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Abstract

Background: Neuropsychological tests (NPTs) are important tools for informing diagnoses of cognitive impairment
(Cl). However, interpreting NPTs requires specialists and is thus time-consuming. To streamline the application of
NPTs in clinical settings, we developed and evaluated the accuracy of a machine learning algorithm using multi-
center NPT data.

Methods: Multi-center data were obtained from 14,926 formal neuropsychological assessments (Seoul Neuropsychological
Screening Battery), which were classified into normal cognition (NC), mild cognitive impairment (MCl) and Alzheimer's
disease dementia (ADD). We trained a machine learning model with artificial neural network algorithm using TensorFlow
(https.//www.tensorflow.org) to distinguish cognitive state with the 46-variable data and measured prediction accuracies
from 10 randomly selected datasets. The features of the NPT were listed in order of their contribution to the outcome using
Recursive Feature Elimination.

Results: The ten times mean accuracies of identifying CI (MCl and ADD) achieved by 96.66 + 0.52% of the balanced dataset
and 97.23 +£0.32% of the clinic-based dataset, and the accuracies for predicting cognitive states (NC, MCl or ADD) were
9549+ 0.53 and 96.34 + 1.03%. The sensitivity to the detection Cl and MCl in the balanced dataset were 96.0 and 96.0%, and
the specificity were 96.8 and 97.4%, respectively. The ‘time orientation” and ‘3-word recall score of MMSE were highly ranked
features in predicting Cl and cognitive state. The twelve features reduced from 46 variable of NPTs with age and education

cognitive impairment in the clinical setting.

had contributed to more than 90% accuracy in predicting cognitive impairment.
Conclusions: The machine learning algorithm for NPTs has suggested potential use as a reference in differentiating
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Background

Cognitive impairment is a spectrum that ranges from sub-
jective cognitive decline to mild cognitive impairment (MCI)
and — at its end — dementia [1]. The diagnosis of MCI and
Alzheimer’s disease dementia (ADD) depends on the clinical
decision by clinicians, where neuropsychological tests help
inform the presence of objective cognitive impairment [2-5].
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However, assessing individual cognitive states using neuro-
psychological test (NPT) is time-consuming, as it requires
the evaluation of an extensive amount of information [6, 7];
this is in part due to the accuracy and efficiency of NPT-
informed diagnosis being determined by the level of practi-
tioner expertise.

The advent of machine learning algorithms that can
analyze complex medical data may streamline the appli-
cation of NPT [8, 9]. An algorithm learns the relation-
ship between the input data (test score) and the
corresponding output variables (clinical diagnosis). Once
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the learning process is completed, the algorithm can
yield classifications or predictions when new data is in-
putted [10]. Several studies have applied machine learn-
ing to the differential diagnosis of dementia: Gurevich
used Consortium to Establish a Registry for Alzheimer’s
disease (CERAD) to identify Alzheimer’s disease (AD)
among 158 subjects based on cerebral spinal fluid bio-
markers and thereby achieved a classification accuracy
of 89% [11]; and using a cohort of 272 subjects, Weakley
et al. applied machine learning to 27 measures of NPT
to yield classifications of clinical-dementia ratings. They
also used machine learning to explore the configuration
of measures for variable reduction and achieved an effi-
cient predictive model using a maximum of six variables
[12]. However, such investigations are among a hitherto
limited effort to apply machine learning to the diagnosis
and prognostic estimation of cognitive decline, and stud-
ies benefitting from large datasets are unavailable.
Recently, some researchers found that some MRI and/or
NPT features can be used to predict AD conversion
using machine learning [13]. Although there was limited
number of subjects, they used well stratified randomized
dataset.

Research on screening cognitive impairment using the
machine learning algorithm published by Youn et al. is
similar in that it predicts cognitive impairment [14].
However, it is designed to evaluate the accuracy of a Lo-
gistic Regression algorithm based on Mini-mental status
examination and simple questionnaire for screening pur-
poses, which would be valuable in primary health care.
Unlike the previous study, this work is intended to pre-
dict cognitive disorders using formal neuropsychological
tests conducted by patients at hospitals, suggesting the
possibility of reducing evaluators’ loads.

The Seoul Neuropsychological Screening Battery (SNSB)
has been widely used for the assessment of cognitive func-
tioning in patients with neurological disorders in Korea.
The SNSB includes measures for attention, language, visuo-
spatial function, memory and frontal executive function
[15-18]. Using the SNSB, the present study applied ma-
chine learning algorithms to data on 46 variables collected
from 17,139 subjects: a large set of NPT data and subjects
were obtained from a well-controlled dementia cohort
study [19, 20]. We thereby aimed to develop an algorithm
to efficiently conduct an NPT-informed pre-reading of cog-
nitive impairment among patients.

Methods

The SNSB data were obtained from a study of the Clinical
Research Center for Dementia of South Korea (CREDOS),
memory clinics of Bundang Seoul University Hospital
(BDSNUH), and Chung-Ang University Hospital (CAUH).
The CREDOS study was a prospective, multi-center,
hospital-based cohort study with 56 participating hospitals
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and was designed to assess the occurrence and risk factors
of cognitive disorders [19-22]. The SNSB test was con-
ducted by trained psychologists, and at the beginning of
the CREDOS study, four workshop were held for psychia-
trists or neurologists to increase the diagnostic concord-
ance. Subjects complaining of memory lapses were
clinically classified into normal cognition (NC), MCI, and
AD dementia (ADD) by dementia-special clinicians based
on the CREDOS criteria [14, 19, 20, 23].

A total of 17,139 subjects (10,178 from CRCD, 4210
from BDSNUH, and 2751 from CAUH) were recruited.
We excluded 2213 subjects for whom no final diagnosis
was available or who had severe white matter hyperin-
tensities (deep white matter hyperintensity =25 mm) [19,
21, 24]; eligible subjects thus totaled to 14,926: 3217 had
NC (21.55%), 6002 had MCI (40.21%), and 5707 had
ADD (38.24%): “Clinic-based dataset”. The dataset was
balanced by using “random.sample” method of python
3.6 through random under-sampling the majority group
at nearly same to the NC: “Balanced dataset” (Fig. 1).
The balanced 2-way classification dataset composed
3217 NC and 3231 CI, and 3-way classification dataset
composed 3217 NC and 3217 MCI and 3235 ADD. This
study was approved by the institutional review boards of
the participating centers (IRB number C2012049(744)).

The features from SNSB data were 46 + 1 variables, in-
cluding one target outcome (Table 1). Variables of ratio
scale used raw data obtained from the subjects, and or-
dinal scale were shown as 0, 1, 2, and 3, respectively; 0
represents subject could not perform the task at all, 1
was abnormal, 2 was borderline and 3 was normal. The
variables of ordinal scale were marked with “(0)” in
Table 1 . The target outcome was “clinical diagnosis”
composed of participants falling within one of three
diagnostic classes: NC, MCI, or ADD. We trained a ma-
chine learning algorithm using TensorFlow (https://
www.tensorflow.org) to distinguish the states of the sub-
jects based on the SNSB data [25].

Test a. differentiate subjects with Normal cognition and
cognitive impairment (Additional file 1: Table S3)

Using the two type of dataset (“clinic-based dataset” and
“balance dataset”) in which the subjects were divided
into the two groups of NC and cognitive impairment
(CI), which included MCI and ADD, we developed an al-
gorithm to predict for cognitive impairment (2-way
classification).

The first step in modeling the algorithm requires the
dataset to go through the following pre-processing steps.
We imported the data formatted with ‘.csv’ and used the
train_test_split  function from scikit-learn library
(https://scikit-learn.org/) to randomly split them into
training and test datasets. The train_size was 0.75, which
indicated the percentage of the data to be withheld for
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CRCD
(n=10,178)

BDSNUH CAUH
(n=4,210) (n=2,751)

Total

(n=17,139)
Exclusion (n=2,213)
- No final diagnosis
- Vascular cognitive impairment

Assessed for eligibility
(n=14,926)
|
NC [ MClI ] [ ADD ]
(n=3,217) (n=6,002 ) (n=5,707)

[ Balanced random selection ]

2-way Prediction: NC (n=3,217) vs Cl (n=3,231)
3-way Prediction: NC (n=3,217) vs MCI (n=3,217) vs ADD (n=3,235)

Disease Dementia

Fig. 1 Enrollment for SNSB machine-learning analysis. CRCD, Clinical Research Center for Dementia of Korea; BDSNUH, Bungdang Seoul National
University Hospital; CAUH, Chung-Ang University Hospital; NC, Normal Cognition; MCl, Mild Cognitive Impairment; ADD, Alzheimer's

training; the test dataset was thus comprised of the
remaining 25% of the data. Every score of features was
normalized with mean and standard deviation.

The training dataset was used for further model training
via TensorFlow, a commonly used open-source software
library for machine learning developed by Google based
on python [25]. Although it is an algorithm that differenti-
ate subjects with CI from NC, ‘one_hot encoding was used

Table 1 List of 46 features from Seoul Neuropsychological
Screening Battery test

1.Education duration, 2.Age, 3.Digit span Forward, 4.Digit span Backward,
5.Letter cancellation (0), 6.Spontaneous speech fluency(o),
7.Spontaneous speech contents(o), 8.Comprehension(o), 9.Naming KBNT,
10.Finger naming(o), 11.Right left orientation(o), 12.Body part
identification(0), 13.Praxis Ideomotor(o), 14.Praxis buccofacial(o),
15.Calculation total score, 16.RCFT copy score, 17.RCFT copy time,
18.SVLT recall trial1, 19.SVLT recall trial2, 20.SVLT recall trial3, 21.SVLT total
recall, 22.SVLT delayed recall, 23.SVLT recognition discriminability index,
24 RCFT immediate recall, 25.RCFT delayed recall, 26.RCFT recognition
discriminability index, 27.Motor impersistence(o), 28.Contrasting
program(o), 29.Go No Go(o), 30.Alternating hand movement(o),
31.Alternating square and triangle(o), 32.Luria loop(o), 33.COWAT animal,
34.COWAT supermarket, 35.COWAT phonemic total score, 36.StroopTest
Word reading correct, 37.StroopTest Word reading error, 38.StroopTest
Color reading correct, 39.StroopTest Color reading error, 40.MMSE
orientation to time, 41.MMSE orientation to place, 42.MMSE Registation,
43 MMSE attention and calculation, 44.MMSE recall, 45.MMSE language,
46.MMSE drawing, 47.0utcome

“(0)" was marked on the features of ordinal scale. SNSB, Seoul
Neuropsychological Screening Battery; BNT, Boston Naming Test; RCFT, Rey—
Osterrieth Complex Figure Test; SVLT, Seoul Verbal Learning Test; COWAT,
Controlled Oral Word Association Test; MMSE, Mini Mental Status Examination,
RFE, Recursive Feature Elimination

by ‘nb_classes = 2. This measure was adopted to ensure
consistency when predicting NC, MCI and ADD.

This artificial neural network consisted of three layers:
an input layer, an output layer, and a hidden layer. To
improve the prediction, we performed Xavier method of
weight initialization, and the cost was calculated via a
cross entropy and minimized by means of the Adam
optimizer method (Additional file 1: Table S3). The soft-
max classifier is used to predict the output labels. The
dropout rate was 0.9, therefore 9 of 10 weights were
connected to the next layer to prevent overfittings.
Model training was performed with the datasets featur-
ing all 46 variables (Table 1). Ten-fold cross-validation
tests of the 2-way classifications using the training data-
set was performed with KFold function (Additional file
1: Table S5). After validating the algorithm using 10-fold
cross-validation within training datasets, we apply the
algorithm 10 times on the test dataset. We thereby
obtained the average of prediction accuracy, sensitivity,
specificity, positive predictive value and negative predict-
ive value of the algorithm by repeating the process 10
times which obtained from the test data.

This process was performed in both balanced dataset
and clinic-based dataset.

Test B. differentiate subjects with Normal cognition and
mild cognitive impairment

The accuracy of predicting MCI was evaluated using the
balanced dataset and clinic-based dataset. The previous
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algorithm to differentiate NC and CI was used (A).
Training and ten-fold cross-validation test were per-
formed also with two datasets featuring the 46 variables,
and we obtained the 10 times mean prediction accuracy
from the test datasets. The sensitivity, specificity, posi-
tive predictive value, and negative predictive value of the
algorithm were obtained.

Test C. differentiate subjects with normal cognition, MCl,
and ADD (Additional file 1: Table S4)

The same datasets used in the Test A, but the outcome in-
cluded all three outcomes (NC, MCI and ADD). These
data were randomly split into training (75%) and test
(25%) datasets. An artificial neural network also consisted
of one input layer, one output layer, and one hidden
layers. ‘one_hot encoding was used for differentiating sub-
jects with NC, MCI and ADD by ‘nb_classes = 3". The cost
was calculated via a cross entropy and minimized by
means of the Adam optimizer (Additional file 1: Table
S4). The dropout rate was 0.9. We trained and tested this
algorithm to predict either NC, MCI, or ADD 10 times
and measured the mean accuracy of each using the test
datasets. Ten-fold cross-validation tests of the 3-way clas-
sifications using the training dataset was also performed
with KFold function (Additional file 1: Table S6).

To determine the extent to which features of the SNSB
contribute to acceptable accuracy in predicting target
outcome, we listed the 46 variables in order of their con-
tribution using Recursive Feature Elimination (RFE) with
a logistic regression algorithm via python 3.6 and its li-
braries, NumPy, and Pandas (Additional file 1: Table S2
and S3, modified from Feature Selection For Machine
Learning in Python, https://machinelearningmastery.
com/feature-selection-machine-learning-python/).  The
algorithms of Test A and C were evaluated by adding
features one by one, including age and education year,
until the accuracy of predicting the target outcome was
greater than 90%.

Results

To predict CI, MCI or ADD, the logistic regression and
various layers of the neural network algorithms were
compared before applying it on the SNSB features, and a
3-layer neural network with 0.9 drop-out rate was used
(Fig. 2 and Additional file 1: Table S1 -S4).

Ten-fold cross-validations were performed using bal-
anced and clinic-based training dataset. The score of cross
validation in 2-way (CI vs NC) and 3-way (ADD vs MCI
vs NC) classification were 96.44 + 0.96% and 95.89 + 0.99%
in using balaced dataset; and were 97.51+0.40% and
97.01 + 0.54% in clinic based dataset (Table 2).

The first experiment explored whether the algorithm
could accurately predict cognitive impairment from a 2-
way classification dataset (CI and NC, Test A) (Table 3).
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The 10 times mean accuracies in identifying CI in the
test datasets from the balanced dataset and the clinic-
based dataset achieved by 96.66 + 0.52% and 97.23 +
0.32%. Their sensitivities were 91.5 and 97.4%; and the
specificities were 96.8 and 95.2%. When the accuracies
in predicting MCI from NC were evaluated, the mean
accuracies of the balanced dataset and the clinic-based
dataset were 96.60+0.45 and 97.05+0.38%. They
showed over 95% of sensitivity and specificity.

The last experiment (Test C) was used to assess the
accuracy of the algorithm when predicting one of the
three outcomes (NC, MCI or AD); the mean accuracy of
the balanced dataset and the clinic-based dataset were
95.49 + 0.53 and 96.34 + 1.03% (Table 3).

In 2-way (NC or CI) and 3-way (NC, MCI and ADD)
classification, the order of 46 variables in their contribu-
tion were evaluated using the Recursive Feature Elimin-
ation (RFE). The following 2 extracted variables
contributed the most to predicting the target outcome
in order of ranking: ‘MMSE_orientation_to_time’ and
‘MMSE_recall’, which are memory related features. The
next features contributing the outcome of the predic-
tions were shown in Fig. 3. When ‘MMSE_orientation_
to_time’, the most contributor, was added, with age and
education years, the accuracy to predict cognitive im-
pairment in the balanced dataset was 73.7%, and MCI or
ADD was 61.1%. Then, an MMSE_recall was added, and
the accuracy increased to 77.7 and 64.5%. When using
the clinic-based dataset, the first feature was added, and
the prediction of cognitive impairment was 78.3% and
MCI or ADD was 60.1%. The second feature was added
to increase it to 80.2 and 63.5%. However, when the
number of features was 6, the accuracy was more than
80% in prediction of the cognitive impairment. As the
number of features increased to 10 and 12, respectively,
2-way and 3-way classification showed more than 90%
accuracy respectively (Fig. 3).

Discussion

As an exploratory study, we first examined the logistic
regression and various layers of neural network algo-
rithms. Neural network algorithm was better than logis-
tic regression. Among them, the 3-layer neural network
algorithm was the best (Fig. 2). The accuracy of 2-way
classification (NC vs CI) in the balanced dataset using
the logistic regression that is commonly used for classifi-
cation was 85.9%, but 3-way classification (NC vs MCI
vs ADD) was only 79.0%. Compared with the logistic re-
gression, the neural network was superior to predict the
target outcome. By empirically changing the parameters
one by one, we selected the parameters that showed the
best performance. Particularly, when comparing 3, 4, 5,
and 6-layer of the neural network, the best prediction
was made in the 3-layer neural network. The dropout
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Accuracies of the algorithms predicting cognitive
impairment using neuropsychological test data

| Logistic Regression |
I

NCvs Cl | | NC vs MCl vs ADD

Clinic-based dataset: 88.6%
Balanced dataset: 85.87%

Clinic-based dataset: 77.3%
Balanced dataset: 78.95%

Fig. 2 Comparison of accuracies in Logistic Regression and various layers of Neural-Network algorithm

| Neural Network |

NCvs Cl | | NC vs MCl vs ADD

Clinic-based dataset Clinic-based dataset

Drop-out rate Drop-out rate

0.8 0.9 0.8 0.9
3 layers 97.3% 97.6%* 3 layers 97.3% 97.0%*
4 layers 97.6% 97.2% 4 layers 95.1% 96.4%
5 layers 93.8% 93.4% 5 layers 93.4% 91.5%
6 layers 95.2% 97.0% 6 layers 95.5% 96.7%

Balanced dataset Balanced dataset

Drop-out rate Drop-out rate

0.8 0.9 0.8 0.9
3 layers 96.2% 96.7%* 3 layers 95.2% 96.9%*
4 layers 96.5% 96.2% 4 layers 93.1% 95.7%
5 layers 90.6% 89.3% 5 layers 93.1% 96.1%
6 layers 96.0% 95.6% 6 layers 94.3% 95.9%

probability 0.8 and 0.9 were acceptable, 0.9 of which was
chosen (Fig. 2), and the learning rate was 0.01. There-
fore, we did supervised-learning with the 3-layer neural
network in this study (Additional file 1: Table S3, S4),
and found over 95% accuracy of 2-way classification and
of 3-way classification (Table 3). The sensitivity and spe-
cificity of the 3-layer of neural network for the detection
of CI in the balanced dataset were 96.0 and 96.8%, and
MCI were 96.0 and 97.4%. The 2-way classification algo-
rithms showed high enough sensitivity and specificity
more than 85%, which is generally acceptable new bio-
markers for a neurodegenerative disorder such as AD or
Parkinson’s disease [26, 27], which are usuable as a ref-
erence tool [28].

There would be a concern that it may fall into a circu-
larity problem in predicting cognitive impairment. There
are two points to keep in mind when applying artificial
intelligence algorithms. The first is to allow the algorithm

to take over the troublesome task for human, and the sec-
ond is to do better than we can do what we can’t do. The
purpose of building algorithm in this study was to aid cli-
nicians to sorting out patients with cognitive impairment
from large number of cases thereby expert judges can
focus on cases which require medical attention. The au-
thors would like to have algorithms make judgments simi-
lar to those of humans when using neuropsychological
tests. The algorithms only need to mimic what neuro-
psychologist do. However, if the aim was to make accurate
diagnoses beyond human capabilities, like predicting AD
by only looking at brain MRI, then the study should con-
sider circularity issues. For more accurate diagnosis by the
AT algorithm, the MRI features should not contaminate
the outcome of clinical diagnosis. Since the neuropsycho-
logical tests inform the presence of objective cognitive im-
pairment, they can necessarily influence clinical diagnosis
and cannot escape circularity problem. The disease state,

Table 2 Ten-fold cross-validation test results using balanced and clinic-based dataset

Minimum(%) Maximum(%) Mean + SD(%)
Balanced dataset Clvs NC 95.03 9793 96.44 + 0.96
MCl vs NC 94.82 97.31 96.11 + 0.69
ADD vs MCl vs NC 93.66 96.82 95.89 = 0.99
Clinic-based dataset Clvs NC 96.96 98.21 9751 £ 040
MCI vs NC 96.53 98.84 97.27 + 067
ADD vs MCl vs NC 96.34 97.86 97.01 = 0.54
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Table 3 Prediction accuracy of the neural network algorithm using the neuropsychological screening test dataset
Prediction Number of subjects Accuracy of 10 trials SE(%) SP(%) PPV(%) NPV(%) AUC

(mean + SD%)

Balanced dataset Clvs NC 3231:3217 96.66 + 0.52 96.0 96.8 97.0 95.8 0.964
MCl vs NC 3217:3217 96.60 + 045 96.0 974 976 95.6 0.967
ADD vs MCl vs NC 3235:3217:3217 9549 + 0.53

Clinic-based dataset Clvs NC 11,709: 3217 9723 £032 974 95.2 98.6 91.3 0.963
MCl vs NC 6002: 3217 97.05 + 0.38 975 9.4 98.1 94.8 0.968
ADD vs MCl vs NC 5707: 6002: 3217 96.34 + 1.03

SD Standard deviation, SE Sensitivity, SP Specificity, PPV Positive predictive value, NPV Negative predictive value, AUC Area under the curve, Cl Cognitive

impairment, NC Normal cognition, MC/ Mild cognitive impairment

ACCURACIES WITH FEATURE ADDING
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Fig. 3 Accuracy increment with adding feature one by one
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outcome feature of the dataset, was diagnosed finally de-
pend on clinical decisions with considering cognitive func-
tion. While NC and CI can be classified by feature of
neuropsychological test, MCI and AD dementia among
patients with cognitive impairment are determined by
presence of disability in daily life, which is not included as
predictor in the algorithm of this study [4, 5, 28].

There are some studies having similarities in classify-
ing patients with AD and optimizing features of neuro-
psychological test data to reduce the required features to
predict target outcomes [9, 29]. They used the CDR
score, severity of cognitive impairment, as criteria of
categorization and used stratified randomization of sub-
jects into three categories of CDR 0, 0.5 and 1. However,
we classified subjects into NC, MCI and ADD by clinical
decision rather than CDR, which was an different ap-
proach. Patient with CDR 0.5 could be an early stage
AD or MCI, but not exclude other cause of dementia.
More precisely, NC in this study was ‘subjective cogni-
tive declines’” who visited the hospital with complaints
about cognitive dysfunction and were judged normal in
neuropsychological tests [30]. MCI is a condition that
lies on a continuum between healthy aging and dementia
[31]. Neuropsychological test, conducted by trained psy-
chologists, is one of the information to be considered for
the final diagnosis by clinicians taking into account not
only neuropsychological data but also several laboratory
tests and medical history obtained from the patients and
their caregivers. As the algorithm lacked input from cli-
nicians and only employed neuropsychological test data,
the accuracy of predicting one out of three conditions
was expected to be inevitably lower. The relatively su-
perior accuracy of 2-way classification in small samples
has also been demonstrated by prior machine-learning
research [12]. It is interesting to note that using machine
learning with neuropsychological data alone could dis-
tinguish accurately between MCI and ADD which re-
quires a clinical decision. Future research can confirm
the finding.

In clinic-based dataset, there were imbalances of sub-
jects in both classifications; 2-way classification was
3217 NC vs 11,709 CI, and 3-way classification was 3217
NC vs 6002 MCI vs 5707 ADD. Although we did not
perform stratification randomization, we think that it
showed relatively high prediction accuracy and low vari-
ability for each trial because there was a larger dataset
(Table 3). In a study with a relatively small number of
subjects, stratified randomization can exclude differences
by chance and can increase the reliability of the results
[32]. However, we did not stratified randomization to
use all possible neuropsychological data, which would be
an almost real prevalence of patients visiting the hospital
who want to be assessed for cognitive impairment. This
study was not intended to assess neuropsychological
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characteristics of cognitive function nor to apply the al-
gorithm to screening tools for community-based popula-
tions. We suggest it can be possible used as a reference
when clinicians read neuropsychological tests got from
hospital-based patients.

The algorithm of CI vs NC and MCI vs NC using 10—
12 variables exhibited higher accuracy of prediction;
there are possible implications from a dementia screen-
ing perspective. The features of the neuropsychological
tests were listed in order of their contribution to the
outcome using RFE (Fig. 3). Six figures with age and
educational duration predicted outcomes more than 80%
of the accuracy, and 12 features increased to more than
90% of the accuracy: an adequate level for machine-
learning feasibility. Variable selection in machine learn-
ing is widely used to avoid data over-fit, provide faster
and more effective models, and improve the accuracy of
classification.  Variable reduction using statistic
algorithms provides the minimum subset of variables ne-
cessary for the classification model and saves time and
cost for evaluation [33]. Weakley et al. conducted a
study to determine the fewest number of clinical mea-
sures required for differentiating older patients with de-
mentia from their healthy counterparts. Their results
showed that as few as two to nine variables may be sulfti-
cient to obtain a clinically useful classification model
[12]. It is also necessary to evaluate the value of the cog-
nitive impairment screening test algorithm using re-
duced variables of the neuropsychological test.

Kang et al. compared the neuropsychological profiles
between AD and mixed dementia using CREDOS data-
set which target population partly overlaps with ours
[34]. The current study used larger dataset and targeted
to distinguish MCI and dementia in the spectrum of AD
using machine learning algorithms. We tested the algo-
rithms in the two dataset, clinic-based and balanced
datasets. Although the 2-way classification (NC and
MCI + ADD) was imbalanced in clinic-based dataset, the
repeated trials showed low variability of accuracy and
high specificity, and similar accuracies to the balanced
dataset.

The present study is subject to several limitations.
First, the model is only applicable to differentiate cogni-
tive states and cannot predict the temporal stage or
prognosis. Second, the dementia group only includes
ADD; therefore, the model does not apply to other sub-
types of dementia. Therefore more research is needed
on these two respects.

The purpose of this study was to evaluate a neural net-
work algorithm that could predict NC, MCI, and ADD
from 46-features of formal neuropsychological data ob-
tained from the hospitals. Our results indicated that 46-
variable algorithm achieved acceptable accuracy, sensitivity
and specificity. We also identified the order of
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contributions of the features that predict cognitive impair-
ment, and approximately 12—13 from 46 features played an
important role in acceptable accurate prediction.

Conclusions

We trained and tested a machine-learning algorithm model
using a large set of neuropsychological test data to distin-
guish between normal and cognitively impaired patients and
suggest its potential use as a reference when clinicians see
the neuropsychological test. Future studies are required,
however, to yield an algorithm that can predict the progres-
sor with a higher level of classification-efficiency that is cap-
able of use in clinical settings, and can predict other causes
of cognitive impairment.
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