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Abstract

Background: The successful introduction of homomorphic encryption (HE) in clinical research holds promise for
improving acceptance of data-sharing protocols, increasing sample sizes, and accelerating learning from real-world
data (RWD). A well-scoped use case for HE would pave the way for more widespread adoption in healthcare applications.
Determining the efficacy of targeted cancer treatments used off-label for a variety of genetically defined conditions is an
excellent candidate for introduction of HE-based learning systems because of a significant unmet need to share and
combine confidential data, the use of relatively simple algorithms, and an opportunity to reach large numbers of willing
study participants.

Methods:We used published literature to estimate the numbers of patients who might be eligible to receive treatments
approved for other indications based on molecular profiles. We then estimated the sample size and number of variables that
would be required for a successful system to detect exceptional responses with sufficient power. We generated
an appropriately sized, simulated dataset (n = 5000) and used an established HE algorithm to detect exceptional
responses and calculate total drug exposure, while the data remained encrypted.

Results: Our results demonstrated the feasibility of using an HE-based system to identify exceptional responders
and perform calculations on patient data during a hypothetical 3-year study. Although homomorphically encrypted
computations are time consuming, the required basic computations (i.e., addition) do not pose a critical bottleneck to
the analysis.

Conclusion: In this proof-of-concept study, based on simulated data, we demonstrate that identifying exceptional
responders to targeted cancer treatments represents a valuable and feasible use case.
Past solutions to either completely anonymize data or restrict access through stringent data use agreements have
limited the utility of abundant and valuable data. Because of its privacy protections, we believe that an HE-based
learning system for real-world cancer treatment would entice thousands more patients to voluntarily contribute data
through participation in research studies beyond the currently available secondary data populated from hospital
electronic health records and administrative claims. Forming collaborations between technical experts, physicians,
patient advocates, payers, and researchers, and testing the system on existing RWD are critical next steps to making
HE-based learning a reality in healthcare.
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Background
The complex nature of cancer and the increasing
importance of targeted medicines
Cancer is a complex genetic disease, and researchers are
now beginning to re-classify tumors based on their mo-
lecular composition rather than anatomical site [1]. Re-
cently, the U.S. Food and Drug Administration (FDA)
approved a treatment for the first time for tumors with
damaged DNA repair mechanisms and therefore un-
usually large numbers of mutations, regardless of their
anatomical origin [2]. Clinical trials of the future will
likely incorporate more such molecular knowledge,
which spans across anatomical sites.
Today, however, most clinical trials are conducted

by anatomical location, and drug approvals are
granted accordingly, even though each anatomically
defined cancer is heterogenous and includes only a
subgroup of patients who respond. To understand
which molecularly targeted treatments have demon-
strated efficacy in multiple anatomical cancer types,
we can use the PACE Continuous Innovation Indica-
tors™ (CII). We previously developed the PACE CII as
a free tool that allows researchers and advocates to
track progress against 10 common solid tumors [3].
We published the methodology [4] and update the
tool at least annually. The PACE CII allows deep ana-
lyses of approval pathways and molecular treatment
classes. Figure 1 shows results from an example ana-
lysis of a treatment that has been approved for four
cancers (Cancers A-D).
This analysis shows that the treatment was approved

first for Cancer A (gray line) 3 years before published
evidence demonstrated that the treatment improved
overall survival. The same treatment was later approved
for Cancers B, C, and D, with the latter approval occur-
ring 10 years after the initial approval. For Cancers C

and D, the approval coincided with publication of sig-
nificant evidence for increased overall survival.
Although the proportion of patients who respond to

treatment in Cancer D may be the same or even larger
than those who respond in Cancer A, the lower preva-
lence of Cancer D may have contributed to the 10-year
delay between the respective approvals, because it takes
longer to recruit for and complete clinical trials for rare
diseases. There may be additional cancer types that have
never been tested and that harbor substantial numbers
of patients that would be considered “exceptional re-
sponders” to this treatment. The field needs additional
resources to find the patients with sensitive mutations in
each anatomical group.
Several organizations have embarked on very different,

molecularly classified studies. The American Society for
Clinical Oncology (ASCO) has recently expanded its Tar-
geted Agent and Profiling Utilization Registry (TAPUR)
study—a nonrandomized trial of FDA-approved, molecu-
larly targeted treatments—for several indications based on
encouraging initial results [5, 6]. The National Cancer In-
stitute (NCI) has funded several trials, including the
“genotype to phenotype” Molecular Analysis for Therapy
Choice (MATCH) study and the “exceptional responders”
identification initiative [7]. Initial results from these trials
show modest successes, indicating the need for even larger
sample sizes to obtain robust statistical data on responses
[8]. Finding one exceptional responder in a modest dataset
of 40–50 patients may be a fluke, but finding 5% such re-
sponders in thousands of patients would reveal an inter-
esting pattern for further investigation.

Real-world problems requiring real-world evidence (RWE)
Studying patients treated in real-world practice settings,
as opposed to those participating in clinical trials of in-
vestigational treatments, may play a key role in

Fig. 1 The complex evolution of anticancer treatment evidence and approvals. Adapted from the PACE CII online tool at http://scoringprogress.
com. The x-axis shows time since the first approval; the y-axis shows the E-score, a measure of strength of evidence that the approved treatment
increases overall survival. Vertical lines indicate the year during which the treatment was first approved for the respective cancer. Year 0 indicates
the first approval of this treatment for any cancer
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determining which treatments work best for which pa-
tients. Once a treatment is approved by the FDA for any
indication, physicians may prescribe it to patients using
professional judgment, including for unapproved, “off-
label” indications. Indeed, as many as 71% of adult can-
cer patients may receive an off-label treatment [9]. With
less than 5% of cancer patients participating in clinical
trials [10], learning systematically from patients treated
off-label in real-world practice settings will be a key to
understanding how to more effectively use currently ap-
proved treatments.
Although most countries allow off-label prescribing,

the rules are vague and tend to require a reasonable ra-
tionale to support the treatment [11, 12]. These ill-
defined requirements generate a considerable additional
workload for physicians, who often must generate com-
prehensive letters citing preclinical and clinical data to
support insurance reimbursement for off-label use [13].
These efforts could be better directed toward participat-
ing in real-world learning systems, which could eventu-
ally lead to clearer reimbursement decisions.
Based on published data about off-label use even in

the pre-personalized area, it is clear that we are not
learning from considerable information about possible
exceptional responders that are generated in daily prac-
tice [14]. In the example shown in Fig. 1, clinical trials
with a total of 860 patients led to approval of a treat-
ment for Cancers C and D that had already been ap-
proved for Cancer A. However, during the 10-year
course of those trials, thousands more patients were
treated off-label with this treatment in the United States
alone, and their experiences did not feed back into the
learning cycle in a systematic way.

Privacy concerns, data ownership, and lack of trust as
barriers to real-world learning
To overcome the learning gap in the real world, many
researchers have aimed to use RWD more efficiently.
However, they have encountered backlash amid con-
cerns about multiple testing, lack of control over the
data, ownership of the results, and privacy. In the past,
researchers addressed these issues by (1) completely an-
onymizing and then publicly sharing data or (2) keeping
the data private and allowing access only through strictly
controlled data access agreements.
In the first case, the goal is to completely unlink the

data from the patients, who sometimes were not re-
quired to provide informed consent, because the data
were used for secondary purposes and could not be
traced back. “Anonymizing” data while preserving its
utility is a daunting task, mainly because of the presence
of quasi-identifiers—elements other than direct identi-
fiers (e.g., name, address) that alone or in combination
with other data can be used for re-identification. Several

notable examples of successful re-identification of
“de-identified” data met with media outcry and in-
creased distrust in data sharing and the research en-
terprise [15]. Aware of these risks, pharmaceutical
companies submitting individual-level clinical trial
data to regulatory agencies such as the FDA and the
European Medicines Agency (EMA) usually conduct
extensive steps to de-identify quasi-identifiers (e.g.,
visit dates), resulting in individual-level data of low
utility, often containing little more information than
the published group-level results [16].
In the second case, researchers working with the

strictly controlled data have been required to complete
increasingly detailed protocols before obtaining the data
[17] to ensure that hypothesis-generating steps could be
distinguished from hypothesis testing, and that the mul-
tiple testing problem was managed. These requirements
have created a new barrier to analysis of RWD, because
science evolves quickly, and a protocol that seemed rele-
vant a year before the planned study may need multiple
modifications once the actual data become available.
Thus, when researchers obtain results about the actual
number of cases overall and in different subgroups, they
may have to modify their analysis plan, and it is not pos-
sible to tell whether they might have already seen the re-
sults yet. This creates issues of trust, as it is possible that
revised analysis plans will be engineered to produce de-
sired results.

Homomorphic encryption as a possible accelerator for
RWE insights
Homomorphic encryption allows for analysis of data while
the data remain encrypted. A data mart that hosts the
homomorphically encrypted data would perform the ana-
lyses and control the number of performed tests, with no
knowledge about the raw data except its structure (Figs. 2
and 3) [18]. A systematic implementation of such a system
could identify exceptional responders to treatments in
very large datasets and could accelerate learning without
jeopardizing patient privacy. An important feature of the
system suggested herein is the combination of data “tags”
(e.g., cancer type, mutated gene) that allow researchers to
conduct power calculations and modify analysis plans as
the data arrive. Because all patient-level data such as iden-
tifiers, visit dates, and measurements are encrypted homo-
morphically, none of this information is ever available to
the analysts. This system thus balances the data confiden-
tiality with the flexibility that rapidly evolving cancer
science demands.
The goal of this proof-of-concept study was to exam-

ine the feasibility of using the current homomorphic en-
cryption technology to identify exceptional cancer
treatment responders from a simulated longitudinal
dataset.
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Methods
Estimation of the upper bound of numbers of individuals
for each treatment
We used the PACE CII to identify treatment label ex-
pansions and other published literature to estimate the
numbers of patients who might be eligible to receive
treatments approved for other indications based on their
molecular profiles. We estimated that the number of pa-
tients would be unlikely to exceed 5000 patients per
treatment each year in the United States for the most

frequent cancers (breast, prostate, lung, and colorectal),
and remains at or below 1000 for the less frequent can-
cers (e.g., gastric, pancreatic, and liver). This estimate
was based on PACE CII data for the most common
treatment label expansions in the past (an average 9.3
years, data not shown), global incidence estimates from
GLOBOCAN [19], data from the Surveillance, Epidemi-
ology, and End Results Program (SEER) on stage distri-
bution [20] and published data on off-label use (about
13% for breast cancer) [21, 22]. Because each of the

Fig. 2 Schematic of performing computaitons on encrypted data using homomorphic encryption
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cancers is heterogeneous (multiple different etiologies
and genetic mutations), we conducted power analyses to
ensure that samples of 1000 or 5000 patients would have
enough power to detect differences between groups. We
used the “pwr” package in R to perform these calcula-
tions [23]. We found that a moderate effect (effect size
of 30%) would be detectable with the 1000 patients in a
chi-squared test with 100 degrees of freedom at a signifi-
cance level of p = 0.001 with 95% power. The larger
sample of 5000 entries would allow detection of a
smaller effect size, down to about 13%. This indicates
that these target sample sizes would be sufficiently pow-
ered to detect moderate to small effects even when car-
rying out many parallel tests. Thus, our challenge was to
show that we can learn from these patients through a se-
cure and practical system. For the purpose of this study,
we generated two datasets of 1000 and 5000 patients,
and measured the time it took to finish the analyses.

Data sources
While the goal of our inititative is to build a real-world
learning system that can analyze individual patient data
from a wide geographical catchment area (e.g., through
smartphone apps linked to a central server nation-wide), a
proof-of-principle study should be carried out on simu-
lated data to avoid privacy issues and possible revelation
of patient information while testing the homomorphic en-
cryption procedures. We therefore decided to perform this
study on simulated data that mirrored the challenges ex-
pected in the real world but did not contain any actual
real-world patient information. The perl script generating
the simulated dataset is provided in Additional file 1. In
brief, the script generates random numbers based on de-
sired distributions with a specified mean and standard
deviation.
The simulated dataset had to fulfill two criteria to test

the feasibility of homomorphic encryption for our pur-
poses: (1) be able to add values across all patients in the
dataset to count the number of exceptional responders
in the dataset. For this challenge, we generated arrays of

1000 and 5000 values and measured the time it took for
the algorithm to finish the calculation (code in Add-
itional file 2); (2) the dataset should further contain a
multiplicative task, such as determining the total drug
exposure, to normalize values across patient records and
combine them for further analyses (code in Add-
itional file 3). For this purpose, we generated 1000 and
5000 records of simulated monthly patient weight infor-
mation (in kg) and monthly drug dosage (in mg/kg) to
determine the exposure for a given month [in mg]. As
long as the computation time was less than the study
time, we considered the analysis to be feasible, because
it would not slow down an actual real-world study.
To create simulated data of the kind and size that

would, eventually, be required for real-world analyses,
we chose to simulate a dataset with 8 ± 1months’ stand-
ard survival and 11 ± 1months of exceptional survival.
The total dataset was a combination of the standard and
exceptional survivors, containing 5% exceptional survi-
vors and 95% standard survivors.
We generated simulated datasets based on the above

requirement to capture basic information (e.g., a patient
identifier) and data about treatment encounters (in our
example, 48 monthly visits across the study period). For
the exceptional responder identification, the data gener-
ation comprised two steps: we first generated patient re-
sponse data over 48 months of our hypothetical study.
We then used these data to create an array with flags
(‘0’, or ‘1’) indicating for each patient if exceptional re-
sponder status has been achieved at this point. Figure 4
shows the survival distribution (in days) of the simulated
cohort.

Homomorphic encryption method and choice of
parameters
We used an experimental form of the homomorphic en-
cryption by Fan and Vercauteren (FV) [24] implemented
in the ‘HomomorphicEncryption’ R package [25]. The
package contains a command (‘parsHelp’) to select pa-
rameters based on the desired security level, maximum

Fig. 3 Data mart for personalized cancer treatments powered by homomorphic encryption
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value that needs to be stored (default = 1000), and multi-
plicative depth. We base our analyses on parameters cal-
culated by the helper function. A security-level of 128,
for example, means that a brute force attack would need
to try 2128 different combinations to find the correct key.
Even with millions of very fast computers available, this
effort would take billions of years.
One common feature of all encryption schemes (regu-

lar and homomorphic) is the need to add noise, so that
a hostile agent cannot obtain one correct answer of the
algorithm and from there derive the key. This noise
grows with each manipulation of the data and grows fas-
ter with multiplications than with additions. The multi-
plicative depth parameter reveals information about the
number of consecutive multiplications in the FV scheme
that can be performed until the noise level becomes so
large that the data get disrupted. The higher this param-
eter is chosen, the more complex computations can be
performed on the data. We explored values up to a
depth of 16 consecutive operations to allow multiple
levels of computations to be performed on the data.
In the real world, new records are being added to pa-

tients’ electronic medical records periodically that need
to be encrypted and submitted to data mart repositories
for observational research. This requires the matching of
an encrypted identifier from one dataset (e.g., the incom-
ing data) with an identifier in another dataset (the data
mart repository). Other researchers have addressed this
problem by, for example, implementing a homomorphic
method based on Bloom filters [26] and showing that

the addition of the homomorphic encryption step does
not diminish the accuracy of the matching of records.
Assuming that a practical solution can be implemented
based on existing strategies, we therefore excluded this
step from the study.
Identification of exceptional responders mainly re-

quires counting the numbers of patients alive at a given
time point (addition), which introduces less noise than
does multiplication. In brief, we assigned a random start
date within 6months to each patient, encrypted all pa-
tient records, and added the numbers of patients at each
month that were labeled as “exceptional responders,”
while these data remained encrypted. We measured the
time until all exceptional responders were identified.
In a second step, we calculated the total drug exposure

for each patient during the study period by multiplying
the patient’s weight with the received dosage to demon-
strate the feasibility of multiplicative operations.

Results
The computation times from our simulations are sum-
marized in Tables 1 and 2, which shows the expected
trade-off between the level of security, the depth of pos-
sible calculations on the data (most of the actual manip-
ulations will be addition), and time. All calculations
finished within reasonable time frames on a desktop
computer.
The process of identifying exceptional responders is

summarized in Fig. 5. Ten or more exceptional survivors
are identified after about 13 months, and all exceptional

Fig. 4 Distribution of survival times in the simulated dataset with 5% exceptional responders. Addition of the responders leads to an elevated tail
of the distribution on the right side. The y-axis shows the number of simulated patients surviving during the time indicated on the x-axis
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survivors are identified after about 21 months. The com-
putations to identify exceptional responders (i.e., adding
the numbers of exceptional responders in the dataset)
took at most 7 h per month (Table 1), which means that
they did not slow the pace of the study. The rate-
limiting factor of the study, therefore, was not the com-
putation but the need to wait until enough exceptional
survivors reach the pre-agreed survival duration thresh-
old. We can fill this waiting period with computations
on encrypted data (up to 24 h/day), in which case the
computations would run continuously.

Discussion
We herein show that analysis of data to identify excep-
tional responders based on homomorphic encryption is
feasible even on a standard desktop computer. Of
course, one would choose a more powerful system for
real application, considerably expanding the possible
depth and security of calculations. With HeLib [27, 28],
PALISADE [29], TFHE [30] and SEAL [31], four power-
ful libraries are available for advanced users, with each
package offering calculation optimization strategies such
as batch-mode processing. The computation time esti-
mates reported herein are thus to be considered an
upper limit, the purpose of which is to show that com-
putation duration would not be a bottleneck for the
envisioned real-world study of exceptional responders.
The computation time for this study is considerably

longer than that seen for standard analyses, which would
occur after decryption of the submitted data. This agrees

with findings from other groups, who have reported
homomorphic encryption-based systems to run up to
40,000 times slower than regular computers [32, 33].
However, our proof-of-concept study shows that the

increased computation time (days to weeks to finish
complete sample sets) is negligible compared to the de-
lays due to lack of learning from real-world experiences,
which can last for decades, as shown in Fig. 1. If patients
and their physicians know that the contributed health
records data will never be decrypted, they will be more
willing to participate in studies—leading to accelerated
learning due to increased statistical power. Furthermore,
computations can “tag along” in real time, further offset-
ting the additional time needed to compute encrypted
data (red dashed line in Fig. 5).
Identification of the best solution for the current prob-

lem will be aided by the vibrancy of the field of homo-
morphic encryption. It is likely that solutions that are
tailored to specific problems will begin to emerge. A
practical, leveled, and somewhat homomorphic scheme
is sufficient to identify exceptional responders to cancer
treatments, and can be implemented with minor invest-
ments in technology.
Real-world collaborations between clinicians and pro-

grammers on defined problems are feasible and ready
for prime time. Researchers in the homomorphic en-
cryption community are actively looking for practical
problems to solve. For example, during a summer 2017
workshop [34], one group identified genomics and the
“match maker” as a possible application that could be

Table 1 Experimental computing time (seconds) for identification of exceptional responders using addition across records of all
included patients

Number of
patients

Lambda (security
measure in bits)

Multipli-
cation
depth

Time to encrypt vector
for one variable

Time to add encrypted
vector for all patients

Addition time multiplied by
100 variables per analysis

Time to
decrypt
resultsa

1000 128 8 70.5 0.6 60 0.1

1000 256 8 142.7 1.2 120 0.2

1000 256 16 316.7 2.8 280 0.4

5000 128 8 234.2 1.8 180 0.1

5000 256 8 616.7 7.6 760 0.2

5000 256 16 1583.8 2512.2 25,120 0.8
aThe final decryption times of the results occur only once at the end of each analysis. All times in seconds

Table 2 Experimental computing time (seconds) for identification of total drug exposure (multiplication)

Lambda
(security
measure in
bits)

Multiplication
depth

Time to encrypt
all data for one
patient

Time to multiply
weight and dose data
for all months

Time to add total
exposure for one
patient

Time to decrypt
summary data for
one patient

Total
computation
time for one
patient

Estimated total
time for 5000
patients

128 8 13.3 14.7 2.6 0.2 30.8 42 h

256 8 13.3 14.9 2.6 0.2 31.0 43 h

256 16 56.8 42.4 5.3 0.8 105.3 146 h
aThe final decryption times of the results occur only once at the end of each analysis. All times in seconds unless otherwise specified

Paddock et al. BMC Medical Informatics and Decision Making          (2019) 19:255 Page 7 of 10



implemented within 1 year’s time. For our proposed
homomorphically encrypted learning system, no add-
itional investment in technology would be required as
physicians could submit the data via an App download-
able at the point of care. Larger scale efforts (e.g.,
genome-wide data analysis) remain beyond the scope of
this system and may be better addressed by physical se-
curity solutions, as described by others [32, 33].
Payers would benefit from the refined understanding

of which patients would benefit from which treat-
ments—including those not currently approved for cer-
tain indications—that would be gained from adoption of
a homomorphically encrypted learning system. In the
long term, learning from such a system would help to
improve outcomes of insured populations while minim-
izing waste on treatments understood to be less effective.
Meanwhile, payers may be willing to accept participation
in such a system as sufficient justification for reimburse-
ment of off-label treatments, thereby reducing the
reporting burdens on practicing physicians wishing to
use treatments off-label based on molecular hypotheses.
Other solutions appear feasible, such as managed-access
agreements, through which the treatment’s manufacturer
would be rewarded for positive responses only until the
evidence for the benefit of the treatment solidifies.
During a recent workshop discussion, regulators

expressed substantial hesitation to use real-world experi-
ences for detection of small effects because of greater
noise in large real-world datasets, but there is possible
willingness to incorporate the data to determine label
extensions [35]. The number of patients that we expect
to be feasible to include are considerably higher than the

number of patients included in randomized clinical trials
or the current voluntarily patient-provided health data
during the same period. The learning system described
in this concept paper could be used to support such gen-
omic profile-based extensions based on the knowledge
of presence of consistently found exceptional responders
across large datasets.
Our study has several limitations. First, our analysis is

based on a research implementation of the algorithm,
and a complete, practicable implementation would re-
quire additional steps of data validation and security
testing. For example, in addition to the 48 variables
tracking monthly response status during the study
period, one would need to add a substantial number of
additional variables for consistency checks (e.g., check-
sums to ensure that the correct records have been up-
dated and that complete data integrity is maintained).
Second, we assume that patients and providers will ap-

preciate the new technology. Although the technical cap-
abilities for the identification of exceptional responders to
targeted therapies clearly exist, patients must feel comfort-
able with having their results posted to a data mart. Simi-
larly, providers must be assured of the data security and
that the system will not disrupt clinical workflows. There-
fore, an important next step is to conduct focus groups
with patients and providers to explore how this new tech-
nology would be received and what level of security would
be required to assure participating providers and patients
that their privacy will be protected. Only when people
clearly exhibit comfort with submitting their data to the
system can we confirm that the system can lead to the
envisioned manifold increase in high-utility RWD.

Fig. 5 Identification of exceptional survivors in simulated dataset by homomorphic addition of encrypted records by month. The dashed red line
shows the computations on the dataset. The computations can take several hours for each run, but they do not slow the pace of the study,
because they occur in real time as the dataset grows and the study proceeds
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Conclusions
Homomorphic encryption methods are receiving in-
creased attention for all kinds of cloud-based applica-
tions [36]. Nonetheless, to our knowledge, there have
been no practical implementations in the health care
sector. Technical feasibility of scaling a clinical homo-
morphically encrypted learning system, an understand-
ing of risks and benefits by participating patients and
physicians, and willing parties to undertake the effort are
needed to facilitate adoption. We believe that the use of
homomorphically encrypted learning systems to identify
exceptional responders to cancer treatments will become
accepted by patients as the data owners and will increase
sample sizes and thereby learning from real world
experience.
Because the data are never de-identified, this system

allows researchers to correct errors or withdraw volun-
tarily submitted data from the sample if they, for any
reason, withdraw their consent, ameliorating concerns
about data integrity and ownership seen in other efforts.
A near-term implementation in the cancer field, in

which off-label use based on genomic profiles is reim-
bursed if data are deposited in the encrypted data mart, is
an attractive way forward to provide patients with the best
treatments for them while ameliorating concerns about
lack of learning from outcomes of patients treated in rou-
tine clinical practice or uncontrolled multiple testing.
Building a homomorphically encrypted learning system
now to (mathematically) simplify the task of identifying
exceptional responders also lays the foundation for future
analyses that could lead to, for example, biomarker discov-
ery and personalized treatment protocols.
It is important to note that homomorphic encryption

is not a panacea for all privacy concerns. The major ad-
vantage is that patients can rest assured that their data
will never be decrypted after submission. Nobody will be
able to use the dates of their doctor’s visits or other in-
direct identifiers to trace back the submitted data. But
this does not mean that any data would be safe to sub-
mit even to a homormorphically encrypted system. Be-
cause it is possible to identify individuals even from
pooled samples of genomic data [37], summary allele
frequencies obtained from homomorphic calculations
would be sufficient to tell with reasonable certainty if a
known DNA sample is represented in an encrypted col-
lection. Thus, any existing de-identification problem ap-
plying to summary data would still be present in the
homomorphic context. Incorporation of genomic or
other data containing rare patterns would, therefore, re-
quire additional safeguarding steps (e.g., not report allele
frequencies under 5%).
As outlined in this paper, the next steps are to estab-

lish collaborations among technical experts, physicians,
patient advocates, payers, and researchers, and to ensure

large-scale buy-in by patients whose data we can learn
from “blindly.” Testing the technology on an existing
real-world dataset would provide further assurance of
feasibility and would help identify challenges to address
before a complete rollout on newly collected data. Suc-
cessful application of homomorphic encryption in this
context could spur development of additional, increas-
ingly ambitious efforts to learn from the wealth of exist-
ing untapped real-world health care data, both in
oncology and for any other disease with a need for real-
world learning. A real-world example is provided in the
vignette below.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12911-019-0983-9.

Additional file 1. Simulated Patient Data. A Word file with Perl code to
generate simulated patient data (n = 1000 or n = 5000)

Additional file 2. HE Challenge 1. A Word file with R code for testing of
homomorphic encryption times in challenge 1 (addition)

Additional file 3. HE Challenge 2. A Word file with R code for testing of
homomorphic encryption times in challenge 2 (multiplication)

Additional file 4. Vignette: An example of an HE encryption system in
action. A Word file with text for a boxed vignette that illustrates the use
of the homomorphically encrypted data

Abbreviations
ASCO: American Society for Clinical Oncology; CII: Continuous Innovation
Indicators; EMA: European Medicines Agency; FDA: Food and Drug
Administration; FV: Fan and Vercauteren; HE: Homomorphic Encryption;
MATCH: Molecular Analysis for Therapy Choice; NCI: National Cancer Institute;
PACE: Patient Access to Cancer care Excellence; RWD: Real-World Data;
RWE: Real-World Evidence; SEER: Surveillance, Epidemiology, and End Results
Program; TAPUR: Targeted Agent and Profiling Utilization Registry

Acknowledgements
We gratefully acknowledge Nancy Tuvesson (Rose Li and Associates, Inc.) for
editorial assistance, Valery Leng and Gregory Richards (Rose Li and
Associates, Inc.) for technical assistance, and Kristin Sheffield (Eli Lilly and
Company) for her invaluable critical review of the manuscript.

Authors’ contributions
SP, HA, JZ, and ST conceived and designed the study. SP wrote the Perl and
R scripts. ST performed the homomorphic computations. SP, HA, and ST
reviewed and refined the analysis. SP and ST wrote the first draft of the
manuscript. SP, HA, JZ, and ST critically reviewed and edited the manuscript
and signed off on the final version. All authors read and approved the final
manuscript.

Funding
Funding was provided by Eli Lilly and Company. JZ and HA are employees
of Eli Lilly and Company. SP and ST conducted this work under contract to
Eli Lilly through Rose Li and Associates, Inc. The funders were involved in the
study design, data analysis, decision to publish, and preparation of the
manuscript.

Availability of data and materials
All computer code provided in supplemental files.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Paddock et al. BMC Medical Informatics and Decision Making          (2019) 19:255 Page 9 of 10

https://doi.org/10.1186/s12911-019-0983-9
https://doi.org/10.1186/s12911-019-0983-9


Competing interests
For their time and effort, all authors received remuneration from Eli Lilly and
Company.

Author details
1Rose Li and Associates, Inc., 1101 Wootton Pkwy, Suite 400A, Rockville, MD
20852, USA. 2Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN
46285, USA.

Received: 25 October 2018 Accepted: 14 November 2019

References
1. Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, Janiszewska M,

et al. Classifying the evolutionary and ecological features of neoplasms. Nat
Rev Cancer. 2017;17:605–19.

2. Commissioner O of the. Press Announcements - FDA approves first cancer
treatment for any solid tumor with a specific genetic feature https://www.
fda.gov/newsevents/newsroom/pressannouncements/ucm560167.htm.
Accessed 10 Feb 2019.

3. Paddock S, Goodman C, Shortenhaus S, Grainger D, Zummo J, Thomas S.
Dynamic value assessments in oncology supported by the PACE continuous
innovation indicators. Future Oncol Lond Engl. 2017;13:2253–64.

4. Paddock S, Brum L, Sorrow K, Thomas S, Spence S, Maulbecker-Armstrong
C, et al. PACE continuous innovation indicators-a novel tool to measure
progress in cancer treatments. Ecancermedicalscience. 2015;9:498.

5. ASCO. Expands TAPUR study enrollment after promising initial treatment
outcomes seen. ASCO. 2017; https://www.asco.org/about-asco/press-center/
news-releases/asco-expands-tapur-study-enrollment-after-promising-initial.
Accessed 10 Feb 2019.

6. ASCO and Tempus Announce Collaboration to Help Research Sites Identify
Potential Participants for the Targeted Agent and Profiling Utilization
(TAPUR™) Study. ASCO. 2019. https://www.asco.org/about-asco/press-
center/news-releases/asco-and-tempus-announce-collaboration-help-
research-sites. Accessed 10 Feb 2019.

7. NCI-sponsored trials in precision medicine | Major Initiatives | DCTD. https://
dctd.cancer.gov/majorinitiatives/NCI-sponsored_trials_in_precision_
medicine.htm. Accessed 10 Feb 2019.

8. NCI-MATCH trial releases new findings. National Cancer Institute. 2018.
https://www.cancer.gov/news-events/press-releases/2018/nci-match-first-
results. Accessed 10 Feb 2019.

9. Saiyed MM, Ong PS, Chew L. Off-label drug use in oncology: a systematic
review of literature. J Clin Pharm Ther. 2017;42:251–8.

10. Unger JM, Cook E, Tai E, Bleyer A. The role of clinical trial participation in
cancer research: barriers, evidence, and strategies. Am Soc Clin Oncol Educ
Book Am Soc Clin Oncol Annu Meet. 2016;35:185–98.

11. Lenk C, Duttge G. Ethical and legal framework and regulation for off-label
use: European perspective. Ther Clin Risk Manag. 2014;10:537–46.

12. Levêque D. Off-label use of targeted therapies in oncology. World J Clin
Oncol. 2016;7:253–7.

13. Dr. Sahai Uses Know Your Tumor® to Expand Treatment Options. Pancreatic
Cancer Action Network. 2018. https://www.pancan.org/for-doctors/know-
your-tumor/dr-sahai-uses-know-tumor-expand-treatment-options/. Accessed
20 Mar 2018.

14. Kalis JA, Pence SJ, Mancini RS, Zuckerman DS, Ineck JR. Prevalence of off-
label use of oral oncolytics at a community cancer center. J Oncol Pract.
2015;11:e139–43.

15. The Deidentification Dilemma. https://www.fortherecordmag.com/archives/
0515p16.shtml. Accessed 10 Feb 2019.

16. Home - clinicaldata.ema.europa.eu. 2018. https://clinicaldata.ema.europa.eu/
web/cdp/home. Accessed 21 Mar 2018.

17. Garrison LP, Neumann PJ, Erickson P, Marshall D, Mullins CD. Using real-
world data for coverage and payment decisions: the ISPOR real-world data
task force report. Value Health J Int Soc Pharmacoeconomics Outcomes Res.
2007;10:326–35.

18. Frederick R. Core concept: homomorphic encryption. Proc Natl Acad Sci U S
A. 2015;112:8515–6.

19. New Global Cancer Data: GLOBOCAN 2018 | UICC. https://www.uicc.org/
new-global-cancer-data-globocan-2018. Accessed 10 Feb 2019.

20. Surveillance, Epidemiology, and end results program. SEER. https://seer.
cancer.gov/index.html. Accessed 10 Feb 2019.

21. Hamel S, McNair DS, Birkett NJ, Mattison DR, Krantis A, Krewski D. Off-label
use of cancer therapies in women diagnosed with breast cancer in the
United States. SpringerPlus. 2015;4:209.

22. Shea MB, Stewart M, Van Dyke H, Ostermann L, Allen J, Sigal E. Outdated
prescription drug labeling: how FDA-approved prescribing information lags
behind real-world clinical practice. Ther Innov Regul Sci. 2018;52:771–7.

23. Champely S, Ekstrom C, Dalgaard P, Gill J, Weibelzahl S, Anandkumar A,
et al. Pwr: basic functions for power analysis; 2018. https://CRAN.R-project.
org/package=pwr. Accessed 6 Oct 2019

24. Fan J, Vercauteren F. Somewhat practical fully homomorphic encryption;
2012. https://eprint.iacr.org/2012/144. Accessed 6 Jul 2018

25. Aslett L, Esperança PC, Holmes C. A review of homomorphic encryption and
software tools for encrypted statistical machine learning; 2015.

26. Randall SM, Brown AP, Ferrante AM, Boyd JH, Semmens JB. Privacy
preserving record linkage using homomorphic encryption. Sydney: First
International Workshop on Population Informatics for Big Data (PopInfo’15).
10 August 2015. https://dmm.anu.edu.au/popinfo2015/papers/4-randall2015
popinfo2.pdf

27. Halevi S, Shoup V. Faster homomorphic linear transformations in HElib;
2018. https://eprint.iacr.org/2018/244. Accessed 8 Mar 2018

28. HElib: HElib Documentation. https://shaih.github.io/HElib/. Accessed 10 Feb 2019.
29. Rohloff K. In: Rohloff K, editor. The PALISADE homomorphic encryption

library; 2018. https://medium.com/@krohloff/the-palisade-homomorphic-
encryption-library-6fa04d55d6d9. Accessed 10 Feb 2019.

30. TFHE Fast Fully Homomorphic Encryption over the Torus. https://tfhe.
github.io/tfhe/. Accessed 17 Feb 2019.

31. Simple Encrypted Arithmetic Library (SEAL). Microsoft Research. https://
www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-
library/. Accessed 10 Feb 2019.

32. Chen F, Wang C, Dai W, Jiang X, Mohammed N, Al Aziz MM, et al. PRESAGE:
PRivacy-preserving gEnetic testing via SoftwAre guard extension. BMC Med
Genet. 2017;10(Suppl 2):48.

33. Chen F, Wang S, Jiang X, Ding S, Lu Y, Kim J, et al. PRINCESS: privacy-
protecting rare disease international network collaboration via encryption
through software guard extensionS. Bioinforma Oxf Engl. 2017;33:871–8.

34. Homomorphic Encryption Standardization Workshop. Microsoft Research;
2018. https://www.microsoft.com/en-us/research/event/homomorphic-
encryption-standardization-workshop/. Accessed 21 Mar 2018

35. Real World Evidence: Can it Support New Indications, Label Expansions?
https://www.raps.org/regulatory-focus™/news-articles/2016/3/real-world-
evidence-can-it-support-new-indications,-label-expansions. Accessed 10 Feb
2019.

36. Securing the cloud. MIT News. http://news.mit.edu/2013/algorithm-solves-
homomorphic-encryption-problem-0610. Accessed 10 Feb 2019.

37. Braun R, Rowe W, Schaefer C, Zhang J, Buetow K. Needles in the haystack:
identifying individuals present in pooled genomic data. PLoS Genet. 2009;5:
e1000668.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Paddock et al. BMC Medical Informatics and Decision Making          (2019) 19:255 Page 10 of 10

https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm560167.htm
https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm560167.htm
https://www.asco.org/about-asco/press-center/news-releases/asco-expands-tapur-study-enrollment-after-promising-initial
https://www.asco.org/about-asco/press-center/news-releases/asco-expands-tapur-study-enrollment-after-promising-initial
https://www.asco.org/about-asco/press-center/news-releases/asco-and-tempus-announce-collaboration-help-research-sites
https://www.asco.org/about-asco/press-center/news-releases/asco-and-tempus-announce-collaboration-help-research-sites
https://www.asco.org/about-asco/press-center/news-releases/asco-and-tempus-announce-collaboration-help-research-sites
https://dctd.cancer.gov/majorinitiatives/NCI-sponsored_trials_in_precision_medicine.htm
https://dctd.cancer.gov/majorinitiatives/NCI-sponsored_trials_in_precision_medicine.htm
https://dctd.cancer.gov/majorinitiatives/NCI-sponsored_trials_in_precision_medicine.htm
https://www.cancer.gov/news-events/press-releases/2018/nci-match-first-results
https://www.cancer.gov/news-events/press-releases/2018/nci-match-first-results
https://www.pancan.org/for-doctors/know-your-tumor/dr-sahai-uses-know-tumor-expand-treatment-options/
https://www.pancan.org/for-doctors/know-your-tumor/dr-sahai-uses-know-tumor-expand-treatment-options/
https://www.fortherecordmag.com/archives/0515p16.shtml
https://www.fortherecordmag.com/archives/0515p16.shtml
http://clinicaldata.ema.europa.eu
https://clinicaldata.ema.europa.eu/web/cdp/home
https://clinicaldata.ema.europa.eu/web/cdp/home
https://www.uicc.org/new-global-cancer-data-globocan-2018
https://www.uicc.org/new-global-cancer-data-globocan-2018
https://seer.cancer.gov/index.html
https://seer.cancer.gov/index.html
https://cran.r-project.org/package=pwr
https://cran.r-project.org/package=pwr
https://eprint.iacr.org/2012/144
https://dmm.anu.edu.au/popinfo2015/papers/4-randall2015popinfo2.pdf
https://dmm.anu.edu.au/popinfo2015/papers/4-randall2015popinfo2.pdf
https://eprint.iacr.org/2018/244
https://shaih.github.io/HElib/
https://medium.com/@krohloff/the-palisade-homomorphic-encryption-library-6fa04d55d6d9
https://medium.com/@krohloff/the-palisade-homomorphic-encryption-library-6fa04d55d6d9
https://tfhe.github.io/tfhe/
https://tfhe.github.io/tfhe/
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://www.microsoft.com/en-us/research/event/homomorphic-encryption-standardization-workshop/
https://www.microsoft.com/en-us/research/event/homomorphic-encryption-standardization-workshop/
https://www.raps.org/regulatory-focusTM/news-articles/2016/3/real-world-evidence-can-it-support-new-indications
https://www.raps.org/regulatory-focusTM/news-articles/2016/3/real-world-evidence-can-it-support-new-indications
http://news.mit.edu/2013/algorithm-solves-homomorphic-encryption-problem-0610
http://news.mit.edu/2013/algorithm-solves-homomorphic-encryption-problem-0610

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	The complex nature of cancer and the increasing importance of targeted medicines
	Real-world problems requiring real-world evidence (RWE)
	Privacy concerns, data ownership, and lack of trust as barriers to real-world learning
	Homomorphic encryption as a possible accelerator for RWE insights

	Methods
	Estimation of the upper bound of numbers of individuals for each treatment
	Data sources
	Homomorphic encryption method and choice of parameters

	Results
	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

