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Abstract

Background: Breast cancer causes hundreds of thousands of deaths each year worldwide. The early stage diagnosis
and treatment can significantly reduce the mortality rate. However, the traditional manual diagnosis needs intense
workload, and diagnostic errors are prone to happen with the prolonged work of pathologists. Automatic
histopathology image recognition plays a key role in speeding up diagnosis and improving the quality of diagnosis.

Methods: In this work, we propose a breast cancer histopathology image classification by assembling multiple
compact Convolutional Neural Networks (CNNs). First, a hybrid CNN architecture is designed, which contains a global
model branch and a local model branch. By local voting and two-branch information merging, our hybrid model
obtains stronger representation ability. Second, by embedding the proposed Squeeze-Excitation-Pruning (SEP) block
into our hybrid model, the channel importance can be learned and the redundant channels are thus removed. The
proposed channel pruning scheme can decrease the risk of overfitting and produce higher accuracy with the same
model size. At last, with different data partition and composition, we build multiple models and assemble them
together to further enhance the model generalization ability.

Results: Experimental results show that in public BreaKHis dataset, our proposed hybrid model achieves comparable
performance with the state-of-the-art. By adopting the multi-model assembling scheme, our method outperforms
the state-of-the-art in both patient level and image level accuracy for BACH dataset.

Conclusions: We propose a novel compact breast cancer histopathology image classification scheme by assembling
multiple compact hybrid CNNs. The proposed scheme achieves promising results for the breast cancer image
classification task. Our method can be used in breast cancer auxiliary diagnostic scenario, and it can reduce the
workload of pathologists as well as improve the quality of diagnosis.
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Background
Breast cancer has high morbidity and mortality among
women according to the World Cancer Report [1], and
this type of cancer causes hundreds of thousands of
deaths each year worldwide [2]. The early stage diagno-
sis and treatment can significantly reduce the mortality
rate [3]. The histopathological diagnosis based on light
microscopy is a gold standard for identifying breast can-
cer [4]. To conduct breast cancer diagnosis, the materials
obtained in the operating room are first processed by for-
malin and then embedded in paraffin [5]. After that, the
tissue is cut by a high precision instrument and mounted
on glass slides. To make the nuclei and cytoplasm visible,
the slides are dyed with hematoxylin and eosin (HE).
Finally, the pathologists finish diagnosis through visual
inspection of histological slides under the microscope.
However, the histopathological examination requires the
pathologists having a strong professional background
and rich experience, and the primary-level hospitals and
clinics suffer from the absence of skilled pathologists [6].
Besides, the traditional manual diagnosis needs intense
workload, and diagnostic errors are prone to happen with
the prolonged work of pathologists.
One possible solution to address the above problems

is designing intelligent diagnostic algorithm. It can learn
from the senior pathologists and then inherit the experi-
ence, which can be used to train the young pathologists.
Besides, with the help of powerful computing ability of
hardware, such as GPU, the automatic algorithm can
speed the manual diagnosing process and reducing the
error rate.
Extensive pieces of literature [7–12] design automatic

breast cancer histopathology image recognition schemes.
Typically, the algorithms of the literature can be classified
into two categories. In the first category, nuclei segmen-
tation is performed and then hand-crafted features, such
as morphological and texture features, are extracted from
the segmented nuclei. Finally, the generated features are
put into classifiers for automatic image type decision
[7–9]. In work [9], the authors introduce a large, pub-
licly available and annotated dataset, which is composed
of 7909 clinically representative, microscopic images of
breast tumor tissue images collected from 82 patients. Six
hand-crafted features, such as LBP [13] and LPQ [14],
and 4 traditional classifiers, such as 1-Nearest Neighbor
(1-NN) and Support Vector Machines (SVM), have been
comprehensively evaluated. Generally, great efforts and
effective expert domain knowledge are required to design
appropriate features for this type of method.
In the second category, different Convolutional Neural

Networks (CNNs) are adopted to recognize histopathol-
ogy image [10–12]. The recent research shows that
CNN-based algorithms achieve promising results, which
outperform the best traditional machine learning method.

The authors in [15] introduce deep learning to improve
the analysis of histopathologic slide and conclude that it
holds great promise in increasing diagnosis efficacy. In
work [16], the authors use deep max-pooling CNN to
detect mitosis, which is an important indicator of breast
cancer. The proposed method won the ICPR 2012 mito-
sis detection competition. In order to save the training
time, the DeCAF features are extracted by using a pre-
trained CNN and then a classifier is learned for the new
classification task [10]. Both single task CNN and multi-
task CNN architectures are proposed to classify breast
cancer histopathology images [17]. Most of the CNN-
based schemes in the second category just adopt one
single model to recognize cancer, the generalization abil-
ity is insufficient. The authors of work [11] train different
patch-level CNNs and merge these models to predict the
final image label based an improved existing CNN, and
achieves state-of-the-art results on the large public breast
cancer dataset [9].
Although the above CNN-based methods achieve bet-

ter results than the first category, the used networks
generally have more model parameters and higher com-
puting burden in inference stage, and thus they are
more complex than the traditional scheme. Especially, the
recently designed networks tend to have more layers and
parameters, such as the ILSVRC 2015 winner ResNet [18]
has more than 100 layers and 60 million parameters. This
will cause several problems: big store space requirement,
large run-time memory consumption during inference,
higher classification latency due to the millions of com-
puting operations.
To address these problems, many works have been pro-

posed to compress large CNNs for fast inference [19–26].
The authors in [23] propose a HashedNets architecture,
which can exploit inherent redundancy in neural net-
works to achieve reductions in model size. HashedNets
uses a low-cost hash function to randomly group con-
nection weights into hash buckets, and all connections
within the same hash bucket share the same parame-
ter value. Although the storage space can be reduced
by this kind of architecture, neither the run-time mem-
ory nor the inference time can be decreased. In [24],
a three-stage compression pipeline is proposed: prune
the important connections of the network, then achieve
weight sharing by quantizing the weights, and finally apply
Huffman coding to further remove the redundancy. This
method achieves remarkable results on model size com-
pression and time saving, but many different techniques
need to be applied together. A dynamic and more efficient
method is proposed to prune neural network weights in
[25]. However, it needs specially designed software or
hardware accelerators to reduce run-time memory and
inference time. Recently, the authors in [26] propose a net-
work slimming scheme to achieve channel-level sparsity
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in deep CNNs. They directly use the specific parame-
ter of BN layers as the channel scaling factor to identify
and remove the unimportant channels during training.
However, the adopted parameter does not explicitly model
interdependencies between channels and thus the channel
importance is not decently extracted.
Most of the above model compression methods can

only address one or two challenges mentioned above and
some of the techniques require specially designed soft-
ware/hardware accelerators [25]. Besides, few deep model
compression studies pay attention to the breast cancer
histopathology dataset.
Two important challenges are left open in the existing

breast cancer histopathology image classification:

• The adopted deep learning methods usually design a
patch-level CNN, and put the downsampled whole
cancer image into the model directly. However, due
to the information loss introduced by the
downsampling, the models are not sufficient to
capture the local detail information. The model with
stronger representation which can extract both global
structural information and local detail information
simultaneously is worth studying.

• The larger CNNs produce stronger representation
power, but consume larger on-chip/off-chip memory
and utilize more computing resource, which leads to
higher diagnosing latency in many real-world clinical
applications. How to design a compact yet accurate
CNN to alleviate the problems is still challenging.

In this work, we propose a breast cancer histopathology
image classification through assembling multiple compact
CNNs to address the above two challenges.
The contributions of this paper are summarized in the

following:

• A hybrid CNN architecture is designed, which
contains a global model branch and a local model
branch. By local voting and two-branch information
merging, our hybrid model obtains stronger
representation ability.

• To alleviate the effect of large model size and
generate compact CNN, we first propose the
Squeeze-Excitation-Pruning (SEP) block based on the
original Squeeze-Excitation (SE) module in [27], and
then embed it into the hybrid model. Thus the
channel importance can be learned and the
redundant channels are removed.

• To further improve the generalization ability of
classification, we further propose a special model
bagging scheme. Multiple models are built with
different data partition and composition, and then
they are assembled together to vote for the final result.

Methods
In this section, we propose our breast cancer histopathol-
ogy image classification scheme. Firstly, we introduce
the proposed hybrid CNN architecture and local/global
branches. Then, we present the preprocessing, dataset
augmentation and the compact CNN model design flow,
and finally, model assembling will be described.

Hybrid cNN architecture
To merge more key information when in classification, a
hybrid CNN unit is proposed. The proposed framework
of our hybrid CNN architecture is shown in Fig. 1. It
mainly includes a local model branch and a global model
branch. For a histopathology image, on the one hand, a
patch sampling strategy is performed first and a series of
image patches are generated. Then the produced patches
are passed to the local model branch, and N predic-
tions (P1,P2, ...,PN ) are yielded for the N image patches.

Fig. 1 Proposed hybrid CNN architecture. Two model branches are integrated together to extract more key information, and the channel pruning
module is embedded to compact the network
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Patching voting is further performed for theN predictions
and thus the final output PL for the local model branch
is generated. On the other hand, the downsampled input
image as a whole is put into the global model branch and
the prediction PG is obtained. Finally, the local prediction
PL and the global prediction PG are weighted together by
λ, as shown in (1).

P = λPL + (1 − λ)PG (1)

Global/Local model branch
The global and local model branch adopt the same CNN
structure, as shown in Fig. 2. Table 1 illustrates the details
of our proposed CNN.
In our work, the Inception module [28], residual net-

work [18], and Batch Normalization (BN) techniques [29]
are combined together to ensure recognition performance.
The adopted Inception architecture is composed of a
shortcut branch and a few deeper branches, as shown in
Fig. 3(a). The Inception network consists of 1 ×1, 3 ×3,
5 ×5 filters, and 3 ×3 max pooling. In the structure, 1 ×1
convolutions are used to compute reductions before the
expensive higher dimensional filters: 3 × 3 and 5 ×5
convolutions. In our model, totally seven Inception lay-
ers are integrated to address the problem of gradients
vanishing/exploding, which guarantees the performance
of deeper models. To further gain accuracy from con-
siderably increased depth and to make our model easier
to optimize, we adopt residual networks (Inception-4c
to Inception-4e, Inception-4d to SEP-4e) in the model.
Besides, the BN technique is adopted to allow the uti-
lization of much higher learning rates and be less careful
about initialization by normalizing layer inputs, which
ensures a high robustness of our model.
As shown in Fig. 2, we connect each Inception mod-

ule to a SEP block, which is used to compress our model.
The proposed SEP block is constructed based on the
original SE block in work [27] by adding the channel
pruning power. The SE block can adaptively recalibrate
channel-wise feature responses by explicitly modeling
interdependencies between channels. The basic structure
of the SE block is illustrated in Fig. 3(b). For feature
maps X ∈ RW×H×C of the CNN layer (e.g. the Inception
module), they are first passed through a squeezing oper-
ation, which aggregates the feature maps across spatial
dimensionsW×H to produce a 1×1×C channel descrip-
tor. The squeezing operation is implemented by a global
pooling, and the channel descriptor embeds the distri-
bution of channel-level feature responses. After global
pooling, a statistic vector z ∈ RC is generated [27]. z =
[z1, ..., zi, ..., zC], and the i-th element of z is calculated by:

zi = 1
H × W

H∑

m=1

W∑

n=1
xi(m, n) (2)

Fig. 2 The designed CNN architecture. Both the global branch and
the local branch adopt the same structure
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Table 1 The details of the proposed initial CNN model

Type Patch size/Stride Output Depth Params

Convolution 7×7/2 112×112×64 1 2.7K

Max pool 3×3/2 56×56×64 0

Convolution 1×1/1 56×56×64 1 0.8K

Convolution 3×3/1 56×56×192 1 112K

Max pool 3×3/2 28×28×192 0

Inception(3a) 28×28×256 2 159K

SEP block 1×1 28×28×256 2 32K

Inception(3b) 28×28×480 2 380K

SEP block 1×1 28×28×480 2 32K

Max pool 3×3/2 14×14×480 0

Inception(4a) 14×14×512 2 364K

SEP block 1×1 14×14×512 2 32K

Inception(4b) 14×14×512 2 437K

SEP block 1×1 14×14×512 2 32K

Inception(4c) 14×14×512 2 840K

SEP block 1×1 14×14×512 2 32K

Inception(4d) 14×14×528 2 580K

SEP block 1×1 14×14×528 2 32K

Inception(4e) 14×14×1856 2 840K

SEP block 1×1 14×14×1856 2 32K

Max pool 3×3/2 7×7×1856 0

Ave pool 7×7/1 1×1×1856 0

Linear 1×1×2 1 2K

Softmax 1×1×2 0

The output of the convolution layer and SEP block may change after the channel
pruning stage in every model compression loop

Then an excitation operation is performed on the gener-
ated channel descriptor to learn the sample-specific acti-
vation factor s = [s1, s2, ..., sC] for C channels by using two
fully-connected (FC) layers and two corresponding activa-
tion layers (ReLu and Sigmoid). The excitation operation
can explicitly model interdependencies between channels.
According to [27], s can be denoted as:

s = σ(W2)δ(W1z)) (3)

where δ and σ are activation functions ReLu and Sigmoid
for the two FC layers, respectively;W1 ∈ R

C
r ×C andW2 ∈

RC× C
r (in this work r = 16) are weights of the two FC

layers. Then the feature maps X are reweighted to X̃ :

X̃ = s · X = [s1 · x1, s2 · x2, ..., sC · xC] (4)

where X̃ = [
x̃1, x̃2, ..., x̃C

]
, and X = [x1, x2, ..., xC].

In our work, we use the activation factors si (i =
1, 2, ...,C) obtained by SE block as channel weights in
assisting the model compression. Through embedding the
statistical module and pruning block, our proposed SEP

block can realize channel pruning function, as shown in
Fig. 4. Specifically, the SEP block works differently in the
training stage and pruning stage. In the training stage, the
SEP performs like the original SE block: the C channels
are connected to the scale module and then reweighted.
The original SE part is trained within the entire network.
In the pruning stage, the SEP block first makes statis-
tics on the activation factors for all the training samples.
Then it derives the channel weights WL (taking Layer L
for example) for the entire training dataset. Finally, the
channel-level pruning will be performed according to the
pruning control parameter, and the original C channels
will be compressed to Cp channels. The detailed chan-
nel pruning process will be discussed in compact model
design part.
Besides the Inception layers and SEP blocks, the convo-

lution layers with size 1 ×1, 3 ×3 and 7 ×7 are used in our
model.

Preprocessing and dataset augmentation
Preprocessing
The breast histology microscopy we used in our work is
stained by HE, and this staining method can help medical
workers better observe the internal morphology of the tis-
sue cells. However, color variation happens due to differ-
ences in staining procedures, and these color differences
of the histology images may adversely affect the training
and inference process in CNNs. We adopt the image pro-
cessing methods in [30], which presents an approach for a
more general form of color correction. This method uses
a simple statistical analysis to impose the color character-
istics of one image on another, and thus can achieve color
correction by choosing an appropriate source image.

Dataset Augmentation
To avoid the risk of overfitting, data augmentation is often
performed for the training process after dataset splitting.
The strategies we used include random rotation, flip-
ping transformation and shearing transformation. Unlike
the augmentation methods (rotation with fixed angles) in
[12], we rotate the images randomly. Besides, the shearing
transformation method is also used, which zooms in or
zooms out images in different directions. For each training
sample, eight images are generated by using our adopted
data augmentation method.

Compact model design
The hybrid CNN architecture proposed above is pre-
trained first. In this section, we will conduct model com-
pression based on the pre-trained model and thus remove
the model redundancies by channel pruning. The pruning
flow is shown in Fig. 5. First, based on the pre-trained ini-
tial network, the channel weights are calculated by using
the embedded SEP block. Then the unimportant channels
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Fig. 3 (a) Adopted inception architecture. (b) The basic structure of the SE block

Fig. 4 The proposed SEP block. The SEP block contains the original Scale, the added Statistical Module and Pruning Block. In the training stage, the
original SE network is learned with Scale operation; in the pruning stage, the channel importance is obtained in Statistical Module and Pruned by
using Pruning Block
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Fig. 5 Channel pruning flow

with lower weights are discarded to make the network
compact. After that, the newly compressed network is
retrained to guarantee the high accuracy on the dataset.
The three steps are repeated for several loops before
finishing the model compression process. The channel
weights computing and channel pruning will be detailed
in the following.

Channel weights computing
After the retraining process in the previous loop, the
model weights of FC layers in the SEP subnetwork are
re-generated. We should notice that for the first prun-
ing loop, the related weights are produced by the initially
pre-trained network. By using these model weights and
the corresponding activation layers, the C activation fac-
tors s1, s2, ... , sC corresponding to C channels of one
layer can be calculated. Generally, the key channels to the
final classification results are prone to have higher acti-
vation factors and vice verse. Thus the activation factors
are chosen as channel weights for model compression. For

each training sample, the corresponding sample-specific
channel weights can be produced. Then the question is
how to evaluate the entire channel importance for our
model based on thousands of training samples. For each
channel of the model, the channel-weight average on the
training set is directly selected as its importance measure.
Suppose that the size of the training set isN . For a CNN

with M convolutional layers, a specific convolution layer
LD (D from 1 toM) has C channels. Corresponding to the
C channels, the channel importance is denoted asWLD =
[wD1,wD2, ...,wDC]. For training sample Tj (j from 1 to N),
the channel activation factors are [ sD1j, sD2j, ..., sDCj], thus
the channel importance for layer LD can be described as

WLD = [wD1,wD2, ...,wDC]

=
[∑N

j=1 sD1j
N

,
∑N

j=1 sD2j
N

, ...,
∑N

j=1 sDCj
N

]
(5)

In this manner, we can get all the channel importance
for theM convolutional layers.
Two convolution layers (conv1 and conv2) are selected

and the importance of channels in each layer is visualized
as Fig. 11(a) and Fig. 11(e). According to the figure, we
can see that there aremany channels with low importance,
which means these channels are redundant and thus can
be pruned. In the following, we will detail the channel
pruning flow of our scheme.

Channel pruning
In work [31], after computing channel weights, the
authors then conduct channel pruning by setting a thresh-
old for each layer. More specifically, for a convolutional
layer, the following equation is used to determine the
pruning threshold,

TH = μ + σ + k (6)

where TH refers to the pruning threshold, μ and σ are the
mean and the standard deviation of the channel weights
in the same layer, respectively. k is an adjustable parame-
ter which ranges from 0.1 to 0.5. By setting a lower value
to k, a higher threshold will be produced and thus more
channels will be pruned. We propose another different
channel pruning method, which can accurately control
how many channels are pruned. Let O be the target prun-
ing ratio (say, 50%), and R be the number of training loops
we want to perform. If equal channel pruning proportion
X is targeted in each training loop, then we have

X + (1 − X)X + ...(1 − X)(R−1)X = O (7)

By solving the above function, we get

X = 1 − (1 − O)(1/R) (8)

Then in each channel pruning loop, we will discard the
unimportant channels which belong to the X proportion
according to the ranking of weights, as shown in Fig. 6.
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Fig. 6 A schematic pruning example. The channels belong to the X proportion with low-importance will be pruned

Model assembling scheme
To reduce generalization error and improve performance,
multiple hybrid models with the same architecture are
assembled together. Each hybrid model is obtained by
using a subset of the training data. Our assembling scheme
can be treated as a kind of bagging method. Bagging is
proposed by Leo Breiman in 1996 [32] to improve classifi-
cation by combining classifications of randomly generated
training sets.
As shown in Fig. 7, in this paper we propose a special

bagging scheme with 5models. In detail, the entire dataset

is first randomly divided into two parts: a training set
and a testing set. The training set is utilized to produce
multiple hybrid models, and the testing set is left for eval-
uating the generation ability of our classification method.
The training set is further split into 5 non-overlapping
equal subsets with random sampling manner. Four of
these subsets are selected as the training samples and
the left one subset is chosen as the validation set. Then
different classificationmodels can be constructed by using
different training and validating set splittings, as shown in
Fig. 7. In the inference process, each hybrid model makes

Fig. 7 The proposed bagging scheme with five models
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a decision and predicts the histology image label. Using
a multi-model voting scheme, the final prediction can be
produced.

Results
Implementation details
The implementation details for our algorithm are pre-
sented in this section. Codes and models are available at
https://github.com/WendyDong/BreastCancerCNN.
All the experiments are conducted under Centos 7.0

environment. The training process uses 2 NVIDIA GTX
1080Ti 12GB GPUs and adopts the Caffe deep learning
framework by the Berkeley Learning and Vision Center
(BLVC) [33].
The mini-batch Stochastic Gradient Descent (SGD)

method is carried out based on backpropagation and
the mini-batch size of 10 is used to update the network
parameters, including all the convolution layers and SEP
blocks. The initial starting learning rate is 0.0004 and
then it decreases exponentially every 10000 iterations. A
momentum term of 0.9 and a weight decay of 0.009 are
configured in the training process. Our CNN model is
trained for 40000 iterations.

Dataset description
Our method is verified in two breast cancer datasets:
BreaKHis and the BreAst Cancer Histology (BACH) [12]
dataset.

BreaKHis
The BreaKHis database is introduced by work [9]. It con-
tains microscopic biopsy images of benign and malignant
breast tumors. The database is composed of 7,909 image
samples generated from breast tissue biopsy slides, which
are stained with HE. The images are divided into benign

(adenosis, fibroadenoma, phyllodes tumor, and tubu-
lar adenoma) and malignant tumors (ductal carcinoma,
lobular carcinoma, mucinous carcinoma, and papillary
carcinoma) based on the aspect of the tumoral cells under
the microscope. Some exemplar samples are shown in
Fig. 8(a).
To ensure a fair comparison, the experimental protocol

proposed in [9] is strictly followed. We use the same man-
ner to divide the BreaKHis dataset into training (70%) and
testing (30%) set. BreaKHis is mainly used to analyze the
classification performance and evaluate the compression
strategy of our hybrid model.

BACH
The BACH contains 2 types dataset: microscopy dataset
and WSI dataset. The BACH microscopy dataset is com-
posed of 400 HE stained breast histology images [34]. All
images are of equal dimensions (2048 ×1536), and each
image is labeled with one of four classes: (1) normal tissue,
(2) benign lesion, (3) in situ carcinoma and (4) invasive
carcinoma. The WSI subset consists of 20 whole-slide
images of very large size, such as 40000 ×60000. Each
WSI can have multiple normal, benign, in situ carcinoma
and invasive carcinoma regions. The annotation of the
whole-slide images was performed by twomedical experts
and images where there was disagreement were discarded.
Each pixel of these regions (the remaining tissue is consid-
ered normal) has a corresponding label indicating benign,
in situ carcinoma and invasive carcinoma regions.
In our experiment, BACH WSI dataset is selected to

test the algorithm. For each WSI, a series of patches are
sampled from multiple key regions, and in Fig. 8(b) some
example images are shown. The normal tissue and benign
lesion are labeled as the benign class, and in situ car-
cinoma coupled with invasive carcinoma are treated as

Fig. 8 Exemplar images collected from (a) BreaKHis dataset and (b) BACH dataset

https://github.com/WendyDong/BreastCancerCNN
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cancer lesion. The dataset is divided into a training sub-
set (including validation set) and a testing subset. The
training subset is used to train multiple models and the
testing subset is adopted to evaluate the performance of
our model assembling strategy.

Evaluation criteria
We report the recognition rate both at the patient level
(PL) and the image level (IL) [11]. The patient score (PS)
is defined as

PS = Nrec/NP (9)

whereNP is the number of cancer images for patient P and
Nrec is the number of images that are correctly classified.
Based on PS, the global patient recognition rate is defined
as

PL =
∑

PS
Npatient

(10)

where Npatient is the number of the patient.
The image level recognition rate is calculated by the

following function,

IL = Nrec
Nall

(11)

where Nall is the number of cancer images of the test set
and Nrec is the correctly classified cancer images.
Besides, we also include positive predictive value (PPV)

and Cohen’s Kappa for further evaluation:

PPV = TP
TP + FP

(12)

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively.

Kappa = Acc − Accr
1 − Accr

(13)

whereAcc=(TP+TN)/(TP+TN+FP+FN). In this work,
Kappa measures the agreement between the machine
learning scheme and the human ground truth labeled by
pathologists. In (13), Acc is the relative observed agree-
ment, and Accr is is the hypothetical probability of chance
agreement, which can be computed as the probability of
each classifier randomly selecting each category by using
the observed data [35].

Classification results
Classification results of three methods are listed to fully
evaluate the contributions of each part in our model: 1.
results based on only the global model branch; 2. results
based on only the local model branch; 3. results based
on the proposed hybrid CNN model. For method 1, each
input image is directly processed by the global model. For
method 2, 15 non-overlapping patches are extracted from
each input image and then they are put into the local

model generating 15 prediction results. Then voting is
performed to classify the input image based on the aver-
age of 15 predictions. For method 3, both local branch and
global branch predictions are merged together by (1) to
generate the final results (0.6 is selected for λ in our exper-
iment). Besides, we also show the results of using majority
voting (Max) scheme when merging patch predictions,
denoted as “2(Max)" and “3(Max)" in the table.
The results of the above methods are shown in Table 2

and Table 3 in terms of accuracy, Kappa and PPV on
both BACH and BreaKHis. Similar to work [11], both
patient and image level results are calculated for accuracy.
Besides, F1 score, sensitivity, and precision for image level
performance is further discussed on BreaKHis, as shown
in Table 4.
As can be seen from Table 2 and Table 3, method 1 has

already produced a decent accuracy by using the global
branch model. In most cases of Table 2 and Table 3, some
improvements can be observed for the local branchmodel
voting strategy (method 2) when compared to the global
branch model. Although method 2 can achieve compa-
rable performances with method 3 for some cases, such
as the IL results of BreakHis 40×, as shown in Table 3.
However, there are still many cases that the hybrid model
achieves obviously better results than the local voting
scheme. On the whole, the hybrid model (method 3)
achieves the best result among all the three methods. This
means that the local information and global information
can effectively work together to make the decision. In
fact, although the patch-level voting scheme in method 2
gives some cue for the global-level information, the global
branch model of method 1 can extract stronger effective
global representation when processing the input image as
a whole. Besides, for different magnification factors, the
recognition algorithm (such as method 3) produces dif-
ferent performances. On 40 × and 200 × datasets, higher
accuracy is prone to happen when compared to 100× and
400 × datasets.
From Table 4, one can notice that the similar phe-

nomenon happens to F1 score, sensitivity and pre-
cision for our methods: local branch voting strategy
achieves higher performance than global branch; hybrid
model produces the optimal results. The performance
of our hybrid model is further analyzed by drawing the

Table 2 Classification Results on BACH

Str. IL(Acc.) PL(Acc.) Kappa PPV

1 86.2 ±1.9 82.3±3.4 0.724±0.037 84.2±2.8

2(Max) 84.8 ±2.4 82.3±2.6 0.697±0.048 87.2±3.2

2 84.8 ±2.3 82.6±2.3 0.695±0.046 83.5±3.2

3(Max) 86.4 ±1.5 84.1±1.3 0.727±0.030 88.5±1.67

3 86.6 ±1.7 83.1±1.7 0.732±0.033 84.7±2.48
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Table 3 Classification Results on BreaKHis

Cri. Str.
Magnification Factors

40× 100× 200× 400×

PL(Acc.)

1 82.4 ±3.4 80.8 ±1.1 81.3 ±1.5 77.3 ±2.9

2(Max) 83.7±2.3 81.4±2.9 82.8±3.7 79.0±4.6

2 83.9 ±2.3 82.2 ±3.7 83.4 ±1.8 79.6 ±5.0

3(Max) 83.8±2.3 82.3±1.6 83.5±2.5 79.2±4.8

3 84.5 ±2.5 83.4 ±2.5 83.9 ±1.7 80.0 ±4.3

IL(Acc.)

1 82.0 ±2.5 81.1 ±0.9 81.4 ±1.8 76.8 ±3.9

2(Max) 84.3 ±0.9 81.5 ±3.1 84.0 ±4.6 79.7 ±4.4

2 85.0 ±1.3 83.6 ±3.1 84.6 ±1.8 80.4 ±5.1

3(Max) 84.8 ±0.9 82.7 ±1.7 84.7 ±3.5 79.8±4.6

3 85.6 ±1.4 83.9 ±2.8 85.4 ±1.4 81.2 ±4.5

Kappa

1 0.585 ±0.050 0.547 ±0.031 0.563 ±0.020 0.449 ±0.090

2(Max) 0.635 ±0.030 0.536 ±0.123 0.619 ±0.119 0.500 ±0.132

2 0.637 ±0.036 0.525 ±0.131 0.607 ±0.102 0.514 ±0.149

3(Max) 0.635 ±0.029 0.579 ±0.061 0.637 ±0.085 0.504 ±0.135

3 0.651 ±0.039 0.551 ±0.106 0.625 ±0.087 0.535 ±0.128

PPV

1 75.1 ±6.2 77.4 ±4.8 73.4 ±5.7 70.4 ±7.4

2(Max) 84.7 ±3.8 81.4 ±2.7 78.5 ±0.7 77.3 ±5.3

2 85.9 ±3.5 81.6 ±1.9 79.4 ±1.7 79.5 ±6.6

3(Max) 84.7 ±3.9 82.1 ±1.5 79.2 ±1.2 77.8 ±5.5

3 86.4 ±2.4 83.3 ±2.1 80.1 ±2.1 81.3 ±5.1

associated ROC curve, as shown in Fig. 9. The 200 ×
magnification factor shows the best results among per-
formances obtained with different magnification levels
under 0.4 False Positive Rate (FPR). However, when FPR
is higher than 0.4, the 40 × magnification factor produces
a superior performance to 200 ×. Overall, 200 × mag-
nification factor shows a higher potential than the other
magnification factors.

Table 4 F1, precision, and recall on BreaKHis

Cri. Str.
Magnification Factors

40× 100× 200× 400×

F1

1 86.7 ±2.2 86.6 ±0.6 86.4 ±2.1 83.5 ±2.9

2 89.4 ±0.8 88.6 ±1.7 89.0 ±1.7 86.3 ±3.2

3 89.8 ±1.0 88.8 ±1.5 89.4 ±1.3 86.8 ±2.8

Pr.

1 85.4 ±1.7 82.5 ±0.9 85.2 ±2.1 79.2 ±3.7

2 84.7 ±1.7 83.7 ±5.1 87.5 ±2.3 81.2 ±5.7

3 85.3 ±1.8 83.9 ±4.7 88.0 ±1.5 81.6 ±5.1

Rec.

1 88.3 ±4.0 91.3 ±2.1 87.7 ±4.8 88.5 ±3.3

2 94.8 ±1.2 94.5 ±3.0 90.6 ±2.0 92.5 ±3.2

3 94.9 ±0.8 94.6 ±2.9 90.8 ±1.9 93.1 ±3.0

Compact model performance
In this paper, we set the specific target pruning ratio
O = 50%, and let the training loops R = 1. According
to (8), 50% channels should be removed in one pruning
process. With 50% channel pruning, accuracy, F1 score,
sensitivity and precision are listed in Table 5 and Table 6.
The optimized compact hybrid model achieves compara-
ble results when compared with Table 3 and Table 4. Some
results in Table 5 and Table 6 even slightly outperforms
the original model, such as 40 × and 100 ×. The possi-
ble reason is that the compact model has a lower risk of
overfitting by removing some redundancy.
In Fig. 10, a channel pruning example with different R

(1 to 4) under the same target pruning ratio O = 80% is
shown to further analyze the relationship between accu-
racy and R. With the increasing of R, the model accuracy
is improved accordingly and the pruning proportion X
for each loop drops. This tells that by increasing training
loops R our model performance will be further improved
slightly, but more training loops (computing resources)
will be needed. In our experiment, we already can achieve
decent results by setting training loops R = 1.
In Fig. 11, the distributions of channel importance of

the two selected channels are also visualized after prun-
ing. We can see that the channel importances have more
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Fig. 9 RoC curves of our hybrid model in different magnification factors

compact distribution (with lower variance) and almost all
remaining channels have equal importance value (around
0.5). This means that all the selected channels have suffi-
cient information and no channel is obviously superior to
the others.
We also analyze the relationship between accuracy and

different pruning ratios of our compact model. By choos-
ing a model trained by 40 × dataset, the performance
with different pruning ratios is depicted in Fig. 12(a).
From the figure, one can see that under a certain pruning
ratio threshold (say, 90%), the pruned network produces
comparable accuracy (actually most points perform bet-
ter) with the original model. However, it will ruin the
accuracy when the pruning ratio increases further. For
example, the accuracy will drop sharply to 0.816 with 95%
pruning ratio. Under different pruning ratios, the float-
point-operations (FLOPs) and weights are also depicted
in Fig. 12(b). The number of FLOPs and weights almost
decreases linearly. It is worth noting that the declining
speed of FLOPs and weights will slow down when the
pruning ratio is close to 1. The reason is that the first

Table 5 Classification results after pruning 50% channels

Acc. Str.
Magnification Factors

40× 100× 200× 400×

PL

1 82.4 ±3.5 80.2 ±9.5 81.9 ±5.4 75.7 ±3.3

2 84.9 ±2.5 83.1 ±3.9 84.0 ±1.3 79.3 ±5.1

3 85.2 ±2.6 83.5 ±3.8 84.1 ±1.4 79.3 ±2.7

IL

1 81.3 ±2.9 79.9 ±0.8 81.7 ±1.3 75.3 ±3.5

2 85.2 ±1.7 83.8 ±2.9 84.8 ±1.8 80.2 ±5.0

3 85.7 ±1.9 84.2 ±3.2 84.9 ±2.2 80.1 ±4.4

three convolution layers are not pruned (without flowed
SEP blocks) in our hybrid model as denoted in Fig. 2. For
clarity, the results in Fig. 12(b) are also tabulated as Table 7
to show the model size and FLOPs improvement by using
our method. The weights and FLOPs of work [11] and [17]
are also included in Table 7. With the increase of pruning
ratio, our model will have the smallest amount of weights.
To make the model more compact, the other tradi-

tional compression scheme Dynamic Network Surgery
(DNS) [25] method, which can properly incorporate con-
nection splicing into the training process to avoid incor-
rect pruning, is merged with our method. The result
in Fig. 13 shows the recognition accuracies by using
our channel pruning and DNS together. From the figure
we can see that the joint approach far outperforms the
results only using DNS, especially in the small model size
range.

Table 6 F1, precision, and recall after pruning 50% channels

Cri. Str.
Magnification Factors

40× 100× 200× 400×

F1

1 86.9 ±1.7 86.0 ±0.7 87.1 ±1.2 82.5 ±2.3

2 89.9 ±1.1 88.5 ±1.4 89.1 ±1.7 86.1 ±3.1

3 90.0 ±1.2 88.8 ±1.7 89.2 ±1.9 86.1 ±2.7

Pr.

1 82.8 ±4.2 80.9 ±2.2 83.9 ±3.4 78.2 ±4.1

2 84.6 ±2.2 85.4 ±5.1 86.4 ±2.2 81.5 ±5.6

3 84.6 ±2.5 85.2 ±5.1 86.1 ±2.8 81.0 ±5.0

Rec.

1 91.7 ±2.5 91.8 ±2.5 90.8 ±3.3 87.4 ±1.2

2 95.9 ±0.7 92.2 ±3.4 92.0 ±2.2 91.6 ±3.9

3 96.3 ±0.9 93.2 ±2.9 92.7 ±2.3 92.2 ±3.2
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Fig. 10 A channel-pruning example with target pruning ratio 80%. The black line represents the compressed model accuracy
[0.851,0.878,0.877,0.883] with R from 1 to 4; the red dotted line denotes the corresponding pruning proportion X [0.8,0.55,0.42,0.33] for each loop
under 4 different situations

Fig. 11 Channel pruning visualization of two convolution layers. (a) (e): The original importance distributions before channel pruning. (b) (f):
Histograms of original importance distributions. (c) (d): The importance distributions after channel pruning. (g) (h): Histograms of importance
distributions for the pruned network
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Fig. 12 Classification accuracy, FLOPs and weights under different pruning ratios

Performance comparisons
For BreaKHis dataset, the results reported in related
works are the average of five trials, and the folds are
provided along with the dataset to allow for a full com-
parison of classification results [9]. For the fair compar-
ison, the same dataset partition and fold segmentation
are used in our test. However, it should be noted that
the multi-model assembling scheme requires dividing the
dataset into training subsets, validation subsets and test-
ing dataset, which needs different data partition manner
with the BreaKHis dataset. Thus, we just compare our
method without the multi-model assembling technique
to the other works for BreakHis dataset. To show the
performance comparisons of our complete scheme with
the other works, the testing is performed on the samples
from BACH WSI dataset. In detail, 10270 images of size
512 × 768 are sampled, 2645 of which are used as the
testing dataset and the left 7625 samples are adopted to
train multiple (5 models are generated in our experiment)

Table 7 Weights size and FLOPs improvement by using our
channel pruning scheme under different pruning ratios

Method Pruning Degree Weights (M) FLOP (M)

Our

Before Pruning 3.77 2920.3

Pruning Ratio 0.5 1.76 1861.8

Pruning Ratio 0.6 1.4 1663.1

Pruning Ratio 0.7 1.06 1477.8

Pruning Ratio 0.8 0.74 1305

Pruning Ratio 0.9 0.43 1133.6

Pruning Ratio 0.95 0.29 1063.8

Work[11] N/A 0.55 47.4/188.5

Work[17] N/A 13.5 8521

The weights and FLOPs of work [11] and [17] are also included in the table. The
work [11] has two types of networks with different input sizes: 32 ×32 and 64 ×64,
and the corresponding FLOPs are 47.4 (M) and 188.5 (M), respectively

models. For each specific model (each fold), 6100 sam-
ples are as training pictures and 1525 samples are utilized
for validation, according to our bagging scheme. For each
samples of the 6100 training data, 8 pictures are gener-
ated according to our data augmentation method. After
data augmentation, each image is resized to 1120 × 672.
Then 15 non-overlapping patches with size 224 × 224 are
extracted from each image. Therefore, totally 6100 × 8
images and 6100 × 8 × 15 patches are generated for each
fold. The 6100 × 8 images are used to train the global
branch and the 6100×8×15 patches are used to train the
local branch of the model.
In Table 8, we list the result of our hybrid model without

multi-model assembling together with the experimental
results presented in [9], [17] and [11]. All the reported
results in work [17] are patient level and the results of
image level are not available. All works listed for com-
parison are strictly following the data partition manner in
work [9]. As presented in Table 8, work [11] achieves the
best patient accuracy among all the magnification factors.
Our hybrid model achieves the second place for 40× and
100× magnification factors. For image level testing, our
hybrid model gets slightly better results for 40×, 100×
and 200× factors when compared to work [11]. In work
[11], the reported results are obtained by combining four
patch-level models trained with different patch generation
strategies, which produces the state-of-the-art for patient
level result. In the following, we will compare the pro-
posed hybrid model coupling with our model assembling
technique to work [11].
In work [11], the authors provide two strategies to gen-

erate the training samples: sliding window allowing 50%
of overlap between patches; random extraction strategy
with a fixed arbitrary number of patches (such as 1000)
from each input image. Besides, the authors use 2 patch
sizes for each strategy (32 × 32 and 64 × 64), and thus
totally 4 different models are generated based on different
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Fig. 13 Classification accuracy by combining different model compression schemes

training set. We reproduce the 4 models and use Max
rule (which shows higher accuracy than Sum and Prod-
uct rules in [11]) to merge them. For our work, 5 models
are trained and assembled together using Sum rule to
vote for the final image label. Table 9 summarizes the
comparisons between our work and different schemes in
work [11]. Sliding window scheme of 64 × 64 achieves
the best performance among all the 4 patch models of
work [11], which produces 82.1% PL and 77.1% IL, respec-
tively. By using theMaxmerging scheme, the recognition
accuracy can be improved to 85.1% and 79.3%, respec-
tively. By adopting the multi-model assembling strategy,
our method can achieve 87.5% patient level and 84.4%
image level accuracy, which outperforms the best results
of work [11].

Discussion
In this study, a breast cancer histopathology image clas-
sification by assembling multiple compact CNNs is pro-
posed. Compared to reported breast cancer recognition

Table 8 Performance comparisons between our hybrid model
and the other schemes on BreaKHis

Acc. Str.
Magnification Factors

40× 100× 200× 400×

PL

[9] 83.8 ±4.1 82.1 ±4.9 85.1 ±3.1 82.3 ±3.8

[17] 83.0 ±3.0 83.2 ±3.5 84.6 ±2.7 82.1 ±4.4

[11] 90.0 ±6.7 88.4 ±4.8 84.6 ±4.2 86.1 ±6.2

Our 85.2 ±2.6 83.5 ±3.8 84.1 ±1.4 79.3 ±2.7

IL

[9] 82.8 ±3.6 80.7 ±4.9 84.2 ±1.6 81.2 ±3.6

[11] 85.6 ±4.8 83.5 ±3.9 83.1 ±1.9 80.8 ±3.0

Our 85.7 ±1.9 84.2 ±3.2 84.9 ±2.2 80.1 ±4.4

algorithms that are evaluated on the publicly available
BreaKHis dataset, our proposed hybrid model achieves
comparable or better performance (see Table 8), indicat-
ing the potential of combing both local model and global
model branches. By embedding the SEP block into our
hybrid model, the channel importance can be learned and
the redundant channels are then removed. Under a cer-
tain amount of channel pruning, the optimized compact
network even produces better performance than the orig-
inal model, which confirms that the model compression
technique can lower the risk of overfitting (see Table 5).
However, over pruning channels (say pruning 95%) may

Table 9 Performance comparison between our scheme (with
assembling) and the state-of-the-art work [11] on BACH

Methods Strategy PL IL Kappa PPV

Work [11]

32 ×32
(random
sampling)

80.5 76.8 0.608 78.7

64 ×64
(random
sampling)

79.9 74.8 0.595 76.5

32 ×32 (sliding
window)

80.4 75.5 0.607 76.7

64 ×64 (sliding
window)

82.1 77.1 0.641 76.2

Max Fusion 85.1 79.3 0.700 78.4

This work
Hybrid model
with
assembling
(Sum)

87.5 84.4 0.749 85.7

Hybrid model
with
assembling
(Max)

87.4 84.2 0.748 84.6
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harm the model performance largely (see Fig. 12(a)). We
also show that our channel pruning scheme can be used in
conjunction with the other traditional compression meth-
ods, such as DNS in work [25], and this will generate
higher accuracy with the same model size (see Fig. 13).
The evaluation on the BACH dataset shows that the pro-
posed hybrid model with multi-model assembling scheme
outperforms the state-of-the-art work [11] in both patient
level and image level accuracy. Actually, we have veri-
fied the effectiveness of our model assembling strategy
in BACH challenge [34, 36], which is held as part of the
ICIAR 2018. It suggests that model assembling is crucial
to the task of breast cancer image (which has large vari-
ability in morphology) classification and can enhance the
model generalization ability, especially in small dataset
situation.
The application of machine learning technology, espe-

cially deep learning, to medical area research has become
more and more popular recently. The significance of the
machine learning algorithms is that it can reduce the
workload of pathologists, improve the quality of diagno-
sis, and reduce the risk of misdiagnosis. Our proposed
scheme in this work can be used in breast cancer auxiliary
diagnostic scenario, and realize workload reducing and
diagnosis quality promoting talked above. The first objec-
tive of this paper is still to ensure accuracy like the other
works, and we propose hybrid architecture and model
assembling to achieve this goal. Under the premise of
guaranteeing this, we have introduced a channel pruning
scheme to make our model more compact, which reduces
the computing burden. It should be noted that this study
has only proposed and analyzed a channel-level pruning
scheme for our hybrid model, and we do not target maxi-
mizing the model compression. If targeting higher model
compression, the other model compression algorithms
should be used together.
In the future, we will involve the experience of the

pathologists to guide our model design. Through visu-
alizing deep neural network decision [37], we will try
to highlight areas in a given input breast cancer image
that provide evidence for or against a certain tumor type.
Then, we could find out the differences of supporting
areas when making decision between pathologists and
algorithms. In addition, by applying the diagnostic experi-
ence as a priori, we target constructing an attention-based
model and thus improve the accuracy of our model in
future work.

Conclusion
We have proposed breast cancer histopathology image
classification based on assembling multiple compact
CNNs. The proposed scheme achieves promising results
for the breast cancer image classification task. Our
method can be used in breast cancer auxiliary diagnostic

scenario, and it can reduce the workload of pathologists as
well as improve the quality of diagnosis.
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