 55.03%

SVM 51.95% 61.43% 26.14% 64.12% 56.29%
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Fig. 9 Overall recursive operating curve for forecasting models. The forecasting models include ANN, SVM, LSTM, and BiLSTM

meet the requirements in elderly care to avoid malignant
events.

Conclusion
In this study, we develop an approach to one-day-forward
wellness forecasting for community-dwelling elderly via
ECG signals analysis andmodeling. The EWMA approach
is employed to eliminate the influence of high-frequency

noise from original ECG signals. Meanwhile, the Fisher-
Yates normalization method is used to mitigate the skew-
ness of self-evaluated wellness scores. To obtain the best
fitted forecasting model for community-dwelling elderly,
deep learning-based methods (LSTM and BiLSTM) and
traditional machine learning-based methods (ANN and
SVM) are utilized to predict the one-day-forward wellness
conditions of elderly. The experiment results show that

Fig. 10 Visualization of learned features. Blue points mean better condition, red points mean worse condition
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Fig. 11 Forecasting performance of the BiLSTM. Forecasting performance of the BiLSTM between ECG preprocessing with EWMA and not

the deep learning-based methods outperform the state-
of-the-art traditional machine learning-based methods.
The BiLSTM achieves the best fitted forecasting per-
formance, whose recall, precision, false prediction rate,
accuracy and F score are 92.51%, 91.48%, 6.26%, 93.21%,
and 91.98%, respectively. Meanwhile, visualization for the
concatenated layer of the BiLSTM shows that the one-
day-forward wellness conditions can be separated lin-
early. The best fitted BiLSTM with limited parameters
could be deployed and validated on a healthcare platform.
This study provides insights in terms of implementing a
cost-effective approach to informing healthcare providers
about health conditions of elderly in advance and tak-
ing timely interventions to reduce the risk of malignant
events.
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