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Abstract

Background: Family history information (FHI) described in unstructured electronic health records (EHRs) is a
valuable information source for patient care and scientific researches. Since FHI is usually described in the format of
free text, the entire process of FHI extraction consists of various steps including section segmentation, family
member and clinical observation extraction, and relation discovery between the extracted members and their
observations. The extraction step involves the recognition of FHI concepts along with their properties such as the
family side attribute of the family member concept.

Methods: This study focuses on the extraction step and formulates it as a sequence labeling problem. We
employed a neural sequence labeling model along with different tag schemes to distinguish family members and
their observations. Corresponding to different tag schemes, the identified entities were aggregated and processed
by different algorithms to determine the required properties.

Results: We studied the effectiveness of encoding required properties in the tag schemes by evaluating their
performance on the dataset released by the BioCreative/OHNLP challenge 2018. It was observed that the proposed
side scheme along with the developed features and neural network architecture can achieve an overall F1-score of
0.849 on the test set, which ranked second in the FHI entity recognition subtask.

Conclusions: By comparing with the performance of conditional random fields models, the developed neural
network-based models performed significantly better. However, our error analysis revealed two challenging issues
of the current approach. One is that some properties required cross-sentence inferences. The other is that the
current model is not able to distinguish between the narratives describing the family members of the patient and
those specifying the relatives of the patient’s family members.
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Background
Family history information (FHI) is known to be essen-
tial for understanding disease susceptibility and is critical
for individualized disease prevention, diagnosis, and
treatment [1, 2]. Many care process models relied on

family history information in their decision-making
process of diagnosis and treatment. For example, Y
Wang, L Wang, M Rastegar-Mojarad, S Liu, F Shen and
H Liu [3] demonstrated the potential use of family
history information in predicting medical problems. In
order to provide a comprehensive patient-provided FHI
to physicians, there is a need to develop natural language
processing (NLP) systems that are able to automatically
extract such information from electronic health records
(EHRs).
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The extraction of FHI from unstructured EHRs
consists of various steps [4]: 1) Section segmentation: a
preprocessing step to identify the sections containing
FHI; 2) Family member and clinical observation extrac-
tion: a fundamental step to recognize family member
mentions and their potential clinical observations
described in the corresponding sections; 3) Family
member-observation relation discovery: The final step
associates the extracted observations with the correct
family members. The established FHI extraction systems
can then be applied to develop methods to aid clinical
decision support, assess the risks of cancers, identify
family pedigrees and foster downstream analyses as pre-
sented by previous studies [4, 5].
To standardize the evaluation protocol of FHI extrac-

tion, the BioCreative/OHNLP challenge 2018 [6] released
a corpus annotated with FHI. Figure 1 shows an example
of the annotations in the released FHI extraction (FHIE)
corpus. The annotations include: 1) Family members and
the attributes of their family side (e.g. the “Maternal”
annotation for “cousin”). For first degree relatives (i.e. the
“mother” and “father” in Fig. 1), the side of family is “NA”;
2) Clinical observations of health-related problems includ-
ing diseases, smoking, suicide, and drinking; 3) The age
and the living status related to the family members (not
shown in Fig. 1). In addition, the corpus only contains
clinical texts extracted from the family history section of
the EHRs. The goal of the BioCreative/OHNLP entity rec-
ognition subtask is to develop a system that can provide a
document-level list of family members along with their
family side attributes and clinical observations described
in the EHRs. Furthermore, all extracted family member
mentions must be normalized to their corresponding
names listed in Table 1.
The FHIE problem can be formulated as a classifica-

tion task in which several classifiers were developed for
the target concepts. In addition, it can be formulated as
a sequential labelling task by first identifying target
concepts and the corresponding attributes, and then ag-
gregating them to build the list. In this study, we
followed the second approach and constructed a neural
sequential labeling model to address the FHIE problem.
The performances of the proposed methods were exam-
ined and analyzed on the FHIE corpus.

Specific contributions of this work are as follows:

� We designed three specific tag schemes for the task
of family member and side attribute extraction along
with corresponding methods to normalize the
recognized family member terms and determine
their properties.

� We demonstrated that the proposed side scheme is
the most suitable tag scheme for the current
released dataset because the family side information
cannot be easily determined by rules. On the other
hand, the relation-side scheme has the potential for
improvement due to its capability in distinguishing
the relationships of second-degree relatives from
those of the first-degree relatives.

� We exhibited the performances of different word
embedding strategies and empirically showed that the
pre-trained GloVe [7] provides better representation
than the others for the FHIE problem.

� We explored the effectiveness of incorporating
features based on the UMLS (Unified Medical
Language System) [8] for clinical observation
recognition and noticed that the inclusion of UMLS
embedding assisted the model in recognizing unseen
observations.

Methods
The patient note was preprocessed by our clinical toolkit
[9] to segment sentences and generate the tokens and
corresponding part-of-speech (PoS) information based
on MedPost [10]. The numerical normalization method
proposed in our previous work [11] was employed to
normalize variations in the numerical parts of each
token. We then linked the annotations of the gold stand-
ard to the generated sentences according to the span
information provided in the FHIE corpus. All sentences
including those that did not contain any family member
or observation annotations were included in our training
set to train the neural sequence labeling network model
illustrated in Fig. 2. The network was based on the
architecture proposed by X Ma and E Hovy [12]. The in-
put of the network is the preprocessed sentences from
an EHR with the output being the sequence of labels for
tokens in the sentences. The implementation of the
network will be elaborated later in the “Model Design”
subsection.

Fig. 1 An example of the annotation of the family history
information extraction task

Table 1 The Normalized Family Names

Degree Normalized Family Names

1 Father, Mother, Parent, Sister, Brother, Daughter, Son, Child

2 Grandmother, Grandfather, Grandparent, Cousin, Sibling, Aunt,
Uncle
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Tag scheme design
Since we formulated the task as a sequential labeling prob-
lem, one of the challenges is that we need to normalize
the recognized family member mentions to one of the
family member types listed in Table 1. In this study, we
designed three IOB2-based tag schemes along with
corresponding methods to normalize the recognized fam-
ily member terms and determine their properties. Note
that the three tag schemes were specifically designed for
the family member concepts. For the observation con-
cepts, we used the standard IOB2 scheme (B/I-Observa-
tion). The notation fm was first defined as the family
member property, whose value is one of the strings listed
in Table 1. The notation sf indicates the “side of family”
property of each family member, which includes three
possible values: NA (not available), Maternal and Paternal.

1) Standard scheme: In this scheme, we ignored the
values of the fm and sf properties of each family
member and represented all family member
instances by using the “FamilyMember” tag.
Therefore, five tags including B/I-FM, B/I-Ob and
O were used. This configuration will be referred to
as the baseline configuration hereinafter. The main

advantage of employing the scheme is that the cost
of the training phase is low, while the disadvantage
is that we need to develop a post-processing
algorithm to determine the type of family member
and the property of the side of family.

We implemented a rule-based algorithm to determine
these two values. The algorithm works by first identify-
ing the value of the fm property. It removes adjective
terms from the recognized mention and then transforms
the remaining terms into their base forms for matching
with the family names listed in Table 1. The algorithm
also considers term variations like mom and mommy for
“Mother”. The mention’s fm property is then set to the
corresponding property of the matched value. On the
other hand, for the sf property, the algorithm first checks
whether the recognized mention follows a sf term. If it
follows a sf term, then the corresponding sf value will be
set. Otherwise, the sf value with the most number of
occurrences for the family type of that mention will be
set. Figure 3 shows the distribution of the family side at-
tributes observed in the training set of the FHIE corpus.
Take the term “cousin” in Fig. 1 as an example. The
mention did not follow a sf term like maternal or

Fig. 2 The neural sequence labeling model employed in the study for the family history information extraction task. Input containing numerical
character such as “0-yr” was normalized to “0”
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paternal, so the algorithm will asign “maternal” as its
family side attribute because the value appeared more
frequently than “NA” or “paternal” in the training set.

2) Side scheme: In this scheme, the sf property was
encoded in the tag set for family members. In our
implementation, we relied on annotations that exist
in the training set to determine the encoding in the
tag scheme. For example, family members like
“Mother” and “Daughter” shown in Fig. 3 were not
associated with any family side values, so they were
assigned with the B/I-FM_NA tag. The tag sets for
other members include B/I-FM_SIDE_NA, B/I-
FM_SIDE_Paternal and B/I-FM_SIDE_Maternal.
The sf property was therefore determined based on
the predicted tag for a recognized family member
mention. The same algorithm designed for the
baseline configuration was employed to determine
the value of the fm property.

3) Relation-side scheme: In this scheme, both the sf
and fm properties were encoded in the tag set
for family members. Consequently, all possible
combinations of the two properties that
appeared in the training set were represented by
the tag scheme. Take the family mention
“cousin” in Fig. 1 as an example. The mention
can be encoded as B-FM, B-FM_SIDE_Maternal,
and B-FM_Cousin_Maternal in correspondence
to the three tag schemes, respectively. The
advantage of using this scheme is that we do
not need to apply the post-processing algorithm
designed for the other two schemes because the
assignd tag itself provides sufficient property
information.

Model design
As shown in Fig. 2, our model consists of three layers:
the character sequence representation layer, the word se-
quence representation layer, and the inference layer.

1) Character sequence representation layer: In this
layer, we employed the character-level representation
convolutional neural network (CNN) architecture
with the max-pooling to capture the morphological
information such as the prefix or suffix of a word. In
accordinance with the CNN architecture proposed
by X Ma and E Hovy [12], a dropout layer was
applied before the character embedding was fed into
CNN.

2) Word sequence representation layer: For word
sequence representation, we used the pre-trained
word embedding released by B Chiu, G Crichton, A
Korhonen and S Pyysalo [13]. The embedding with
the size of 200 dimensions was trained by applying
the skip-gram model implemented in word2vec
with a context window of 30 on a corpus collected
from PubMed.

In Ma and Hovy’s model, the word embedding vector was
concatenated with the character-level representation embed-
ding to form the input vector of the bi-directional recurrent
neural network (RNN). Herein the long short-term memory
(LSTM) network was utilized to implement the bi-
directional RNN layer. Furthermore, we augmented the in-
put vector of the RNN layer by including the following three
handcrafted features for each word. In our implementation,
the concatenated vector was updated during training and
regularized by adding a dropout layer before entering into
the LSTM layer to improve the generalization of the model.

Fig. 3 The distribution of the family members and the corresponding family side attributes in the training set of the FHIE corpus
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a) PoS embedding feature: The PoS information is
represented by a vector with a dimenstion of 20
randomly initialized from a uniform distribution.

b) Family dictionary feature: This feature is a binary
flag indicating whether the current word is a term
referring to a family member.

c) UMLS embedding feature: We included this feature
to improve the ability of our model to capture
observation concepts since UMLS is a
comprehensive medical vocabulary that covers
terms related to clinical observations. The semantic
types listed in Table 2 were included in the
recognition process. We exploited MetaMap [14] to
recognize UMLS concepts mentioned in EHRs and
the corresponding concept unique identifiers (CUIs)
were extracted as features for the corresponding
words. The recognized CUIs were represented by a
200-dimension concept vector trained by a skip-
gram neural language model. The pre-trained
concept embedding generated by L De Vine, G
Zuccon, B Koopman, L Sitbon and P Bruza [15]
was used to capture the semantic similarity between
the concepts.

3) Inference layer: The output of the RNN layer
becomes the input of the inference layer in which
the conditional random field (CRF) was used to
model the dependencies between labels in
neighborhoods to jointly decode the best chain of
labels for the given word representation sequence.

For the layer with pre-trained embeddings, we applied
a dynamic configuration in which the pre-trained vectors
were fine-tuned with backpropagation. Details of the
hyper-parameters used in this study are provided in
Table 3. Most of the parameter settings follow the
suggestion given by X Ma and E Hovy [12] except the
embedding sizes for the proposed handcrafted features.

The corpus and evaluation metrics
The corpus released by the BioCreative/OHNLP 2018
challenge [6] was used to evaluate the developed
models. The training set of the corpus consisted of

99 unstructured patient notes randomly sampled from
the Mayo Clinic Employee and Community Health.
802 family members along with 978 observations were
annotated.
The official document-level evaluation script released

by the organizers was used to report the performance of
the developed methods with different tag schemes. The
script evaluated the normalized family members, their
family side attributes and the observations extracted by
our systems with the gold annotations by using the fol-
lowing metrics:

Precision Pð Þ ¼ TP
.
TP þ FP

Recall Rð Þ ¼ TP
.
TP þ FN

F1 ¼ 2� P � R
.

P þ Rð Þ
where true positive (TP) denotes the number of correct
predictions, false positive (FP) denotes the number of
system outputs that do not exist in the gold standard an-
notations, and false negative (FN) denotes the number of
gold standard annotations that do not exist in the system
predictions. Both the values of the fm and sf properties
that matched with the gold standard annotations can be
counted as a TP. For the evaluation of the observations,
a partial matching criterion was used which allows four
mismatched tokens at most to determine the matching.
For instance, the extraction of either “diabetes” or “type
2 diabetes” from the phrase “type 2 diabetes” will be
considered as a TP.

Results
Results on the training sets
During the participation of the challenge, we applied a
ten-fold cross validation (CV) to study the performance
of the proposed method on the training set. The results
are displayed in Table 4. All of the configurations were
based on the same network architecture, features and
the same hyper-parameters depicted in Table 3, with the

Table 2 Semantic Types Considered in This Study

Semantic Types (Abbreviationa)

aapp, acab, aggp, anab, bacs, bdsu, bdsy, bird, blor, bpoc, bsoj, cell,
cgab, clna, cnce, comd, drdd, dsyn, elii, emod, euka, famg, fndg, fngs,
ftcn, genf, gngm, hlca, hops, idcn, inbe, inch, inpo, inpr, irda, lang,
mamm, menp, mnob, mobd, neop, npop, orch, orga, orgf, patf, phsf,
phsu, plnt, podg, popg, qlco, qnco, sosy, spco, tisu, tmco, topp, virs, vita
aThe full name definition can be found
at https://mmtx.nlm.nih.gov/MMTx/semanticTypes.shtml.

Table 3 Hyper-parameters of the Developed Neual Sequence
Labeling Nework

Parameter Value Parameter Value

word embedding size 200 Learning rate (LR) 0.01

char embedding size 30 Batch size 10

char embedding kernel size 3 Optimizer SGD

number of char embedding kernels 50 Dropout 0.5

PoS embedding size 20 LR decay 0.05

UMLS embedding size 200 L2 regularization 1e-8

Epoch 1000
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only difference being the employed tag scheme as
described earlier in the Methods section. All neural net-
work architectures were implemented by using CUDA
8.0 and PyTorch libraries and trained on three machines
equipped with the Nvidia GTX-1080ti graphics card.
The results indicate that the model with the side-scheme
achieved the best F-score and precision, while the model
with the standard scheme had a better recall. The
relation-side configuration obtained the lowest recall
and F-score.
We further conducted another ten-fold CV after the

challenge and implemented three other models based on
the CRF [16] with the designed tag schemes. The same
algorithms developed for the neural models were also
applied for the CRF models. Based on the results in
Table 4, we observed that the PRF-scores of the CRF
models showed a similar trend to the neural network-
based implementations but with a significant lower
performance.

Results on the test sets
We submitted three runs for the FHIE entity recognition
subtask with each corresponding to the model with side

scheme (Run 1), the model with relation-side scheme
(Run 2) and the baseline model (Run 3), respectively.
The official results of the submitted runs on the test set
are illustrated in Fig. 4. We can see that the model with
the side scheme achieved the best overall F-score and
the best F-score for family members. The baseline model
had the worst overall and family member F-score which
may be owing to the different family type distribution in
the test set.

Discussion
Result comparison with the top-ranked teams
Table 5 demonstrates the performance of the three other
top-ranked systems on the FHIE test set. The F-score of
our best run ranked second in the challenge. X Shi, D
Jiang, Y Huang, X Wang, Q Chen, J Yan and B Tang
[17] achieved the best F-score by developing a joint
learning model that can mutually determine the FH
information and observations as well as the relations
among them. Compared to our sequential labelling
model for recognizing FHI concepts, their model was
relatively simpler, which was a bidirectional LSTM-CRF
network with only word and PoS embedding input
layers. They utilized the pre-trained word embedding
based on GloVe and the one-hot encoding to represent
the PoS of each word generated by the natural language
toolkit. The outputs of the bidirectional LSTM layer and
the CRF layer were set as the input of another bidirec-
tional LSTM to determine whether the recognized entity
pairs have any relations. The loss function of the joint
model was set as the cross-entropy function that
consisted of entity recognition and relation extraction.
Similar to our baseline configuration, they relied on
post-processing rules which check the surrounding text
for keywords such as “maternal” and “paternal” to

Table 4 Performance Comparison with CRF-based Methods on
the Training Set with 10-fold Cross Validation

Configuration Precision Recall F1-score

Baseline 0.882 0.857 0.870a

CRF-Baseline 0.836 0.743 0.787

Side 0.902 0.855 0.878a

CRF-Side 0.865 0.753 0.805

Relation-side 0.883 0.854 0.869a

CRF-Relation-side 0.850 0.700 0.768
a Indicates passing the significant test under the level of 0.001. The p-values
for the three configurations are 0.000006, 0.00005, and
0.000000004 respectively

Fig. 4 The official test set results for the family information
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generate the list of normalized family member names
along with their family side attributes.
Anshik, V Gela and S Madgi [18] extracted features

such as PoS information, disease terms listed in the
MeSH ontology and the word cluster generated from the
word2vec model trained on Google News within a con-
text window of two and employed the linear chain CRF
model to deal with the FHIE subtask. They also
depended on rules to detect the family side attributes. D
Kim, S-Y Shin, H-W Lim and S Kim [19] compiled dic-
tionaries for each type of the concepts and recognized
them by a pattern matching method. They seem to
employ the pattern matching method with context
information to determine the family side attribute of the
recognized family members. In addition, to overcome
the low coverage issue, they specifically extended the
dictionary for the clinical observations by collecting
disease, symptom, and drug names from the Mayo Clinic
website.
It is noteworthy that all of the top-ranked teams

depended on rule-based approaches to determine the
family side information. This study presented a unique
work considering to incorporate the side and relative in-
formation in the tag scheme design. Table 6 summarizes
the methods and resources used by the top-ranked
teams. To investigate the practicality of these resources,
we further conducted experiments to estimate the per-
formance of our proposed architecture with the different
word embeddings used by other teams. Specifically,
based on the same hyper-parameters given in Table 3,
we replaced the original pre-trained word embedding
layer of our best run with the randomly initialized 200
dimensional word vector (denoted as Rand), the GloVe
(denoted as Glove) representation and the word2vec vec-
tor trained with Google News (denoted as GN). These
word vectors were non-static and will be fine-tuned

during training. We also studied the performance of our
model by freezing the weight of the original pre-trained
vector (denoted as Freezed), and by using the pre-
trained vector released by B Chiu, G Crichton, A
Korhonen and S Pyysalo [13] but trained with a narrow
context window size of two (Win2).
Figure 5 outlines the results of the comparative evalu-

ation in accordance with our best run. The results can
be categorized into 2 different groups. The first has
demonstrated improved F-scores such as Glove and GN,
while the second including Freezed, Win2 and Rand ac-
quired lower F-scores in comparison to our best run. We
also noticed that the models in the first group exhibited
enhanced precision for the observation concept, which
contributed to an increase in the overall performance.
However, they also obtained lower recalls than our best
run for the family member concept. The Glove model
demonstrated the best overall performance, with an im-
provement in precision and F-score of 0.041 and 0.015
when compared to our original model, respectively.
As expected, the randomly initialized model attained the

lowest overall F-score, which seems to overfit the training
set because only words that appeared in the training set
were tuned. The models with the static embedding and
Win2 also suffered from the lower PRF-scores on both
family member and observation concept types. Although
whether to fine tune the word embedding or not when
using pre-trained embedding remains to be discussed
[20–22], our best implementation in which a dropout was
added for the non-static pre-trained word embedding
demonstrated a better performance in the FHIE task. On
the other hand, the lower F-score of the model with Win2
contradicts the observation of B Chiu, G Crichton, A
Korhonen and S Pyysalo [13], in which they stated that
the embedding with a narrow window is more suitable
than larger context window for tasks like entity

Table 5 The Performance of the Top-ranked Systems in the Family History Information Extraction Task

Team Precision Recall F1-score

X Shi, D Jiang, Y Huang, X Wang, Q Chen, J Yan and B Tang [17] 0.8886 0.8837 0.8861

Anshik, V Gela and S Madgi [18] 0.8819 0.7964 0.837

D Kim, S-Y Shin, H-W Lim and S Kim [19] 0.7932 0.8393 0.8156

Our System 0.8285 0.8698 0.8486

Table 6 Summary of The Methods and Resource Used by All Participating Teams in the Family History Information Extraction Task

Type Description

Methodology CRF, Bidirectional LSTM-CRF, Bidirectional CNN-LSTM-CRF, Pattern

Word embedding GloVe: https://nlp.stanford.edu/projects/glove/
word2vec:
https://code.google.com/archive/p/word2vec/
https://github.com/cambridgeltl/BioNLP-2016

Part-of-speech NLTK (Natural language toolkit), MedPost

Ontology/Lexicon MeSH, Mayo Clinic website and UMLS embedding (https://github.com/clinicalml/embeddings)
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recognition. One possible explanation is that the evalu-
ation of the FHIE subtask involves factors beyond simply
modelling the functional similarity among words.

Impact of the UMLS embedding features
Based on the same hyper-parameters, Fig. 6 illustrates the
comparison between the performance of our best run and
that of the models without UMLS embedding and without
the entire UMLS feature on the test set. We can see that the
inclusion of the feature can improve the model’s ability to
recognize the observation concepts, as the removal of this
feature lead to more FPs and FNs for the observation
concepts. Analyses of the recognition results indicate that
with the UMLS features, the model can help recognize
observations unseen in the training set like “unspecified
background retinopathy (CUI: C0004608)”. On the other
hand, because UMLS also contains a semantic type defin-
ition for family members (“famg” in Table 2), inclusion of
the features also impacts the recognition of the family
member concept by increasing the precision at the expense
of the recall.

Pros and cons of the proposed tagging schemes and
error cases
We observed that the normalization process for the fm
property is relatively easy as not too many term varia-
tions in describing family members were encountered
when developing the normalization rules simply based

on the training set. Figure 7 shows the performance
comparison on the test set without considering the
family side attributes. Under this configuration, we can
notice that the model with the standard scheme ac-
quired the best recall and F-score, while the relation-
side scheme had the worst precision and F-score. Due to
the small size of the FHIE corpus, application of the
standard tag scheme resulted in more training instances
for each family member. By contrast, employing the
relation-side scheme leads to less and imbalanced train-
ing instances. This explains the reason why the inclusion
of the relation information did not improve the model’s
ability in recognizing family member information based
on the current annotations of the FHIE corpus.
Alternatively, it was noted that the implementation of

the relation-side scheme enables the model to distin-
guish second-degree relatives from first-degree relatives,
which is a major issue suffered by the other two tag
schemes in which they failed to normalize descriptions
related to the family members of someone else other
than the patient. For example, the note may include the
family members of the patient’s husband like his father,
his mother, or other companions of the patient’s family
members. By contrast, the model with the relation-side
scheme can successfully identify the Aunt relationship in
descriptions like “her mother had five additional [sis-
ters]” in the training set. However, it may also lead to an
incorrect identification of the Aunt relationship in the

Fig. 5 Performance comparison by using different word embeddings
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description “… her paternal grandmother has seven sis-
ters …” that appeared in the test set. Therefore, we be-
lieve that if the size of the corpus can be enlarged, the
power of the relation-side scheme may be unleashed.
On the other hand, the determination of the sf prop-

erty is more difficult. The rule-based approach devel-
oped for the baseline configuration achieved the lowest
F1-score of 0.7928 on the recognition of family mem-
bers, which was lower than the best configuration by
0.061, demonstrates the advantage of encoding the side

information in the tag scheme. Regarding the test set,
we noticed that some errors of the baseline configur-
ation can be solved by extending the original rules devel-
oped based on the training set by considering the
context following the recognized members. Take the
two sentences “Two cousins on the maternal side of his
family died of myocardial infarction at ages 39 and 36”
and “The patient also has one male and one female
cousin on the maternal side; both are healthy” as exam-
ples. The side attribute of the mention “cousin” can be

Fig. 7 The performance comparison of the three submitted runs without considering the family side attributes

Fig. 6 Performance comparison without the UMLS (embedding) features
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identified by looking for the maternal keyword after it.
Nevertheless, extension of rules may also lead to more
FP cases if there are more than one relatives mentioned
in the same sentence.
The sf property can be hard to distinguish if cross-

sentence inference is required. For instance, in the follow-
ing paragraph excerpted from the training set, correct
perception of the family side attribute of the member as
paternal demands the knowledge to connect the term
“his” to the patient’s father.
The patient’s father died at age 89 of some unknown

type of asthma. A sister[paternal] of his has been diag-
nosed with schizophrenia in her 40s.
We would like to employ intra- and inter-sentence at-

tention mechanisms to learn to focus on specific parts of
the input sentence [23] and digest cross-sentence infor-
mation [24, 25] to address the above issues.
Finally, in order to understand the most challenging

family member descriptions that appeared in the test set,
we aggregated the results of our three submitted runs
and compared the results with the gold standard annota-
tions of the test set to investigate the most difficult cases
which all three models failed to identify. The cases
uncovered are listed in Table 7. The first case displayed
in Table 7 is one of the most challenging FP cases as the
names of family members (e.g. uncle, aunt) were not dir-
ectly indicated in the text. Instead, they were indirectly
referred to by outlining their relations with other mem-
bers. Some FN cases were caused by the limited training
instances in the training set. For example, the family
member “parent” only had two training instances, and
the term “sibship” in the sixth case in Table 7 has never
appeared in the training set.
Some annotation errors in the corpus were also re-

vealed during the error analysis. For instance, the gold
standard annotations for the family side attributes for

case number 2, 4, 6 and 7 in Table 7 are “NA”. In
addition, similar to the observation on the training set,
the FP cases include family member mentions that re-
quire cross-sentence inferences (e.g. case number 8 and
9) or the resolution of co-references (e.g. case number
10). We also noticed that our models were confused
with the description containing the mention of paternal/
maternal like case number 11, which is actually the pa-
ternal great grandmother of the patient.

Effectiveness of the CRF-based inference layer
For the task of sequential labeling, there are dependen-
cies between labels assigned to the tokens in a sentence.
As a result, several sequential labeling studies have pro-
posed to apply CRF as the last layer to consider the tran-
sition between labels and jointly decode the best chain
of labels for a given input sentence [12, 26–28]. Figure 8
compares the performance of the models with and with-
out adding the layer for the task of FHIE. We can see
that the overall F-scores of all three configurations
decreased if the CRF layer was removed. For the family
member concepts, the PRF-scores of all models without
CRF layers were lower than that with the layers with
only one exception ─ the “Run 2 w/o CRF”. It is worth
noting that the PRF-scores of the model for recognizing
family members are improved by ~ 0.007 where the F-
score is even better than that of “Run 1 w/o CRF”. This
may be owing to the fact that the family member con-
cepts described by using one word only occupy 62.0 and
64.8% of the training and test sets, revealing the benefit
of encoding the fm property under such circumstance.
In particular, we noticed that the model is able to
successfully normalize the family member concepts
described below which cannot be resolved by using
current rules along with the side tag scheme.

Table 7 The challenging cases in the test set of the family information extraction entity recognition subtask. The family mentions in
italic and bold face were false positive cases

1 Leah’s father’s brother[uncle/paternal], a 35-year-old gentleman, is considered by .. Leah’s father’s[grandfather/paternal] 33-year-old sister[aunt/paternal] is
described as dysmorphic with dysmorphic and ... Leah’s father’s mother[grandmother/paternal] developed unilateral renal artery stenosis … That lady’s
sister[aunt/paternal] is reported to have coronary artery disease …

2 Suzanne has a maternal aunt who died at age 55 of a liver cancer, and this aunt has two healthy sons[cousin/maternal].

3 One of her father’s brothers[uncle/paternal] died 1 week after birth. The cause is unknown. One of his siblings[uncle/paternal] was alcoholic. …

4 Ms. Natividad’s father is healthy at the age of 80. He had one sibling, a sister[aunt/paternal], who died

5 Mrs. Manuela reports a maternal aunt had a child[cousin/maternal] with heart disease.

6 The father died at age 89 with hydrocephalus. In his sibship[sibling/maternal], there is late onset pelvic cancer, heart disease, and one
sister[aunt/maternal] had cysticercosis throughout her adult life of unknown cause.

7 Her mother did have a total of five healthy children[sibling/maternal].

8 The patient’s next sister was diagnosed with schizophrenia at the age of 43. … She has a daughter and a son who are both in their 30s.

9 Suzanne’s husband is 20 and has autism. His brother died at age 66 of strokes and was thought to have depression.

10 Hannelore has a healthy 38-year-old sister who is a carrier for urethral cancer and has a healthy 7-month-old daughter.

11 The father’s maternal grandmother died in her 20s of cystic fibrosis carrier.

Dai BMC Medical Informatics and Decision Making 2019, 19(Suppl 10):257 Page 10 of 12



“Her first four pregnancies were through a previous
partner. The first three of these resulted in full-term
[femaleDaughter], full-term [femaleDaughter], and full-term
[maleSon] …”.

Conclusions
In this study, we have developed systems for FHIE based
on the FHIE corpus released by the BioCreative/OHNLP
challenge. We explored three tag schemes specifically
designed for family member recognition and side attri-
bute assignment. Under the current size of the released
dataset, we observed that the use of side scheme along
with the proposed neural network architecture and post-
processing rules performed best for the FHI recognition
subtask. Although the model with the relation-side
scheme exhibited a lower F-score, it has the potential to
distinguish second-degree relatives from first-degree
relatives if the size of the corpus can be enlarged.
Regarding the normalization process, we noticed that
the normalization of the side family attribute is more
difficult than that of the family member. Error analysis
revealed challenges like cross-sentence and intra-
sentence inferences which need to be investigated
hereafter. Future works include the tuning of hyper-
parameters, an in-depth study of the application of
different methods and sizes of word embeddings, under-
standing the impact of fine-tuning of the pre-trained
vectors, and the inclusion of the attention model to
address the recognized challenges.
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