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Abstract

Background: De-identification is a critical technology to facilitate the use of unstructured clinical text while protecting
patient privacy and confidentiality. The clinical natural language processing (NLP) community has invested great efforts
in developing methods and corpora for de-identification of clinical notes. These annotated corpora are valuable
resources for developing automated systems to de-identify clinical text at local hospitals. However, existing studies
often utilized training and test data collected from the same institution. There are few studies to explore automated
de-identification under cross-institute settings. The goal of this study is to examine deep learning-based de-
identification methods at a cross-institute setting, identify the bottlenecks, and provide potential solutions.

Methods: We created a de-identification corpus using a total 500 clinical notes from the University of Florida (UF)
Health, developed deep learning-based de-identification models using 2014 i2b2/UTHealth corpus, and evaluated the
performance using UF corpus. We compared five different word embeddings trained from the general English text,
clinical text, and biomedical literature, explored lexical and linguistic features, and compared two strategies to
customize the deep learning models using UF notes and resources.

Results: Pre-trained word embeddings using a general English corpus achieved better performance than embeddings
from de-identified clinical text and biomedical literature. The performance of deep learning models trained using only
i2b2 corpus significantly dropped (strict and relax F1 scores dropped from 0.9547 and 0.9646 to 0.8568 and 0.8958)
when applied to another corpus annotated at UF Health. Linguistic features could further improve the performance of
de-identification in cross-institute settings. After customizing the models using UF notes and resource, the best model
achieved the strict and relaxed F1 scores of 0.9288 and 0.9584, respectively.

Conclusions: It is necessary to customize de-identification models using local clinical text and other resources when
applied in cross-institute settings. Fine-tuning is a potential solution to re-use pre-trained parameters and reduce the
training time to customize deep learning-based de-identification models trained using clinical corpus from a different
institution.
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Background
Unstructured clinical text has been increasingly used in
clinical and translational research as it contains detailed
patient information that not readily available in struc-
tured medical codes. De-identification [1] is a critical
technology to facilitate the use of clinical narratives
while protecting patient privacy and confidentiality [2].
The Health Insurance Portability and Accountability Act
(HIPAA) “Safe Harbor” rules identified 18 Protected
Health Information (PHI) to be removed to generate de-
identified copy of clinical data [3]. As manually de-
identification is often time consuming and not applicable
to large volumes of clinical text, researchers have devel-
oped natural language processing (NLP) methods to
automatically identify and remove PHIs from clinical
notes [4, 5]. The clinical NLP community has invested
great efforts in developing statistical NLP methods for
de-identification of clinical notes. Many state-of-the-art
NLP methods for de-identification are based on sup-
ervised machine-learning methods [1, 6]. Several de-
identification corpora have been annotated to support
the training of supervised machine learning methods [7–
10]. These annotated corpora are valuable resource to
develop automated clinical NLP systems for de-
identification of clinical text at local hospitals. However,
most existing studies on de-identification of clinical text
were conducted in a single-institute setting, where the
training data and test data were from the same institu-
tion. Up until now, there is limited study to explore
automated de-identification of clinical notes under
cross-institute settings [11–13].
Most studies approach the de-identification as a clin-

ical named entity recognition (NER) [14] task, which is a
standard clinical NLP task to identify medical concepts
and determine their semantic categories. The two tasks
are very similar to each other as both focus on the iden-
tification of information of interests and clinical NER
methods can be applied for de-identification. However,
there are several differences between the two tasks. First,
the de-identification task usually includes more semantic
categories than traditional clinical NLP. Second, the de-
identification task usually focuses on patient privacy in-
formation such as patients’ names, phone numbers, and
ID numbers, whereas, traditional clinical NLP tasks
often focus on medical concepts such as problems, diag-
noses and medications. Third, identify the information is
much important than determine the semantic category
in de-identification of clinical notes as the goal of de-
identification is to remove PHIs. The clinical NLP com-
munity has organized several shared tasks to assess the
current clinical NLP systems on de-identification of
clinical text. The i2b2 (Informatics for Integrating Biol-
ogy and the Bedside) organized clinical NLP challenges
[7, 15] in 2006 and 2014 with de-identification tracks

focused on identifying PHI from clinical narratives. The
i2b2 2006 challenge developed a corpus consists of 889
de-identified records, collected in one record per patient
manner and the i2b2 2014 challenge further extended
the challenge using 1304 clinical notes from 296 diabetic
patients. The organizers manually identified the PHIs
and replace them with realistic surrogates for challenges.
In 2016, the Centers of Excellence in Genomic Science
(CEGS) and Neuropsychiatric Genome-Scale and RDOC
Individualized Domains (N-GRID) also organized a
shared task on de-identification of a new corpus of 1000
psychiatric notes [10]. The results released through the
challenges show that the participated NLP systems per-
formed quite well on identify PHIs from clinical narra-
tives. For example, the best performance achieved in the
2014 i2b2 challenge is around .95 or slightly higher. In
these challenges, the evaluation of de-identification is
conducted using training and testing data from the same
institutes.
Researchers have applied various methods for de-

identification of clinical notes, including rule-based
methods, machine learning-based methods, and hybrid
methods that combine both approaches. In rule-based
methods, researchers manually curated rules and used
medical vocabularies to match common patterns of PHIs.
Usually, regular expression was used to implement the
rules. The rule-based methods are straightforward and
easy to adjust. However, the development of rule-based
systems is time consuming and may not generalizable to
clinical notes with different patterns. Most state-of-the-art
de-identification systems are based on supervised machine
learning methods or hybrid methods. Machine learning
methods approach the de-identification as a sequence la-
beling problem, where a computational model is devel-
oped to label the input word sequence with predefined
labels (e.g., ‘BIO’ format labels). Researchers have applied
many machine learning-based clinical NER methods
including Conditional Random Fields (CRFs) [16], Max-
imum Entropy (ME), and Structured Support Vector Ma-
chines (SSVMs) [17] for de-identification. Machine
learning-based de-identification methods requires a train-
ing set with all PHIs manually labeled. To develop ma-
chine learning models, researchers extracted different
linguistic features (e.g., morphology of words, syntactic
information such as part-of-speech) and various lexical
features (e.g., word case and special symbols) from the
clinical text. Machine learning-based de-identification
methods usually have a better generalizability to new clin-
ical text. Therefore, they perform better to identify PHIs
that not covered by existing dictionaries compared with
rule-based methods. Machine learning methods achieved
state-of-the-art performance in a number of NLP chal-
lenges on de-identification. For example, the best de-
identification system in 2014 i2b2 challenge (team from
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Nottingham) developed a CRFs model and combined it
with a rule-based post-processing pipeline based on regu-
lar expression and dictionaries [18]. The second-best sys-
tem in this challenge also developed a CRFs model and
combined it with a rule-based pipeline to identify standard
PHIs such as PHONE, FAX, and MEDICAL RECORD
NUMBER [19]. In our previous study, we also developed a
CRFs model with a rule-based post-processing pipeline,
which achieved the second-best performance in 2016
CEGS N-GRID shared task on de-identification of psychi-
atric notes [20]. A critical step of developing machine
learning-based de-identification systems is to extract use-
ful features. Researchers have examined various features
such as linguistic feature, dictionary lookup, unsupervised
clustering, and distributed word representations.
Recently, deep learning models have been applied to

NER and de-identification and demonstrated better per-
formance in the clinical domain [21, 22]. A break
through in deep learning-based NLP methods is the dis-
tributed word representation trained using word embed-
ding algorithms. Previous studies have demonstrated
that word embeddings algorithms could capture various
features in a low-dimension matrix, thus alleviated the
researchers from time consuming feature engineering.
Deep learning models based on recurrent neural net-
works (RNN) and convolutional neural networks (CNN)
have been widely used for clinical NER and de-
identification of clinical notes. We have explored CNNs
and RNNs for standard clinical NER in our previous
work [23–26]. Recent studies reported an RNN model
implemented using the long-short term memory strategy
and a CRFs layer (LSTM-CRFs) achieved superior per-
formance for de-identification. For example, Liu et al.
[27] developed a LSTM-CRFs model with a rule-based
post-processing pipeline, which outperformed the best
CRFs model developed during the 2014 i2b2 challenge.
Dernoncourt et al. [28] also applied a similar LSTM-
CRFs model for de-identification of clinical notes. Most
of the previous de-identification studies in the clinical
domain utilized training and test data from the same in-
stitution for training and evaluation. There are few stud-
ies to examine the state-of-the-art deep learning models
in cross-institution settings [6].
In this study, we examined methods to customize a

deep learning-based method, LSTM-CRFs, for de-
identification of clinical notes at UF Health. We devel-
oped the de-identification models using a clinical corpus
developed by the 2014 i2b2/UTHealth challenge and
evaluated the performance using clinical notes collected
from UF Health. Then, we customized the LSTM-CRFs
model using local notes and other resources and com-
pared the performance. We also compared five different
word embeddings trained from the general English text,
de-identified clinical text, and biomedical literature. To

the best of our knowledge, this is one of the earliest
studies to customize deep learning-based de-
identification methods at cross-institution settings.

Materials and methods
Data sets
In this study, we used clinical notes from the 2014 i2b2/
UTHealth challenge and UF Health Integrated Data Re-
pository (IDR). The i2b2/UTHealth corpus was extracted
from the Research Patient Data Repository of Partners
Healthcare [15]. The released dataset contains a total
number of 1304 clinical notes from 296 patients. We split
the dataset into a training set of 997 notes (3/4 of the
total, denoted as i2b2 training) and a validation set of 325
notes (1/4 of the total, denoted as i2b2 validation). The
UF Health IDR is a secure, clinical data warehouse
(CDW) that aggregates data from the university’s various
clinical and administrative information systems, including
the Epic electronic medical record (EMR) system. As of
February 2019, the IDR contains data for encounters that
occurred after June 2011, with a total of more than 1105
million observational facts pertaining to 1.17 million
patients. For cross-institute evaluation, we randomly col-
lected a total number of 4996 clinical notes from the UF
Health IDR. These clinical notes were from 97 patients
and distributed in 39 different note types. The top 3 most
common note types include PROGRESS NOTES, RADI-
OLOGY REPORT, and H&P (i.e., History and Physical
Examination). We randomly selected 500 notes from the
UF Health dataset using stratified sampling based on the
note types. Three annotators (TL, QL and CL) manually
annotated the PHIs from the 500 notes. We used 200
notes as the test set (denoted as UF test) and reserved the
rest as the datasets for training (a total of 233 notes, de-
noted as UF training) and validation (a total of 77 notes,
denoted as UF validation).
The i2b2/UTHealth corpus followed annotation guide-

lines developed by Stubbs et al. based on an extension of
the HIPPA guidelines [9]. To facilitate cross institution
analysis, we adjusted the annotation guideline and merged
several rare PHIs for the annotation of UF Health corpus:
(1) excluded the days of week, seasons and holidays, state
and country as they are not required by HIPPA; (2)
merged the phone and fax as PHONE; (3) merged email,
URL and IP Address as WEB; (4) merged organization and
hospital as INSTITUTE. We adjusted the PHI annotations
in the 2014 i2b2/UTHealth corpus to make the annota-
tions consistent. Table 1 shows the distribution of differ-
ent PHI categories in i2b2/UTHealth corpus and UF
Health corpus.

Pre-processing clinical notes
We developed a pre-processing pipeline to perform
typographic error correction and text normalization.
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The most common typographic errors are missing
spaces between two words. For example, the token
“prnInsulin” should be split into two words including
“prn” and “Insulin”. We developed a set of heuristic rules
to perform error correction. We also performed stand-
ard NLP preprocessing procedures such as sentence
boundary detection and word tokenization. The BIO tag-
ging schema [29] was used to represent PHIs.

Deep learning model for de-identification
In this study, we adopted the LSTM-CRFs model for de-
identification as it achieved superior performance com-
pared with other ML-based methods. To incorporate
features from local vocabulary, we utilized a feature em-
bedding layer to incorporate linguistic and knowledge-
based features with character and word embeddings
[25]. We extracted two most important linguistic fea-
tures, part-of-speech and word shape, according to pre-
vious works [27, 30, 31]. Knowledge-based features are
derived from local vocabulary, which is different from
the word embeddings that derived from unlabeled clin-
ical text. Fig. 1 shows an overview of the architecture.

Word embeddings
As a previous study [32] demonstrated that word em-
beddings have remarkable impact for deep learning-
based NLP methods, thus, we examined five different
word embeddings trained with different algorithms and
corpora for de-identification. The five embeddings are:
1) GoogleNews embeddings – developed by google using
the word2vec on part of the Google news dataset [33]; 2)
CommonCrawl embeddings – released by Facebook
trained using the fastText [34] on the Common Crawl
dataset [35]; 3) MIMIC-word2vec – trained using clin-
ical notes from the Medical Information Mart for Inten-
sive Care III (MIMIC-III) database [36] using word2vec;
4) MIMIC-fastText – trained using clinical notes from

Table 1 PHI distributions in the 2014 i2b2/UTHealth de-
identification corpus and UF Health clinical notes

PHI
Category

Number of Annotations

2014 i2b2/UTHealth UF Heath

Training Validation Training Validation Test

DATE 9067 3104 2056 774 1872

NAME 5472 1868 856 356 771

AGE 1507 490 158 86 164

ID 1142 364 156 41 137

PHONE 406 128 50 28 47

WEB 6 1 0 0 4

INSTITUTE 1926 592 128 72 119

STREET 280 72 25 6 21

CITY 502 152 43 26 45

ZIP 276 76 34 11 20

Total 20,584 6847 3506 1400 3200

Fig. 1 An overview of the LSTM-CRFs model with knowledge-based features derived from the local resources
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MIMIC-III with the fastText algorithm; 5) MADE em-
beddings – developed by Jagannatha et al. using the
skip-gram method on a combined corpus of PubMed
open access articles, English Wikipedia and an unlabeled
corpus of around hundred thousand Electronic Health
Records [37].

Customizing using UF clinical notes
We sought to customize i2b2 models (models trained
using only i2b2 data) using UF clinical notes. We com-
pared two different strategies to customize the i2b2
models: 1) merge UF training set with i2b2 training set
and retrain the model from scratch; and 2) fine tune the
i2b2 models using UF training set. The first strategy is
straightforward – we simply merge the notes and retrain
new models. In the second strategy, we reused the i2b2
models and continue training them using UF notes –
“fine-tuning”. Fine-tuning is a key technology to enhance
deep learning-based NLP model performances on vari-
ous tasks [38–40]. Instead of training from scratch
(where the parameters are randomly initialized), the fine
tuning is based on pretrained weights from an existing
model (i.e., i2b2 models). Therefore, the training time
can be reduced. For comparison, we also developed a
LSTM-CRFs model using only the UF training set.

Knowledge-based feature as embeddings
We used existing dictionaries of U.S. city names and zip
codes from Encyclopedia Britannica (https://www.britan-
nica.com/), general first and last names from data.world
(https://data.world/), and people’s names and health pro-
vider names at UF Health as a knowledge base for PHIs.
To use the existing knowledge, we extract the semantic
categories (e.g., CITY, NAME), matching boundaries (rep-
resented using BIO), and matching conditions (exact or
partial) as features using a fuzzy matching dictionary
lookup. Our previous study [25] has proved that the
knowledge-based feature embedding layer improved the
performance of clinical NER by integrating knowledge fea-
tures with word embeddings. Chen et al. [27] and Jiang
et al. [30] both showed that the knowledge-based features
as complimentary resources to word embeddings im-
proved the performance of identifying PHIs.

Experiments and evaluation
We used a LSTM-CRFs model developed in our previ-
ous work [25] using Tensorflow [41]. We trained LSTM-
CRFs models using the training set and optimized
parameters and selected the best word embeddings
according to performance on the validation set. The op-
timized LSTM-CRFs model used the following parame-
ters: the word embedding dimension was 300; the
character embedding dimension was 25; the bidirectional
word-level LSTM had an output dimension of 100; and

the bidirectional character-level LSTM had an output
size of 25; the learning rate was fixed at 0.005; the input
layer for the word-level LSTM applied a dropout at
probability of 0.5; the stochastic gradient descending ap-
plied a gradient clapping at [− 5.0, 5.0] and a momentum
term fixed at 0.9. In the training from scratch experi-
ments, the number of training epochs was set to 30. For
fine tuning, the number of training epochs was set to 15.
We did not apply early stop strategy in any of the exper-
iments. We compared performance of LSTM-CRFs
models with or without knowledge base features. For the
models with a knowledge feature embedding layer, the
best embedding dimension for sematic features (i.e., city,
zip code, names) was 20 and for lexical features (i.e.,
part-of-speech tagging, word shape) was 15, respectively.
For evaluation, we reported the micro-averaged strict
and relax precision, recall, and F1-score.

Results
Three annotators annotated 8106 PHIs from 500 UF
Health notes with an inter-annotator agreement of
0.889. Table 1 compares detailed number of PHIs be-
tween UF data and i2b2/UTHealth corpus. Table 2 com-
pares the performance of LSTM-CRFs model on i2b2
validation set using different word embeddings. The
model trained with the CommonCrawl embeddings
achieved the best strict and relax F1 scores of 0.9547
and 0.9646, respectively, outperforming other embed-
dings. Therefore, we used the CommonCrawl as the
word embeddings for the rest of the experiments.
Table 3 compares the performance of the LSTM-CRFs

models trained only using the i2b2 data with the new
models that customized using UF data. Compared to the
LSTM-CRFs model, the models with additional lexical
features and knowledge features improved the perform-
ance (i.e., F1 scores). Among the models trained only
using the i2b2 data, the LSTM-CRFs model with lexical
and knowledge features achieved the best strict and relax
F1 scores of 0.8736 and 0.9197 on the UF test set, re-
spectively. Using only the UF training, the best model
achieved strict and relax F1 scores of 0.9195 and 0.9468,
respectively, outperforming the models trained only
using the i2b2 data. For the customized models, the
model trained using the i2b2 data and later fine-tuned
using the UF data achieved the best F1 scores of 0.9288
and 0.9584, respectively. The other customized model,
trained by merging the i2b2 and UF training data,
achieved a comparable performance with strict and relax
F1 scores of 0.9257 and 0.9582.
Table 4 shows the performance for each PHI category

achieved by the customized LSTM-CRFs model using
fine-tuning. According to the results, the customized
model achieved relaxed F1 scores > 0.9 for most of the
PHI categories, including the best F1 score (0.9831) for
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DATE. On the other hand, for INSTITUTE, CITY, and
STREET, the relaxed F1 scores are between 0.6 and 0.85.
For the WEB, none of the four PHIs were detected.

Error analysis
We performed an error analysis using the best de-
identification model customized with UF data through
fine-tuning and summarized them into four categories
including boundary mismatch, wrong semantic category,
false positives, and false negatives (missed by our sys-
tem) [6]. Boundary mismatches and false negatives are
more common for the NAME category. For example,
our system missed the suffix “Jr.” in the NAME PHI
“Xxx Yyy Jr.” (Here we de-identified the name for priv-
acy). One possible reason for false negatives may be that
the word embeddings were trained using a general Eng-
lish corpus, which could not cover some of the name
strings. Thus, all the uncovered words were replaced as
“UNKNOWN” during prediction. The wrong semantic
category errors are more common for ID and PHONE
PHIs. The entities in the ID category are consist of
MRNs, physician IDs, Account IDs, and other unique
identifiers that consist of numbers. Some Account IDs
have a similar format as PHONE numbers without area
codes. In addition, a few physician IDs have a similar
context environment as the PHONE numbers – they
often occurred after NAME PHIs. Therefore, these PHIs
consist of numbers are more likely to cause wrong

semantic category errors. Nevertheless, these PHIs were
able to be de-identified as they were at least detected by
our system, even with wrong semantic types. For false
positives, we observed that the most common errors are
from some lab tests with numeric results. For example,
the “1/2” in “BRCA 1/2 Neg” means “BRCA type 1 and
2” but has a similar format as DATE. These false posi-
tives are not likely to expose PHIs, but they may reduce
useful non-sensitive information from clinical text.

Discussion
In this study, we examined deep learning-based de-
identification methods at a cross-institute setting, where
the training data and test data are from different sources.
We trained models using a corpus developed by 2014
i2b2/UTHealth challenge and examined the performance
using clinical notes from UF Health. We compared five
pre-trained word embeddings from the general English,
clinical narratives, and biomedical literature for de-
identification. We also compared two strategies to
customize the models using resources from UF Health.
The experimental results show that the LSTM-CRFs
model customized using fine-tuning strategy achieved
the best strict and relaxed F1 scores of 0.9288 and
0.9584, respectively. The customized model significantly
outperformed the LSTM-CRFs model trained only using
the i2b2 dataset (strict and relaxed F1 scores of 0.8736
and 0.9197, respectively) and another LSTM-CRFs

Table 2 Performance of LSTM-CRFs trained with different word embeddings (trained using i2b2 training set and evaluated using
i2b2 validation set)

Model Embedding Performance on validation set (i2b2/UTHealth)

Strict Relax

Precision Recall F1 score Precision Recall F1 score

LSTM-CRFs GoogleNews 0.9679 0.9263 0.9466 0.9783 0.9362 0.9567

CommonCrawl 0.9697 0.9401 0.9547 0.9797 0.9498 0.9646

MIMIC-word2vec 0.9669 0.9341 0.9502 0.9774 0.9443 0.9606

MIMIC-fastText 0.9631 0.9380 0.9504 0.9758 0.9504 0.9629

MADE 0.9662 0.9158 0.9403 0.9782 0.9271 0.9520

Best F1 scores are highlighted in bold

Table 3 Performance of LSTM-CRFs models on UF test set

Model Training
data

Fine
Tuning

Performance on UF Test

Strict Relax

Pre Rec F1 Pre Rec F1

LSTM-CRFs i2b2 NA 0.8883 0.8274 0.8568 0.9288 0.8651 0.8958

LSTM-CRFs+Lexical i2b2 NA 0.8767 0.8509 0.8636 0.9314 0.9041 0.9175

LSTM-CRFs+Lexical + Knowledge i2b2 NA 0.8767 0.8706 0.8736 0.9229 0.9166 0.9197

LSTM-CRFs+Lexical + Knowledge i2b2 UF 0.9474 0.9109 0.9288 0.9776 0.9400 0.9584

LSTM-CRFs+Lexical + Knowledge UF NA 0.9408 0.8992 0.9195 0.9705 0.9277 0.9486

LSTM-CRFs+Lexical + Knowledge i2b2 + UF NA 0.9352 0.9163 0.9257 0.9681 0.9484 0.9582

Best F1 scores are highlighted in bold
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model trained only using UF data (strict and relax F1
scores of 0.9195 and 0.9468, respectively). This study
demonstrated that it is necessary to customize deep
learning-based de-identification models when applied in
cross-institute settings.
This study is different from previous studies where the

training and test data were extracted from the same
source with only a few note types [1, 6]. In this study,
we used the 2014 i2b2/UTHealth de-identification cor-
pus as the training dataset for model development and
evaluated the performance using another corpus devel-
oped at UF health. Here, our goal is to examine a state-
of-the-art deep learning-based de-identification method
at a cross-institute setting, identify the bottlenecks and
provide potential solutions. The baseline LSTM-CRFs
model achieved good strict and relaxed F1-scores of
0.9547 and 0.9646 when the training and test data are
from the same source. Whereas, the performance
dropped remarkably when it was directly applied to the
UF test dataset (0.8568 and 0.8958, respectively). After
adding extra lexical features and knowledge features, the
performance improved. We then sought to further
customize the models using local resources (i.e., clinical
notes from UF Health) and compared two different
strategies for customization. The experimental results
show that the LSTM-CRFs model customized using the
UF data through fine-tuning achieved the best perform-
ance, which is a potential solution for de-identification
systems in cross-institute settings.
We compared five different embeddings trained from

the general English text, clinical text, and biomedical lit-
erature. The experimental results show that the Com-
monCrawl, a general English corpus-based word
embeddings, achieved a better performance for de-
identification compared to other embeddings trained
from de-identified clinical text from MIMIC III database

or biomedical literature. This finding is different from
our previous studies of applying deep learning models
for medical concepts, where the embeddings trained
from clinical text is often the best choice. This is not
surprising as the PHIs from MIMIC III notes have been
removed by a de-identification procedure. Therefore,
many PHIs from the input text were not found from the
MIMIC embeddings. The CommonCrawl embeddings,
on the other hand, were able to capture some PHIs such
as names, dates, IDs, and addresses.
We compared two strategies, including merging cor-

pora and fine-tuning, to customize the de-identification
models using UF Health clinical notes. Both
customization strategies outperformed the models
trained using only the i2b2 data or only the UF data.
The merging corpora strategy achieved comparable
performance as the fine-tuning strategy in terms of
micro-averaged F1 scores. However, the fine-tuning
could re-use the pre-trained parameters and weights
from a developed model and reduce the training time,
which could be a better solution for customization of
de-identification models in cross-institute settings.

Conclusion
In this study, we explored a state-of-the-art deep learn-
ing method for de-identification of clinical notes at
cross-institute settings. We compared five different word
embeddings and two customization strategies, identified
the bottlenecks, and provided potential solutions. This
study demonstrated that deep learning-based de-
identification methods could achieve a decent perform-
ance at cross-institute settings through customization
using local resources.
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Type

Performance on UF test set

Strict Relax
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STREET 0.55 0.5238 0.5366 0.85 0.8095 0.8293

WEB 0 0 0 0 0 0
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