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Abstract

Background: Stroke severity is an important predictor of patient outcomes and is commonly measured with the
National Institutes of Health Stroke Scale (NIHSS) scores. Because these scores are often recorded as free text in
physician reports, structured real-world evidence databases seldom include the severity. The aim of this study was
to use machine learning models to impute NIHSS scores for all patients with newly diagnosed stroke from multi-
institution electronic health record (EHR) data.

Methods: NIHSS scores available in the Optum®© de-identified Integrated Claims-Clinical dataset were extracted
from physician notes by applying natural language processing (NLP) methods. The cohort analyzed in the study
consists of the 7149 patients with an inpatient or emergency room diagnosis of ischemic stroke, hemorrhagic
stroke, or transient ischemic attack and a corresponding NLP-extracted NIHSS score. A subset of these patients (n =
1033, 14%) were held out for independent validation of model performance and the remaining patients (n=6116,
86%) were used for training the model. Several machine learning models were evaluated, and parameters
optimized using cross-validation on the training set. The model with optimal performance, a random forest model,
was ultimately evaluated on the holdout set.

Results: Leveraging machine learning we identified the main factors in electronic health record data for assessing
stroke severity, including death within the same month as stroke occurrence, length of hospital stay following
stroke occurrence, aphagia/dysphagia diagnosis, hemiplegia diagnosis, and whether a patient was discharged to
home or self-care. Comparing the imputed NIHSS scores to the NLP-extracted NIHSS scores on the holdout data set
yielded an R? (coefficient of determination) of 0.57, an R (Pearson correlation coefficient) of 0.76, and a root-mean-
squared error of 4.5.

Conclusions: Machine learning models built on EHR data can be used to determine proxies for stroke severity. This
enables severity to be incorporated in studies of stroke patient outcomes using administrative and EHR databases.
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Background

Stroke is the fifth leading cause of death in the US and a
primary focus for improving patient outcomes and
healthcare quality [1, 2]. The National Institutes of
Health Stroke Scale (NIHSS) is a widely accepted,
clinically-validated measurement of stroke severity. The
NIHSS score serves as an important guide for clinicians
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to effectively offer guidance about prognosis and disabil-
ity associated with acute stroke [1, 3-5].

The NIHSS score is defined as the sum of 15 individu-
ally evaluated elements, and ranges from 0 to 42. Stroke
severity may be categorized as follows: no stroke symp-
toms, 0; minor stroke, 1-4; moderate stroke, 5-15; mod-
erate to severe stroke, 16—20; and severe stroke, 21-42
[6, 7]. NIHSS scores are not part of structured data in
electronic health records (EHR); rather, stroke severity is
recorded as free text in physician notes. The lack of a
formal stroke severity assessment in large EHR databases
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is a limitation of real-world evidence patient outcome
studies related to stroke [1, 8]. Therefore, this type of
machine learning approach may be useful for quantifying
stroke severity given the limited availability of clinically
assessed NIHSS scores in real-world evidence databases
[9], aiding such practices as payer modeling for case mix
risk adjustment or assessing quality outcomes. Using
billing codes from administrative claims data of the
single-payer, compulsory enrollment healthcare program
in Taiwan, Sung and colleagues developed several
models to derive a stroke severity index and validate its
performance against the NIHSS [9-11]. Developing a
machine learning model for stroke severity based on
claims or EHR data from the United States presents
unique challenges due to the fact that the US healthcare
system is a multi-payer and provider system financed
and delivered through a combination of private and pub-
lic resources.

The objective of this study was to retroactively impute
NIHSS scores for all patients with newly diagnosed
stroke in a multi-institution EHR database by leveraging
machine learning techniques. Imputed NIHSS scores will
enable large-scale real-world observational studies to
incorporate a measure of stroke severity in research
studies of disease burden in these patients.

Methods

Database

The Optum® de-identified Integrated Claims-Clinical
dataset combines adjudicated claims data with EHR data.
The EHR database is derived from more than 50 health-
care provider organizations in the United States, includ-
ing more than 700 hospitals and 7000 clinics that
provide care to more than 91 million patients in the
United States. Optum®’s Integrated Claims-EHR dataset
is statistically de-identified under the Expert Determin-
ation method consistent with Health Insurance Portabil-
ity and Accountability Act (HIPAA) and managed
according to Optum® and customer data use agree-
ments [12, 13]. The Integrated dataset links both claims
and clinical data for approximately 14 million matched
individuals, and is generated by Optum® using a propri-
etary algorithm that incorporates both salting and
cryptographic hashing. The EHR information contained
in the integrated dataset includes medications prescribed
and administered, lab results, vital signs, body measure-
ments, diagnoses, procedures, and information derived
from physician notes using Natural Language Processing
(NLP).

The NIHSS scores are a part of the information de-
rived from the physician notes [14], and these scores
were used as an outcome variable when training and
evaluating model performance. Because some invalid
values were originally extracted from the physician notes
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(e.g. values which are not integers within NIHSS range),
rigorous pre-processing was applied to exclude as many
invalid NIHSS scores as possible. This exclusion criter-
ion was defined in collaboration with Optum and evalu-
ation was completed on the remaining extracted NIHSS
values to ensure accuracy. When a patient had multiple
NIHSS scores during their inpatient stay following
stroke, the maximum score was used to capture the
overall severity of the stroke. This study incorporated
EHR data from January 2007 through September 2016.

Study population

Patients were included in the study if they had a primary
diagnosis of stroke (hemorrhagic [the International Clas-
sification of Diseases (ICD)-9: 431; ICD-10 161.XX], is-
chemic [ICD-9: 433.XX-434.XX, 436; ICD-10: 163.XXX],
or transient ischemic attack (TIA) [ICD-9: 435.X; ICD-
10: G45.9]) in an inpatient or emergency room setting,
which was defined as the stroke event (Fig. 1). Addition-
ally, patients were required to have a real NIHSS score
(extracted from physician notes) during the stroke event.
Patients were also required to have been in the database
for at least 6 months prior to the stroke diagnosis.

From the Optum® de-identified Integrated dataset,
7149 patients were identified who met these inclusion
and exclusion criteria. Prior to developing the machine
learning model, patients were randomly grouped into a
training set (n=6116, 86%) and hold-out test set (n =
1033, 14.4%). Model development, parameter tuning,
and feature selection were completed using the training
dataset.

Feature engineering and feature selection

Relevant patient demographics (e.g. age, gender) and
billing codes related to procedures, diagnoses, prescrip-
tions/medications, hospital visit information, and comor-
bidities were collected to form the initial set of 8023
potential features. All features were created during the
inpatient hospitalization following stroke occurrence
(Fig. 1), except the Charlson Comorbidity Index, which
was estimated based on data prior to the stroke [15].
Diagnoses codes were from the ninth and tenth revisions
of the ICD-9 and ICD-10 [16]. In order to create fea-
tures for machine learning models that are agnostic to
coding version an equivalency mapping provided by The
Centers for Medicare & Medicaid Services (CMS) was
leveraged. As the granularities of diagnoses codes are
different in ICD9 and ICD10 revisions this mapping in-
cludes many-to-many relationships. By starting with all
diagnosis codes within the stroke events for the patient
cohort, and recursively incorporating any diagnosis
codes that are equivalent according to the CMS map-
ping, disjoint diagnosis code groups were created. Binary
features were then formed by checking each patient for
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Fig. 1 Schematic diagram of study design. Schematic diagram of study design, including timeline and patient inclusion requirements. EHR:
electronic health record; NIHSS: National Institutes of Health Stroke Scale

- Primary diagnosis of stroke reported

« Continuous period of hospital
admittance (may include transfer
between units or hospitals)

the presence or absence of any diagnosis within a given
‘diagnosis code group’ during the patients’ stroke event.

Additionally, simple presence/absence features were
created for procedures coded with the Current Procedural
Terminology (CPT4), Healthcare Common Procedure
Coding System — HCPCS procedure codes, Bergenson-
Eggers Type of Service codes (BETOS), patient discharge
status, diagnosis-related group assigned to the inpatient
stay, drug class of prescriptions written, drug class of med-
ications administered, and routes by which medications
were administered. Counts of procedures (e.g. CPT4) and
BETOS code groups within a patient’s stroke event were
also included in the initial feature set. Other features in-
cluded patient’s age at the time of stroke, gender, and
length of hospital stay following stroke occurrence.

During the feature selection process, features with
near zero variance or with high correlation (> 0.9) to an-
other feature were removed. In the latter case, only the
feature more highly correlated with the response variable
was retained. A response-balanced subset of the training
cohort was created for this step in the process, by ran-
domly selecting an equal number of patients from each
of 5 stroke severity categories [6] (1 =183 per category,
n =915 total); this step was necessary such that the fea-
ture engineering process was not affected by the skewed
distribution of stroke severity categories (i.e., more pa-
tients in less severe categories than in more severe cat-
egories, Fig. 2). After initial feature selection, the
remaining 619 features were used for the subsequent
modeling step.

Machine learning model development

The imputed NIHSS scores were ultimately compared to
the real NIHSS scores (extracted from physician notes)
in the hold-out test dataset to assess model performance
using the coefficient of determination (R?), the Pearson
correlation coefficient (R), and root-mean-squared error
(RMSE). During our initial model development,
performance was compared across a set of models devel-
oped by several machine learning approaches including

a random forest model, gradient boosting model, neural
network, and linear regression. The random forest
model, which is a meta estimator used to fit several clas-
sifying decision trees on various subsamples of the data-
set, had the best performance. Model hyperparameters
were optimized using a grid search and performance was
evaluated using three-fold cross validation within the
training data. (Additional file 1: Table S1). Recursive fea-
ture elimination performed on the training data reduced
the 619 features further, with only the top 100 features
included in the final model. The top 100 features were
selected because only minor improvements in perform-
ance would have been gained for a substantial increase
in model complexity with the inclusion of additional
features (Fig. 3).

Results

Table 1 provides demographic data for patients at the
time of stroke for each of the two cohorts (training and
hold-out test set). Patients in the hold-out test set (1 =
1033) were only used once to assess the performance of
the final optimized random forest model with 100 se-
lected features. This ensured that performance metrics
were not biased by over-fitting and that the model for
predicting stroke severity scores is generalizable to data
not previously included in model development.

The random forest model achieved an R* of 0.57, an R
of 0.76, and a RMSE of 4.5. Figure 4 presents imputed ver-
sus actual NIHSS scores. The median (interquartile range,
IQR) NIHSS score in the hold-out test cohort was 2 (6)
for both the real and imputed NIHSS scores. The distribu-
tion of the real NIHSS scores and imputed NIHSS scores
for the hold-out test cohort are shown in Fig. 2.

A detailed list of the 100 features included in the final
model is shown in Additional file 1: Table S2, ranked in
order of relative importance. Top features included
death within the same month as stroke occurrence,
length of hospital stay following stroke occurrence,
aphagia/dysphagia diagnosis, hemiplegia diagnosis, and
whether a patient was discharged to home or self-care.
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Discussion

The results of this study demonstrate that machine
learning algorithms built on patient treatment and
demographic information can be used to determine
proxies for NIHSS scores in a real-world evidence data-
base. This is a novel advancement in the ability to quan-
tify stroke severity in large population-based cohorts.
This methodology also has the advantage of obtaining
these values without the significant cost and time invest-
ment required for retrospective chart review studies and
enables assignment of a proxy NIHSS value even if the
assessment was not completed or documented at the
time of stroke occurrence. Applying this model to pa-
tients with stroke in the Optum® de-identified Inte-
grated dataset who did not have a real NIHSS score
increased the number of patients with stroke with a
measure of stroke severity by 6-fold, thus significantly
increasing the potential cohort size for any follow-on
real-world evidence studies.

Although other methods have been used to determine
proxy measures of stroke severity using clinical features
available in EHR and claims databases, these methods
(such as linear regression) often assume there are linear
relationships between the features and stroke severity,
which is not always the case [11]. For example, the
length of a hospital stay varies based on stroke severity:
patients who suffer a moderately severe stroke tend to
have a longer length of hospital stay compared to those
with low severity strokes who recover more quickly.
However, patients with severe stroke have high mortality
rates within the first few days of admittance for their
strokes and therefore tend to have shorter hospital stays
compared to patients with moderately severe stroke. Ma-
chine learning algorithms can identify non-linear rela-
tionships between features and stroke severity and can
incorporate the complex relationships and interactions
between features such as the clinical diagnoses relevant
to stroke outcomes, treatments including medications
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and procedures administered to patients at stroke onset,
as well as the medical history of patients prior to stroke
diagnosis. Machine learning methods are thus well
suited to the task of assessing stroke severity based on
clinically available information from EHRs.

The distribution of imputed NIHSS scores calculated
using this machine learning model as consistent with ob-
servations from the population-based Greater Cincinnati/
Northern Kentucky Stroke Study [17]. The Cincinnati
study determined NIHSS scores from a retrospective chart
abstraction of 2233 ischemic stroke cases identified during
a 12-month period, with median (IQR) NIHSS values of 3
(6) [17]. This is similar to the results obtained using the
machine learning model, where the median (IQR) was 2
(6), and both studies showed a skewed distribution toward
less severe strokes. The slightly lower median in the ma-
chine learning study may be caused by the inclusion of all
types of stroke, including TIAs which tend to be much
less severe compared to ischemic stroke. These results
contrast with randomized clinical trials in which the
enrolled patient population is often selected to include
patients with more severe stroke. For example, the Albu-
min in Acute Stroke study required patients to have an is-
chemic stroke and baseline NIHSS score of 6 or higher
[18] and the Desmoteplase in Acute Ischemic Stroke3
study required patients to have an ischemic stroke and
NIHSS score of 4—24 [19].

Documentation of NIHSS scores was evaluated as part
of the Get With The Guidelines — Stroke [20]. Over the
10-year study period from 2003 to 2012, the documenta-
tion rate was 56.1%, with a median NIHSS score of 4
(IQR, 2-9) and mean of 6.7 (SD, 7.4) [20]. Characteristics
associated with NIHSS documentation were those related
to eligibility for thrombolysis (e.g. arrival by ambulance
and within 3 h of symptom onset) [20]. A modest selection
bias was observed reflecting the tendency of hospitals with
lower documentation rates to selectively report higher
NIHSS scores. The ability to impute NIHSS score with
machine learning algorithms may eliminate incomplete
documentation issues.

The machine learning model described in this study
was developed on a US-based data source and achieved
similar performance to models developed from the more
uniform, single payer, compulsory healthcare data from
Taiwan [9-11]. The R was 0.76 for this US based study
and ranged between 0.68 and 0.73 for different models
developed in the Taiwan-based study. In the Taiwanese
study, NIHSS scores were assessed on admission and re-
corded directly in the national stroke registry, patients
were primarily managed by neurologists, and the fea-
tures were based on medical billing codes rather than
the diagnosis and procedure codes, as these are consid-
ered more accurate in Taiwanese health databases due
to Taiwan’s universal coverage for hospitalizations and
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Characteristic Training set (n=6116)

Hold-out test set (n=1033) Overall population (n=7149)

Demographics

Age, mean (SD) 66 (14) 67 (14) 66 (14)
Female, n (%) 3196 (52) 568 (55) 3764 (53)
Region
Northeast, n (%) 464 (8) 84 (8) 548 (8)
Midwest, n (%) 2388 (39) 389 (38) 2777 (39)
South, n (%) 2957 (48) 496 (48) 3453 (48)
West, n (%) 186 (3) 40 (4) 226 (3)
Other/Unknown, n (%) 121 (2) 24 (2) 145 (2)
EHR data
NIHSS, median (IQR) 2 (6) 2 (6) 2 (6)
LOS, median (IQR) 3(5) 2 (4) 3(5)
Type of stroke®
Ischemic, n (%) 4328 (70.8) 710 (68.7) 5038 (70.5)
Hemorrhagic, n (%) 605 (10.0) 113 (10.9) 718 (10.0)
TIA, n (%) 2235 (36.5) 384 (37.2) 2619 (36.6)

Charlson Comorbidity Index®, median (IQR) 13

1(3) 1(3)

SD standard deviation, EHR Electronic Health Record, NIHSS National Institutes of Health Stroke Scale, /QR interquartile range, LOS length of stay, TIA transient

ischemic attack

“Based on ICD diagnosis codes during stroke event; more than one type may be coded per patient stroke event

PCalculated based on patients’ diagnosis codes prior to stroke [15]

Hold-Out Test Data

Imputed NIHSS Score (Rounded Down)

) ) £)
NIHSS Score

Fig. 4 Imputed versus actual NIHSS scores. Imputed versus actual
NIHSS scores in the hold-out test cohort. Lighter colored points
represent single patients whereas darker points represent multiple
overlapping patients

reimbursement system. In contrast, for this study using
the US-based data source, real NIHSS scores were ex-
tracted using NLP from free text physician notes, attend-
ing physician specialty varied, and diagnostic and
procedural coding can vary in the multi-provider US
healthcare system. Using a more complex machine
learning algorithm with significantly more features en-
abled the US-based model to achieve similar perform-
ance to the Taiwan-based model and demonstrates the
ability of machine learning methods to handle the sys-
tematic differences from diverse EHR systems across
various US providers.

This study is subject to several limitations worthy of
consideration. Although the current EHR database has
captured comprehensive information on diagnoses, ad-
ministration of treatments and procedures during stroke
occurrence, other information which could be critical
for model performance including imaging of brain scans
was not available. As with all studies based on real-
world data, there is the potential for missing records. In
addition, healthcare information in the database was not
available until January 2007, which precluded the study
from capturing information in patients who might have
stroke-related diagnosis prior to the year 2007. As such,
the first observed stroke occurrence in the data could be
a mix of 1st and possibly later stroke diagnosis.
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Moreover, generalizability of the model to another data-
base remains unclear, as the current model was trained
and validated only within a single database. As such,
future work is planned to validate the current model in
a different EHR database.

Conclusions

Applying this machine learning method to assess pa-
tient’s stroke severity in real-world databases where
NIHSS scores are not available enables large scale
health-economics and long-term patient outcome stud-
ies to incorporate stroke severity. However, in any such
endeavor, it would be important to ensure the removal
of all features related to any outcomes being studied
(and model performance reassessed after removal) to
avoid artificially elevated associations. These enhanced
studies can potentially accelerate the development of
better clinical management and improve patient quality
of care [3, 8]. This study represents a novel advanced an-
alytics application to real-world data that could signifi-
cantly impact drug development and patient outcomes.
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1186/512911-019-1010-x.

Additional file 1: Table S1. Random Forest Hyperparameters. The
parameters of the final model which were obtained through
hyperparameter optimization are presented here. Table S2. List of Final
Model Features. Here, features are ranked by the expected fraction of the
samples they contribute to as a measure of feature importance.
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