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Abstract

Background: Diagnosis prediction aims to predict the future health status of patients according to their historical
electronic health records (EHR), which is an important yet challenging task in healthcare informatics. Existing
diagnosis prediction approaches mainly employ recurrent neural networks (RNN) with attention mechanisms to make
predictions. However, these approaches ignore the importance of code descriptions, i.e., the medical definitions of
diagnosis codes. We believe that taking diagnosis code descriptions into account can help the state-of-the-art models
not only to learn meaning code representations, but also to improve the predictive performance, especially when the
EHR data are insufficient.
Methods: We propose a simple, but general diagnosis prediction framework, which includes two basic components:
diagnosis code embedding and predictive model. To learn the interpretable code embeddings, we apply
convolutional neural networks (CNN) to model medical descriptions of diagnosis codes extracted from online medical
websites. The learned medical embedding matrix is used to embed the input visits into vector representations, which
are fed into the predictive models. Any existing diagnosis prediction approach (referred to as the base model) can be
cast into the proposed framework as the predictive model (called the enhanced model).
Results: We conduct experiments on two real medical datasets: the MIMIC-III dataset and the Heart Failure claim
dataset. Experimental results show that the enhanced diagnosis prediction approaches significantly improve the
prediction performance. Moreover, we validate the effectiveness of the proposed framework with insufficient EHR data.
Finally, we visualize the learned medical code embeddings to show the interpretability of the proposed framework.
Conclusions: Given the historical visit records of a patient, the proposed framework is able to predict the next visit
information by incorporating medical code descriptions.
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Background
The immense accumulation of Electronic Healthcare
Records (EHR) makes it possible to directly predict
patients’ future health status, which is done by analyz-
ing their historical visit records [1–4]. Diagnosis predic-
tion attracts considerable attention from both healthcare
providers and researchers. It aims to predict the diagno-
sis information of patients in the following visits. There
are two key challenges for diagnosis prediction task as
follows: (1) designing an accurate and robust predictive
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model to handle the temporal, high dimensional and noisy
EHR data; and (2) reasonably interpreting the advantages
and effectiveness of the proposed models to both doctors
and patients.

To address these challenges of diagnosis prediction task,
many recurrent neural networks (RNN) based models
[2–4] have been proposed. RETAIN [4] uses two recurrent
neural networks with attention mechanisms to model the
reverse time ordered EHR sequences. By employing a bidi-
rectional recurrent neural network (BRNN), Dipole [2]
enhances the prediction accuracy with different attention
mechanisms. In order to guarantee the predictive per-
formance, training the above mentioned models usually
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requires a lot of EHR data. However, there is a com-
mon problem for EHR data that is always existing medical
codes of rare diseases. Those diagnosis codes infrequently
appear in the EHR data. GRAM [3] has been proposed
to overcome this issue. GRAM learns medical code rep-
resentations by exploiting medical ontology information
and the graph-based attention mechanism. For the rare
medical codes, GRAM can alleviate the difficulties of
learning their embeddings by considering their ancestors’
embeddings to guarantee the predictive performance.
However, the performance of GRAM heavily depends on
the choice of medical ontology. Thus, without specific
input constraints, how to learn robust embeddings for
medical codes is still the major challenge for accurate
diagnosis prediction.

To resolve this challenge, we consider the “nature” of
diagnosis codes, i.e., their medical descriptions. Actually,
each diagnosis code has a formal description, which can
be easily obtained from the Internet, such as Wikipedia
or online medical websites. For example, the descrip-
tion of diagnosis code “428.32” is “Chronic diastolic
heart failure” (http://www.icd9data.com/2015/Volume1/
390-459/420-429/428/428.32.htm), and “Rheumatic heart
failure (congestive)” is the description of diagnosis code
“398.91” (http://www.icd9data.com/2015/Volume1/390-
459/393-398/398/398.91.htm). Without considering the
medical meanings of diagnosis codes, they are treated as
two independent diseases in the EHR dataset. However,
they both describe the same disease, i.e., “heart failure”.
Thus, we strongly believe that incorporating the descrip-
tions of diagnosis codes in the prediction should help the
predictive models to improve the prediction accuracy and
provide interpretable representations of medical codes,
especially when the EHR data are insufficient.

The other benefit of incorporating diagnosis code
descriptions is that it enables us to design a general diag-
nosis prediction framework. The input data of all the
existing diagnosis prediction approaches are the same, i.e.,
a sequence of time-ordered visits, and each visit consists
of some diagnosis codes. Thus, all the existing approaches,
including, but not limited to RETAIN, Dipole and GRAM,
can be extended to incorporate the descriptions of diagno-
sis codes to further improve their predictive performance.

In this paper, we propose a novel framework for
diagnosis prediction task. It should be noted that all
of the state-of-the-art diagnosis prediction approaches
(referred to as base models) can be cast into the pro-
posed framework. These base models enhanced by the
proposed framework are thus called enhanced models.
Specifically, the proposed framework consists of two
components: diagnosis code embedding and predictive
model. The diagnosis code embedding component aims
to learn the medical representations of diagnosis codes
according to their descriptions. In particular, for each

word in the description, we obtain the pretrained vector
representation from fastText [5]. Then the concatenation
of all the words in each diagnosis code description is fed
into a convolutional neural network (CNN) to generate
the medical embeddings. Based on the learned medical
embeddings of diagnosis codes, the predictive model
component makes prediction. It first embeds the input
visit information into a visit-level vector representation
with the code embeddings, and then feeds this vector into
the predictive model, which can be any existing diagnosis
prediction approach.

We use two real medical datasets to illustrate the
superior ability of the proposed framework on the diagno-
sis prediction task compared with several state-of-the-art
approaches. Quantitative analysis is also conducted to val-
idate the effectiveness of the proposed approaches with
insufficient EHR data. Finally, we qualitatively analyze
the interpretability of the enhanced approaches by visu-
alizing the learned medical code embeddings against the
embeddings learned by existing approaches. To sum up,
we achieve the following contributions in this paper:

• We realize the importance of obtaining diagnosis
code embeddings from their descriptions which can
be directly extracted from the Internet.

• We propose a simple, but general and effective
diagnosis prediction framework, which learns
representations of diagnosis codes directly from their
descriptions.

• All the state-of-the-art approaches can be cast into
the proposed framework to improve the performance
of diagnosis prediction.

• Experimental results on two medical datasets validate
the effectiveness of the proposed framework and the
interpretability for prediction results.

Related Work
In this section, we briefly survey the work related to
diagnosis prediction task. We first provide a general intro-
duction about mining healthcare related data with deep
learning techniques, and then survey the work of diagno-
sis prediction.

Deep Learning for EHR
Several machine learning approaches are proposed to
mine medical knowledge from EHR data [1, 6–10].
Among them, deep learning-based models have achieved
better performance compared with traditional machine
learning approaches [11–13]. To detect the characteristic
patterns of physiology in clinical time series data, stacked
denoising autoencoders (SDA) are used in [14]. Convo-
lutional neural networks (CNN) are applied to predict
unplanned readmission [15], sleep stages [16], diseases
[17, 18] and risk [19–21] with EHR data. To capture
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the temporal characteristics of healthcare related data,
recurrent neural networks (RNN) are widely used for
modeling disease progression [22, 23], mining time series
healthcare data with missing values [24, 25], and diagnosis
classification [26] and prediction [2–4, 27].

Diagnosis Prediction
Diagnosis prediction is one of the core research tasks
in EHR data mining, which aims to predict the future
visit information according to the historical visit records.
Med2Vec [28] is the first unsupervised method to learn
the interpretable embeddings of medical codes, but it
ignores long-term dependencies of medical codes among
visits. RETAIN [4] is the first interpretable model to math-
ematically calculate the contribution of each medical code
to the current prediction by employing a reverse time
attention mechanism in an RNN for binary prediction
task. Dipole [2] is the first work to adopt bidirectional
recurrent neural networks (BRNN) and different atten-
tion mechanisms to improve the prediction accuracy.
GRAM [3] is the first work to apply graph-based atten-
tion mechanism on the given medical ontology to learn
robust medical code embeddings even when lack of train-
ing data, and an RNN is used to model patient visits. KAME
[29] uses high-level knowledge to improve the predictive
performance, which is build upon GRAM.

However, different from all the aforementioned diag-
nosis prediction models, the proposed diagnosis predic-
tion framework incorporates the descriptions of diagnosis
codes to learn embeddings, which greatly improves the
prediction accuracy and provide interpretable prediction
results against the state-of-the-art approaches.

Methods
In this section, we first mathematically define the nota-
tions used in the diagnosis prediction task, introduce
preliminary concepts, and then describe the details of the
proposed framework.

Notations
We denote all the unique diagnosis codes from the EHR
data as a code set C = {c1, c2, · · · , c|C|}, where |C| is
the number of diagnosis codes. Let |P| denote the num-
ber of patients in the EHR data. For the p-th patient
who has T visit records, the visiting information of this
patient can be represented by a sequence of visits V(p) ={

V (p)

1 , V (p)

2 , · · · , V (p)

T

}
. Each visit V (p)

t consists of multi-

ple diagnosis codes, i.e., V (p)
t ⊆ C, which is denoted by a

binary vector x(p)
t ∈ {0, 1}|C|. The i-th element of x(p)

t is
1 if V (p)

t contains the diagnosis code ci. For simplicity, we
drop the superscript (p) when it is unambiguous.

Each diagnosis code ci has a formal medical
description, which can be obtained from Wikipedia

(https://en.wikipedia.org/wiki/List_of_ICD-9_codes) or
ICD9Data.com (http://www.icd9data.com/). We denote
all the unique words which are used to describe all the
diagnosis codes as W = {w1, w2, · · · , w|W|}, and c′

i ⊆ W
as the description of ci, where |W| is the number of
unique words.

With the aforementioned notations, the inputs of the
proposed framework are the set of code descriptions{

c′
1, c′

2, · · · , c′|C|
}

and the set of time-ordered sequences of

patient visits
{

x(p)

1 , x(p)

2 , · · · , x(p)

T−1

}|P|
p=1

. For each timestep
t, we aim to predict the information of the (t + 1)-th visit.
Thus, the outputs are

{
x(p)

2 , x(p)

3 , · · · , x(p)

T

}|P|
p=1

.

Preliminaries
In this subsection, we first introduce the commonly used
techniques for modeling patients’ visits, and then list all
the state-of-the-art diagnosis prediction approaches.

Fully Connected Layer
Deep learning based models are commonly used to model
patients’ visits. Among existing models, fully connected
layer (FC) is the simplest approach, which is defined as
follows:

ht = Wcvt + bc, (1)

where vt ∈ R
d is the input data, d is the input dimen-

sionality, Wc ∈ R
|C|×d and bc ∈ R

|C| are the learnable
parameters.

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) have been shown to
be effective in modeling healthcare data [2–4, 30]. Note
that we use “RNN” to denote any Recurrent Neural Net-
work variants, such as Long-Short Term Memory (LSTM)
[31], T-LSTM [32] and Gated Recurrent Unit (GRU) [33].
In this paper, GRU is used to adaptively capture depen-
dencies among patient visit information. GRU has two
gates: One is the reset gate r, and the other is the update
gate z. The reset gate r computes its state from both the
new input and the previous memory. The function of r is
to make the hidden layer drop irrelevant information. The
update gate z controls how much information should be
kept around from the previous hidden state. The mathe-
matical formulation of GRU can be described as follows:

zt = σ(Wzvt + Uzht−1 + bz),
rt = σ(Wrβt + Urht−1 + br),

h̃t = tanh(Whβt + rt ◦ Uhht−1 + bh),

ht = zt ◦ ht−1 + (1 − zt) ◦ h̃t ,

(2)

where zt ∈ R
g is the update gate at time t, g is the dimen-

sionality of hidden states, σ() is the activation function,
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ht ∈ R
g is the hidden state, rt ∈ R

g is the reset gate
at time t, h̃t ∈ R

g represents the intermediate memory,
and ◦ denotes the element-wise multiplication. Matrices
Wz ∈ R

g×d , Wr ∈ R
g×d , Wh ∈ R

g×d , Uz ∈ R
g×g ,

Ur ∈ R
g×g , Uh ∈ R

g×g and vectors bz ∈ R
g , br ∈ R

g ,
bh ∈ R

g are parameters to be learned. For simplicity, the
GRU can be represented by

ht = GRU(βt ; �), (3)

where � denotes all the parameters of GRU.

Attention Mechanisms
Attention mechanisms aim to distinguish the importance
of different input data, and attention-based neural net-
works have been successfully used in diagnosis predic-
tion task, including location-based attention [2, 4], gen-
eral attention [2], concatenation-based attention [2], and
graph-based attention [3]. In the following, we introduce
two commonly used attention mechanisms: location-
based and graph-based attention.

• Location-based Attention. Location-based attention
mechanism [2, 4] is to calculate the attention score for
each visit, which solely depends on the current hidden
state hi ∈ R

g (1 ≤ i ≤ t) as follows:

αi = W�
α hi + bα , (4)

where Wα ∈ R
g and bα ∈ R are the parameters to be

learned. According to Eq. (4), we can obtain an attention
weight vector α =[ α1, α2, · · · , αt] for the t visits. Then
the softmax function is used to normalize α. Finally, we
can obtain the context vector ct according to the atten-
tion weight vector α and the hidden states from h1 to ht
as follows:

ct =
t∑

i=1
αihi. (5)

We can observe that the context vector ct is the weighted
sum of all the visit information from time 1 to t.

• Graph-based Attention. Graph-based attention [3] is
proposed to learn robust representations of diagnosis
codes even when the data volume is constrained, which
explicitly employs the parent-child relationship among
diagnosis codes with the given medical ontology to learn
code embeddings.

Given a medical ontology G which is a directed acyclic
graph (DAG), each leaf node of G is a diagnosis code ci and
each non-leaf node belongs to the set Ĉ. Each leaf node has
a basic learnable embedding vector ei ∈ R

d (1 ≤ i ≤ |C|),
while e|C|+1, · · · , e|C|+|Ĉ| represent the basic embeddings
of the internal nodes c|C|+1, · · · , c|C|+|Ĉ|. Let A(i) be the
node set of ci and its ancestors, then the final embedding

of diagnosis code ci denoted by gi ∈ R
d can be obtained

as follows:

gi =
∑

j∈A(i)
αijej,

∑
j∈A(i)

αij = 1, (6)

where

αij = exp(θ(ei, ej))∑
k∈A(i) exp(θ(ei, ek))

. (7)

θ(·, ·) is a scalar value and defined as

θ(ei, ej) = u�
a tanh

(
Wa

[
ei
ej

]
+ ba

)
, (8)

where ua ∈ R
l, Wa ∈ R

l×2d and ba ∈ R
l are

parameters to be learned. Finally, graph-based attention
mechanism generates the medical code embeddings G =
{g1, g2, · · · , g|C|} ∈ R

d×|C|.

Base Models
Since the proposed framework is general, all the exist-
ing diagnosis prediction approaches can be cast into
this framework and treated as base models. Table 1
shows the summary of all the state-of-the-art approaches
with the aforementioned techniques. The detailed imple-
mentation of these base models is introduced in
“Experimental Setup” section.

The Proposed Framework
Different from graph-based attention mechanism which
specifies the relationships of diagnosis codes with the
given medical ontology, we aim to learn the diagnosis code
embeddings directly from their medical descriptions. The
main components of the proposed diagnosis prediction
framework are diagnosis code embedding and predictive
model. Diagnosis code embedding component is to learn
the medical embeddings with code descriptions, which
can embed the visit information into a vector represen-
tation. Predictive model component aims to predict the
future visit information according to the embedded visit
representations. Obviously, the proposed framework can
be trained end-to-end. Next, we provide the details of
these two components.

Table 1 Base models for diagnosis prediction

Base model Visit modeling Attention mechanism

FC GRU Location Graph

MLP
√

RNN [2–4]
√

RNNa [2]
√ √

Dipole [2]
√ √

RETAIN [4]
√ √

GRAM [3]
√ √
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Diagnosis Code Embedding
To embed the description of each diagnosis code into
a vector representation, Convolutional Neural Networks
(CNN) [34] can be employed. The benefit of applying
CNN is to utilize layers with convolving filters to extract
local features, which has shown its superior ability for
natural language processing tasks, such as sentence mod-
eling [35] and sentence classification [36].

Figure 1 shows the variant of the CNN architecture to
embed each diagnosis code description c′

i into a vector
representation ei. We first obtain the pre-trained embed-
ding of each word wj denoted as lj ∈ R

k from fastText
[5], where k is the dimensionality. The description c′

i with
length n (padded where necessary) is represented as

l1:n = l1 ⊕ l2 ⊕ · · · ⊕ ln, (9)

where ⊕ is the concatenation operator. Let h denote the
size of a word window, and then li:i+h−1 represents the
concatenation of h words from li to li+h−1. A filter Wf ∈
R

h×k is applied on the window of h words to produce a
new feature fi ∈ R with the ReLU activation function as
follows:

fi = ReLU(Wf li:i+h−1 + bf ), (10)

where bf ∈ R is a bias term, and ReLU(f ) = max(f , 0).
This filter is applied to each possible window of words in
the whole description {l1:h, l2:h+1, · · · , ln−h+1:n} to gener-
ate a feature map f ∈ R

n−h+1 as follows:

f =[ f1, f2, · · · , fn−h+1] . (11)

Next, max pooling technique [37] is used over the fea-
ture map to obtain the most important feature, i.e., f̂ =
max(f). In this way, one filter produces one feature. To
obtain multiple features, we use m filters with varying
window sizes. Here, we use q to denote the number of

different window sizes. All the extracted features are con-
catenated to represent the embedding of each diagnosis
code ei ∈ R

d (d = mq). Finally, we can obtain the diagno-
sis code embedding matrix E ∈ R

d×|C|, where ei is the i-th
column of E.

The advantage of the proposed CNN-based diagnosis
code embedding approach is that it easily makes the diag-
nosis codes with similar meanings obtain similar vector
representations. Thus, for those diagnosis codes without
sufficient training EHR data, they still can learn reason-
able vector representations, which further helps the model
to improve the predictive performance. In the follow-
ing, we will introduce how to use the produced medical
embeddings for the diagnosis prediction task.

Predictive Model
Based on the learned diagnosis code embedding matrix
E, we can predict patients’ future visit information with
a predictive model. Given a visit xt ∈ {0, 1}|C|, we first
embed xt into a vector representation vt ∈ R

d with E as
follows:

vt = tanh(Ext + bv), (12)

where bv ∈ R
d is the bias vector to be learned. Then vt is

fed into the predictive model to predict the (t + 1)-th visit
information, i.e., ŷt . Next, we cast state-of-the-art diagno-
sis prediction approaches into the proposed framework as
the predictive models.

• Enhanced MLP (MLP+). The simplest predictive
model is only using a Multilayer Perceptron (MLP) with
two layers: a fully-connected layer and a softmax layer, i.e.,

ŷt = softmax(ht), (13)

where ht is obtained from Eq. (1). This model works well
when both the number of diagnosis codes and patients’

Fig. 1 An Example of CNN Architecture for Diagnosis Code Embedding. The word window sizes are 2 (red line) and 3 (blue line) respectively, i.e.,
q = 2. For each word window, there are 2 filters in the example, i.e., m = 2. The dimensionality of this code embedding is 4, i.e., d = mq = 4
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visits are small. However, MLP+ does not use histori-
cal visit information for the prediction. To overcome the
shortage of MLP+, we employ Recurrent Neural Networks
(RNN) to handle more complicated scenarios.

• Enhanced RNN (RNN+). For RNN+, the visit embed-
ding vector vt is fed into a GRU, which produces a hidden
state ht ∈ R

g as follows:

ht = GRU(vt ; �). (14)

Then the hidden state ht is fed through the softmax layer
to predict the (t + 1)-th visit information as follows:

ŷt = softmax(Wcht + bc), (15)

where Wc ∈ R
|C|×g . Note that RNN+ only uses the t-th

hidden state to make the prediction, which does not utilize
the information of visits from time 1 to t − 1. To consider
all the information before the prediction, attention-based
models are proposed in the following.

• Enhanced Attention-based RNN (RNNa+). Accord-
ing to Eq. (14), we can obtain all the hidden states
h1, h2, · · · , ht . Then location-based attention mechanism
is applied to obtain the context vector ct with Eq. (5).
Finally, the context vector ct is fed into the softmax layer
to make predictions as follows:

ŷt = softmax(Wcct + bc). (16)

• Enhanced Dipole (Dipole+). Actually, one drawback
of RNN is that prediction performance will drop when
the length of sequence is very large [38]. To overcome
this drawback, Dipole [2] which uses bidirectional recur-
rent networks (BRNN) with attention mechanisms are
proposed to improve the prediction performance.

Given the visit embeddings from v1 to vt , a BRNN can
learn two sets of hidden states: forward hidden states−→
h 1, · · · ,

−→
h t and backward hidden states

←−
h 1, · · · ,

←−
h t . By

concatenating
−→
h t and

←−
h t , we can obtain the final hidden

state ht =[
−→
h t ;

←−
h t]� (ht ∈ R

2g). Then location-based
attention mechanism is used to produce the context vec-
tor ct ∈ R

2g with Eq. (4) (Wα ∈ R
2g). With the learned ct ,

Dipole+ can predict the (t + 1)-th visit information with
a softmax layer, i.e., Eq. (16) with Wc ∈ R

|C|×2g .
• Enhanced RETAIN (RETAIN+). RETAIN [4] is an

interpretable diagnosis prediction model, which uses two
reverse time-ordered GRUs and attention mechanisms to
calculate the contribution scores of all the appeared diag-
nosis codes before the prediction.

The visit-level attention scores can be obtained using
Eq. (4). For the code-level attention scores, RETAIN
employs the following function:

βt = tanh(Wβht + bβ), (17)

where Wβ ∈ R
d×g and bβ ∈ R

d are parameters. Then the
context vector ct ∈ R

d is obtained as follows:

ct =
t∑

i=1
αiβi ◦ vi. (18)

With the generated context vector ct and Eq. (16) (Wc ∈
R

d), RETAIN+ can predict the (t + 1)-th patient’s health
status.

• Enhanced GRAM (GRAM+). GRAM [3] is the state-
of-the-art approach to learn reasonable and robust rep-
resentations of diagnosis codes with medical ontolo-
gies. To enhance GRAM with the proposed framework,
instead of randomly assigning the basic embedding vec-
tors e1, · · · , e|C|, we use diagnosis code descriptions to
learn those embeddings, i.e., E. Note that the non-leaf
nodes are still randomly assigned basic embeddings.

With the learned diagnosis code embedding matrix G as
described in “Preliminaries” section, we can obtain visit-
level embedding vt with Eq. (12) (i.e., replacing E to G).
Using Eqs. (14) and (15), GRAM+ predicts the (t + 1)-th
visit information.
Remark: A key benefit of the proposed framework is its
flexibility and transparency relative to all the existing diag-
nosis prediction models. Beyond all the aforementioned
base approaches, more effective and complicated diag-
nosis prediction models can also be easily cast into the
proposed framework.

Results
In this section, we first introduce two real world medical
datasets used in the experiments, and then describe the
settings of experiments. Finally, we validate the proposed
framework on the two datasets.

Real-World Datasets
Two medical claim datasets are used in our experiments to
validate the proposed framework, which are the MIMIC-
III dataset [39] and the Heart Failure dataset.

• The MIMIC-III dataset, a publicly available EHR
dataset, consists of medical records of 7,499 intensive care
unit (ICU) patients over 11 years. For this dataset, we
chose the patients who made at least two visits.

• The Heart Failure dataset is an insurance claim
dataset, which has 4,925 patients and 341,865 visits from
the year 2004 to 2015. The patient visits were grouped by
week [2], and we chose patients who made at least two
visits. Table 2 shows more details about the two datasets.

Diagnosis prediction task aims to predict the diagno-
sis information of the next visit. In our experiments, we
intend to predict the diagnosis categories as [2, 3], instead
of predicting the real diagnosis codes. Predicting category
information not only increases the training speed and pre-
dictive performance, but also guarantees the sufficient
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Table 2 Statistics of MIMIC-III and heart failure datasets

Dataset MIMIC-III Heart failure

# of patients 7,499 4,925

# of visits 19,911 341,865

Avg. visits per patient 2.66 69.41

# of unique ICD9 codes 4,880 6,747

Avg. # of diagnosis codes per visit 13.06 3.92

Max # of diagnosis codes per visit 39 54

# of words in code descriptions 2,800 3,397

# of category codes 171 149

Avg. # of category codes per visit 10.16 3.33

Max # of category codes per visit 30 33

granularity of all the diagnoses. The nodes in the sec-
ond hierarchy of the ICD9 codes are used as the category
labels. For example, the category label of diagnosis code
“428.43: Acute on chronic combined systolic and dias-
tolic heart failure” is “Diseases of the circulatory system
(390−459)”.

Experimental Setup
We first introduce the state-of-the-art diagnosis pre-

diction approaches as base models, then describe the
measures to evaluate the prediction results of all the
approaches, and finally present the details of our experi-
ment implementation.

Base Models
In our experiments, we use the following six approaches
as base models:

• MLP. MLP is a naive method, which first embeds the
input visit xt into a vector space vt , and then uses Eq. (1)
and Eq. (13) to predict the (t + 1)-th visit information.

• RNN. RNN is a commonly used model. The input
visit is first embedded into a visit-level representation
vt with a randomly initialized embedding matrix. Then
vt is fed into a GRU, and the GRU outputs the hidden
state ht (Eq. (14)), which is used to predict the next visit
information with Eq. (15).

• RNNa [2]. RNNa adds the location-based attention
mechanism into RNN. After the GRU outputs the hid-
den states h1, h2, · · · , ht , RNNa employs Eqs. (4) and (5)
to calculate the context vector ct . Finally, RNNa makes the
predictions using the learned ct and Eq. (16).

• Dipole [2]. Dipole is the first work to apply bidirec-
tional recurrent neural networks to diagnosis prediction
task. In our experiments, we use location-based atten-
tion mechanism. Compared with RNNa, the difference is
that Dipole uses two GRUs to generate the hidden states,
and then concatenates these two sets of hidden states to
calculate the context vector ct with location-based atten-
tion mechanism.

• RETAIN [4]. RETAIN focuses on interpreting the pre-
diction results with a two-level attention model. RETAIN
uses a reverse time-ordered visit sequence to calculate the
visit-level attention score with Eq. (4). The other GRU
is used to compute the code-level attention weight with
Eq. (17). The context vector ct is obtained using Eq. (18).
Based on this context vector, RETAIN predicts the (t+1)-th
diagnosis codes.

• GRAM [3]. GRAM is the first work to employ medi-
cal ontologies to learn diagnosis code representations and
predict the future visit information with recurrent neural
networks. GRAM first learns the diagnosis code embed-
ding matrix G with graph-based attention mechanism
(Eq. (6)). With the learned G, the input visit xt is embed-
ded into a visit-level representation vt , which is fed into a
GRU to produce the hidden state ht . Equation (15) is used
to make the final predictions.

For all the base models, we all design the corresponding
enhanced approaches for comparison.

Evaluation Measures
To fairly evaluate the performance of all the diagnosis pre-
diction approaches, we validate the results from aspects:
visit level and code level with the measures precision@k
and accuracy@k.

• Visit-level precision@k is defined as the correct diag-
nosis codes in top k divided by min(k, |yt|), where |yt| is
the number of category labels in the (t + 1)-th visit.

• Given a visit Vt which contains multiple category
labels, if the target label is in the top k guesses, then we get
1 and 0 otherwise. Thus, code-level accuracy@k is defined
by the number of correct label predictions divided by the
total number of label predictions.

Visit-level precision@k is used to evaluate the coarse-
grained performance, while code-level accuracy@k evalu-
ates the fine-grained performance. For all the measures,
the greater values, the better performance. In the experi-
ments, we vary k from 5 to 30.

Implementation Details
We extract the diagnosis code descriptions from
ICD9Data.com. All the approaches are implemented with
Theano 0.9.0 [40]. We randomly divide the datasets into
the training, validation and testing sets in a 0.75:0.10:0.15
ratio. The validation set is used to determine the best
values of parameters in the 100 training iterations. For
training models, we use Adadelta [41] with a min-batch
of 100 patients. The regularization (l2 norm with the
coefficient 0.001) is used for all the approaches.

In order to fairly compare the performance, we set the
same g = 128 (i.e., the dimensionality of hidden states) for
all the base models and the enhanced approaches except
MLP and MLP+. For the proposed approaches on both
datasets, the size of word embeddings is 300, the word
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windows (h’s) are set as 2, 3 and 4, and thus q = 3. For
each word window, we use m = 100 filters. For all the base
models, we set d = 180 on the MIMIC-III dataset and 150
on the Heart Failure dataset. For GRAM, l is 100.

Results of Diagnosis Prediction
Table 3 shows the visit-level precision of all the base mod-
els and their corresponding enhanced approaches, and
Table 4 lists the code-level accuracy with different k’s.
From these two tables, we can observe that the enhanced
diagnosis prediction approaches improve the prediction
performance on both the MIMIC-III and Heart Failure
datasets.

Performance Analysis for the MIMIC-III Dataset
On the MIMIC-III dataset, the overall performance of all
the enhanced diagnosis prediction approaches is better
than that of all the base models. Among all the proposed
approaches, RETAIN+ and MLP+ achieve higher accu-
racy. MLP+ does not use recurrent neural networks and
directly predicts the future diagnosis information with the
learned visit embedding vt . RETAIN+ utilizes the context
vector which learns from visit-level and code-level atten-
tion scores, and the learned visit embeddings to make
the final predictions. However, all the remaining proposed
approaches use the hidden states outputted from GRUs
to predict the next visit information. From the above
analysis, we can conclude that directly adding visit embed-
dings into the final prediction can improve the predictive
performance on the MIMIC-III dataset. This is reason-
able because the average length of visits is small on the
MIMIC-III dataset. The shorter visits may not help the
RNN-based models to learn correct hidden states, and
thus those methods can not achieve the highest accuracy.

This observation can also be found from the perfor-
mance of all the base models. Compared with the naive
base model MLP, the precision or accuracy of all the four
RNN-based approaches is lower, including RNN, RNNa,
Dipole and RETAIN. This again confirms that RNN-based
models cannot work well with short sequences. Among
all the RNN-based approaches, location-based attention
models, RNNa and Dipole, perform worse than RNN and
RETAIN, which shows that learning attention mechanisms
needs abundant EHR data. Compared with RNN, both the
precision and accuracy of RETAIN are still higher. This
demonstrates that directly using visit embedding in the
final prediction may achieve better performance for the
datasets with shorter visit sequences. GRAM can achieve
comparable performance with the naive base model MLP.
It proves that employing external information can com-
pensate for the lack of training EHR data in diagnosis
prediction task.

Here is an interesting observation: As expected, the per-
formance improves as k increases, except the visit-level
accuracy on the MIMIC-III dataset, due to the insuffi-
ciency of training data. Compared with the labels with
abundant data, they obtain lower probabilities in the
predictions. Thus, for the visits containing these labels
without sufficient data, the number of correct predictions
when k is 10 or 15 may be the same with that when k = 5.
However, they are divided by a bigger min(k, |yt|), which
leads to the observation that the average performance is
worse than that with k = 5.

Performance Analysis for the Heart Failure Dataset
On the Heart Failure dataset, the enhanced approaches
still perform better than the corresponding base models,
especially GRAM+ which achieves much higher accuracy

Table 3 The visit-level precision@k of diagnosis prediction task

Dataset @k MLP MLP+ RNN RNN+ RNNa RNNa+ Dipole Dipole+ RETAIN RETAIN+ GRAM GRAM+
MIMIC-III 5 0.6939 0.7124 0.6616 0.7160 0.6504 0.7083 0.6599 0.7074 0.6835 0.7167∗ 0.6885 0.7132

10 0.6441 0.6603 0.6145 0.6565 0.6021 0.6527 0.6116 0.6539 0.6361 0.6623∗ 0.6424 0.6596

15 0.6812 0.6926∗ 0.6546 0.6906 0.6412 0.6856 0.6524 0.6903 0.6777 0.6918 0.6828 0.6918

20 0.7420 0.7544∗ 0.7199 0.7511 0.7109 0.7455 0.7159 0.7483 0.7403 0.7501 0.7434 0.7513

25 0.7939 0.8070∗ 0.7755 0.8019 0.7697 0.8009 0.7723 0.8020 0.7912 0.8010 0.7941 0.8028

30 0.8357 0.8460 0.8186 0.8456 0.8142 0.8445 0.8169 0.8453 0.8335 0.8445 0.8377 0.8468∗

Heart failure 5 0.4451 0.4947 0.4890 0.5172 0.4976 0.5103 0.4964 0.5111 0.3751 0.5140 0.5341 0.5365∗

10 0.6122 0.6206 0.6585 0.6879 0.6675 0.6817 0.6689 0.6829 0.5378 0.6828 0.7123 0.7159∗

15 0.6996 0.7060 0.7436 0.7683 0.7496 0.7631 0.7514 0.7648 0.6372 0.7613 0.7901 0.7939∗

20 0.7606 0.7643 0.8006 0.8213 0.8050 0.8174 0.8070 0.8167 0.7088 0.8143 0.8402 0.8442∗

25 0.8100 0.8140 0.8425 0.8593 0.8453 0.8560 0.8476 0.8557 0.7655 0.8533 0.8761 0.8789∗

30 0.8477 0.8511 0.8743 0.8879 0.8770 0.8857 0.8785 0.8846 0.8102 0.8826 0.9025 0.9047∗

∗ denotes the highest precision among all the approaches on the same k
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Table 4 The code-level accuracy@k of diagnosis prediction task

Dataset @k MLP MLP+ RNN RNN+ RNNa RNNa+ Dipole Dipole+ RETAIN RETAIN+ GRAM GRAM+
MIMIC-III 5 0.3104 0.3181 0.2952 0.3193 0.2910 0.3162 0.2941 0.3155 0.3056 0.3198∗ 0.3072 0.3183

10 0.5040 0.5138 0.4796 0.5111 0.4693 0.5085 0.4767 0.5086 0.4980 0.5160∗ 0.5003 0.5138

15 0.6286 0.6352 0.6019 0.6335 0.5889 0.6290 0.5971 0.6325 0.6258 0.6360∗ 0.6267 0.6348

20 0.7114 0.7239∗ 0.6894 0.7198 0.6822 0.7144 0.6845 0.7168 0.7129 0.7202 0.7130 0.7196

25 0.7754 0.7852∗ 0.7545 0.7804 0.7491 0.7785 0.7501 0.7795 0.7735 0.7806 0.7728 0.7794

30 0.8214 0.8294∗ 0.8040 0.8279 0.7987 0.8269 0.7990 0.8280 0.8198 0.8286 0.8220 0.8283

Heart failure 5 0.4580 0.5132 0.5599 0.5960 0.5699 0.5882 0.5687 0.5868 0.4085 0.5808 0.6152 0.6227∗

10 0.6266 0.6412 0.6835 0.7169 0.6920 0.7109 0.6953 0.7105 0.5460 0.7042 0.7393 0.7455∗

15 0.7124 0.7254 0.7603 0.7876 0.7645 0.7845 0.7702 0.7841 0.6512 0.7765 0.8088 0.8130∗

20 0.7717 0.7827 0.8132 0.8355 0.8153 0.8334 0.8209 0.8307 0.7162 0.8261 0.8544 0.8580∗

25 0.8206 0.8283 0.8516 0.8698 0.8532 0.8673 0.8580 0.8655 0.7684 0.8622 0.8872 0.8902∗

30 0.8572 0.8635 0.8812 0.8958 0.8825 0.8943 0.8860 0.8923 0.8100 0.8899 0.9113 0.9134∗

∗ denotes the highest accuracy among all the approaches on the same k

than other approaches. The reason is that GRAM+ not
only uses medical ontologies to learn robust diagnosis
code embeddings, but also employs code descriptions to
further improve the performance, which can be validated
from the comparison between the performance of GRAM
and GRAM+.

Among all the approaches, both precision and accu-
racy of RETAIN are the lowest, which shows that directly
using the visit-level embeddings in the final prediction
may not work on the Heart Failure dataset, which can also
be observed from the performance of MLP. However, tak-
ing code descriptions into consideration, the performance
enormously increases. When k = 5, the visit-level pre-
cision and code-level accuracy of RETAIN improve 37%
and 42% respectively. The performance of MLP is bet-
ter than that of RETAIN, but it is still lower than other
RNN variants. This illustrates that with complicated EHR
datasets, simply using multilayer perceptrons cannot work
well. Though learning medical embeddings of diagnosis
codes improves the predictive performance, the accuracy
of MLP+ is still lower than that of most approaches. This
directly validates that applying recurrent neural networks
to diagnosis prediction task is reasonable.

For the two location-based attention approaches, RNNa
and Dipole, the performance is better than that of RNN,
which demonstrates that attention mechanisms can help
the models to enhance the predictive ability. Compari-
son between RNNa and Dipole confirms that when the
size of visit sequences is big, bidirectional recurrent neu-
ral networks can remember more useful information and
perform better than one directional recurrent neural net-
works.

Based on all the above analysis, we can safely con-
clude that learning diagnosis code embeddings with
descriptions indeed helps all the state-of-the-art diagnosis

prediction approaches to significantly improve the perfor-
mance on different real world datasets.

Discussions
The main contribution of this work is to incorporate code
descriptions to improve the prediction performance of
state-of-the-art models. The experimental results on two
real datasets confirm the effective of the proposed frame-
work. Next, we further discuss the performance changes
with the degree of data sufficiency and the representations
leaned by the proposed framework.

Data Sufficiency
In healthcare, it is hard to collect enough EHR data for
those rare diseases. In order to validate the sensitivity of
all the diagnosis prediction approaches to data sufficiency,
the following experiments are conducted on the MIMIC-
III dataset. We first calculate the frequency of category
labels appeared in the training data, then rank these labels
according to the frequency, and finally divide them into
four groups: 0-25, 25-50, 50-75 and 75-100. The category
labels in group 0-25 are the most rare ones in the train-
ing data, while the labels in group 75-100 are the most
common ones. We finally compute the average accuracy
of labels in each group. The code-level accuracy@20 on
the MIMIC-III dataset is shown in Fig. 2. X-axis denotes
all the base models and their corresponding enhanced
approaches, and Y-axis represents the average accuracy of
the approaches.

From Fig. 2, we can observe that the accuracy of all the
enhanced diagnosis prediction approaches is higher than
that of all the base models in the first three groups. Even
though MLP and RETAIN achieve higher accuracy com-
pared with RNN, RNNa and Dipole as shown in Table 4, the
accuracy of both approaches is 0 in group 0-25. However,
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Fig. 2 Code-Level Accuracy@20 of Diagnosis Prediction on the MIMIC-III Dataset. a 0-25. b 25-50. c 50-75. d 75-100

when generalizing the proposed framework on MLP and
RETAIN, they all make some correct predictions for rare
diseases. This observation also can be found in groups
25-50 and 50-70. Therefore, this observation validates
that considering the medical meanings of diagnosis codes
indeed helps existing models to enhance their predictive
ability even without sufficient training EHR data.

In Fig. 2d, all the labels have sufficient and abun-
dant training EHR data. Thus, all the approaches achieve
comparable performance. This result again confirms that
the enhanced approaches improve the predictive perfor-
mance on those rare diseases, i.e., the labels without suf-
ficient training EHR records. Among all the base models,
GRAM obtains the highest accuracy in groups 0-25, 25-50
and 50-75, which illustrates the effectiveness of incorpo-
rating external medical knowledge. Furthermore, learning
medical embeddings with ontologies still improves the
predictive accuracy, which can be observed from both
Fig. 2 and Table 4.

Interpretable Representation
For diagnosis prediction task, interpreting the learned
medical code embeddings is significantly impor-
tant. Thus, we conduct the following experiments to
qualitatively demonstrate the learned representations by

all the approaches on the MIMIC-III dataset. W ran-
domly select 2000 diagnosis codes and then plot them on
a 2-D space with t-SNE [42] shown in Fig. 3. The color
of the dots represents the first disease categories in CCS
multi-level hierarchy as [3]. We can observe that except
GRAM, the remaining baselines cannot learn interpretable
representations. However, after considering the semantic
meanings learned from diagnosis code descriptions, all
the proposed approaches can learn some interpretable
cluster structures in the representations. Especially for
GRAM+, it not only maintains the advantages of GRAM,
but also improves the prediction accuracy. From Fig. 3,
we come to a conclusion that the proposed semantic diag-
nosis prediction framework is effective and interpretable
even when the training EHR data are insufficient.

Conclusions
Diagnosis prediction from EHR data is a challenging yet
practical research task in healthcare domain. Most state-
of-the-art diagnosis prediction models employ recurrent
neural networks to model the sequential patients’ visit
records, and exploit attention mechanisms to improve the
predictive performance and provide interpretability for
the prediction results. However, all the existing models
ignore the medical descriptions of diagnosis codes, which
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Fig. 3 t-SNE Scatterplots of Medical Codes Learned by Predictive Models. a MLP. b MLP+. c RNN. d RNN+. e RNNa . f RNNa+. g Dipole. h Dipole+. i
RETAIN. j RETAIN+. k GRAM. l GRAM+

are significantly important to diagnosis prediction task,
especially when the EHR data are insufficient.

In this paper, we propose a novel and effective diagnosis
prediction framework, which takes the medical mean-
ings of diagnosis codes into account when predicting
patients’ future visit information. The proposed frame-
work includes two basic components: diagnosis code
embedding and predictive model. In the diagnosis code
embedding component, medical representations of diag-
nosis codes are learned from their descriptions with
a convolutional neural network on top of pre-trained
word embeddings. Based on the learned embeddings,
the input visit information is embedded into a visit-
level vector representation, which is then fed into the
predictive model component. In the predictive model
component, all the state-of-the-art diagnosis prediction
models are redesigned to significantly improve the pre-
dictive performance by considering diagnosis code mean-
ings. Experimental results on two real world medical
datasets prove the effectiveness and robustness of the pro-
posed framework for diagnosis prediction task. An exper-
iment is designed to illustrate that the enhanced diagnosis

prediction approaches outperform all the corresponding
state-of-the-art approaches under insufficient EHR data.
Finally, the learned medical code representations are visu-
alized to demonstrate the interpretability of the proposed
framework.
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