Palmer et al. BMC Medical Informatics and Decision Making
https://doi.org/10.1186/512911-019-0864-2

(2019) 19:143

BMC Medical Informatics and
Decision Making

RESEARCH ARTICLE Open Access

Assessing data availability and quality
within an electronic health record system
through external validation against an
external clinical data source

Ellen L. Palmer" @, John Higgins?®, Saeed Hassanpour®, James Sargent*, Christina M. Robinson®,
Jennifer A. Doherty® and Tracy Onega’

Check for
updates

Abstract

Background: Approximately 20% of deaths in the US each year are attributable to smoking, yet current practices in
the recording of this health risk in electronic health records (EHRs) have not led to discernable changes in health
outcomes. Several groups have developed algorithms for extracting smoking behaviors from clinical notes, but
none of these approaches were assessed with external data to report on anticipated clinical performance.

Methods: Previously, we developed an informatics pipeline that extracts smoking status, pack year history, and
cessation date from clinical notes. Here we report on the clinical implementation performance of our pipeline using
1,504 clinical notes matched to an external questionnaire.

Results: We found that 73% of available notes contained no smoking behavior information. The weighted Cohen's
kappa between the external questionnaire and EHR smoking status was 0.62 (95% Cl 0.56-0.69) for the clinical
notes we were able to extract information from. The correlation between pack years reported by our pipeline and

to be a high priority.

the external questionnaire was 0.39 on the 81 notes for which this information was present in both. We also
assessed for lung cancer screening eligibility using notes from individuals identified as never smokers or smokers
with pack year history extracted by our pipeline (n=196). We found a positive predictive value of 854%, a negative
predictive value of 83.8%, sensitivity of 63.1%, and specificity of 94.7%.

Conclusions: We have demonstrated that our pipeline can extract smoking behaviors from unannotated EHR notes
when the information is present. This information is reliable enough to identify patients most likely to be eligible
for smoking related services. Ensuring capture of smoking information during clinical encounters should continue
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Background

Smoking is the leading cause of preventable illness and
death in the US and around the globe, costing $170 billion
dollars a year in healthcare spending [1] and $150 billion
in productivity loss due to smoking related illness [2] in
the US alone. From a population standpoint, approxi-
mately 20% of all US deaths [3-5] and 28% of cancer-
specific deaths are attributable to smoking [6], explaining
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in part these high costs. In an attempt to reduce the
burden of smoking on health outcomes, smoking status
and other smoking behaviors [7] are frequently collected
during clinical appointments.

However, this information is not utilized in a systematic
fashion to improve patient outcomes. Instead, the burden
of identifying smoking behaviors and referring patients to
smoking cessation counseling, educational services, pre-
ventive care, and appropriate disease screening is left to cli-
nicians with limited time. This leads to short or non-
existent critical conversations about tobacco addiction and
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associated health risks so that the primary visit reason can
be properly addressed. Automated identification of smoking
behaviors within the electronic health records (EHR) could
improve identification of patients eligible for smoking
related services, generate lists for specialized teams, and
reduce the overall burden on clinicians.

To create such a system, health informatics researchers
have been working on developing smokers’ registries to
collect smoking information from multiple EHR sources
into a database format [8—10]. The two most common
information sources are semi-structured fields and clinical
notes. Semi-structured fields, such as the drop-down
boxes for smoking status, were previously used for
accountable care reporting and are both common and an
easy data source to access. Clinical notes can be used to
generate a probability-based smoking status, typically
using natural language processing (NLP) algorithms [11,
12]. These algorithms perform well within the system in
which they are trained, but usually require retraining or
modification when tested in an external system [13]. One
weakness of most of these methods is that they focus ex-
clusively on identifying smoking status. Additional infor-
mation relating to pack year history and, where applicable,
most recent cessation date is needed to determine lung
cancer screening eligibility [14], provide appropriate
pre-surgical counseling [15, 16] and determine readi-
ness to quit [17]. Without these pieces of information,
a smokers’ registry will be severely limited in terms of
clinical usefulness.

Other deficits in knowledge related to a smoker’s registry
development include a lack of reported concordance be-
tween semi-structured and NLP identified smoking behav-
iors and validation of EHR findings against an external
source. Current validations of NLP methods are limited to
reporting how well the algorithm performs against human-
annotated labels instead of an external ground truth. Here,
we address these specific knowledge-gaps by assessing a
previously reported NLP-pipeline for concordance with
semi-structured EHR data and against an external health
questionnaire.

Methods

Questionnaire and EHR data

The New Hampshire Colonoscopy Registry (NHCR) is a
state-wide colonoscopy registry which has been collecting
comprehensive colonoscopy data from patients and endos-
copists across New Hampshire and conducting research on
many aspects of colorectal cancer screening through colon-
oscopy, since 2004 [18]. Adult patients presenting for a col-
onoscopy for any reason at participating sites across New
Hampshire were invited to enroll in the registry. Consenting
patients completed a questionnaire which included ques-
tions about smoking status, number of packs per day, and
number of years smoked [18]. All patients were between 50
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and 80 years old at the time of their NHCR registration and
consented to participate in research studies.

We received smoking-related responses and demographic
information on a sample of 3,000 NHCR participants who
completed registry enrollment at a Dartmouth-Hitchcock
site. We extracted the clinical note and semi-structured
smoking behaviors data from the visit date closest to the
completion of the NHCR questionnaire for each patient,
provided it was not the same visit at which the question-
naire was completed. Participant were excluded from fur-
ther analyses if they did not have another visit date.

All participants were 18 years or older and provided
written informed consent. Both this study and the
NHCR were approved by the Dartmouth College Com-
mittee for the Protection of Human Subjects.

Natural language processing pipeline development

We used clinical notes extracted from the local Epic
EHR data warehouse in April 2016 to develop and evalu-
ate our informatics pipeline. This set included 533 anno-
tated notes to train the algorithms, and 223 annotated
notes to validate the algorithms. The development and
reporting of standard metrics for our pipeline are pre-
sented in a companion paper [19] and repository [20].

In summary, annotations of the 756 clinical notes used
to develop the algorithm was completed by the first au-
thor. The smoking status algorithm we used adapts an
algorithm first presented by Cohen et al. [12]. In sum-
mary, this method is a multi-class support vector ma-
chine, with classifications of “current”, “former”, “smoker
temporality unknown”, “never”, and “unknown”. Classifi-
cation vectors were selected based on the presence of a
‘hotspot’” word. Our adaptations included reducing the
hotspot set from six to four roots (“smok”, “cig”, “tobac”,
and “nicoti”) and including +/- 5 words around the hot-
spot instead of a set 100 characters. Multiple hotspots
identified in a single note were appended together to
classify each note at the document level.

To identify pack year history, we applied a regular ex-
pression algorithm to sentences which included the stems
“cig”, “smok”, “pk”, “ppd”, “pack”, “pak”, or “pkyr”. These
sentences were parsed to identify if one or two numbers
(as numerical or word entries) were present. If two num-
bers were present, the reporting was classified as contain-
ing both frequency and duration. Where the frequency
was reported as cigarettes per day, we converted it to
packs per day by assuming 20 cigarettes per pack. The
two numbers were then multiplied together to report a
pack year history. If a single number was present, further
processing was completed to determine if the number was
frequency, duration, or actual pack years smoked.

Finally, to identify cessation dates, sentences containing
“quit”, “qd”, or “stop” were extracted. If a date was found
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in the hotspot-identified sentence, it was converted to a
uniform format using the Python package “datetime”.

Statistical assessments and reporting

The NLP pipeline, using 533 annotated records to train
the support vector machine classifier [19], was applied
to the NHCR-matched clinical notes to identify smoking
status, pack year histories, and cessation dates.

In cases where NLP pipeline-identified and semi-
structured data were both available, we assessed the con-
cordance of smoking status labels and correlation of pack
year histories between the two EHR sources.

To assess the NLP pipeline against an external source,
Cohen’s weighted kappa and concordance statistics were
calculated comparing the NLP pipeline identified smoking
status to the NHCR reported status. To determine if there
was an improvement when we included the semi-
structured data, we also calculated Cohen’s weighted kappa
and concordance for the NHCR status against the com-
bined pipeline and semi-structured statuses. In cases of dis-
cordant status labels between the two EHR sources, we
kept the worst-label, ordered by current > former > smoker
temporality unknown > never > unknown. For instance, if
a patient was labeled a current smoker in the semi-
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structured data and a smoker temporality unknown by the
NLP-pipeline, we retained the current smoker label. Simi-
larly, we retained the highest pack year estimate from the
two sources when reporting the correlation between pack
year histories in the joint-EHR data and NHCR question-
naire. A flowchart summarizing this process for merging
the NLP pipeline and the semi-structured information in
to a final dataset can be found in Fig. 1d.

Usage case: lung Cancer screening identification

Finally, we assessed the readiness of our pipeline for a
complex real-world application by identifying patients
eligible for lung cancer screening based on the criteria of
current or former smoker with a greater than a 30-pack
year history. We report the positive predictive value
(PPV), negative predictive value (NPV), sensitivity, and
specificity of our pipeline in identifying screening-
eligible patients, under the assumption that the NHCR
responses reflects true eligibility. Due to the lack of ces-
sation date information in the NHCR, we were unable to
restrict to former smokers who quit within the prior 15
years, as recommended by current screening guidelines.
Therefore, we assumed all former smokers with a 30 or
more pack year history were eligible [14].

Semi-structured data

Flowchart of information source merging
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The informatics pipeline was coded using Python ver-
sion 2.7 [21]. All statistics were calculated in R studio
using R version 3.1.1 [22].

Results

Data availability

A total of 1,504 out of 3,000 NHCR participants were
successfully matched to a clinical note. Of these, 75 were
classified as “current”, 46 as “former”, three as “smoker
temporality unknown”, 131 as “never”, and 1,249 as “un-
known” by our NLP pipeline. We also identified pack year
histories in 45 clinical notes (Fig. 1a). Semi-structured EHR
smoking status, recorded on the same date as the clinical
note, was available for 222 of the 1,504 participants. Pack-
year history was available for 67 participants (Fig. 1b). From
the NHCR questionnaire, the distribution of smoking sta-
tuses for the 1,504 matched individuals was 247 current,
614 former, and 643 never smokers. Of the smokers, 72
former and 24 current smokers declined answering ques-
tions regarding packs per day or years smoked questions
on the questionnaire. Thus, we had pack year histories for
a total of 765 out of 861 smokers (Fig. 1c).

Concordance between semi-structured and NLP-identified
smoking behaviors
Overall, 74 records had smoking status in both the NLP
pipeline and semi-structured fields. All the semi-
structured statuses were for current smokers, limiting
our assessment of concordance between EHR sources.
Fifty-two out of 74 records (71.2%) were concordant for
current smoker status. The discordant records had NLP
pipeline classifications of former smoker (1 = 6), smoker
temporality unknown (z = 1), and never smoker (n = 15).
Only 13 records had pack year history recorded in both
sources, making a statistical analysis unreliable. Our quali-
tative check indicates that the pipeline underestimated
pack year history nearly half the time (6 out of 13 had
NLP pipeline pack year histories of five or less despite the
semi-structured reporting >25). For the other seven
records, the Pearson correlation coefficient was 0.70.

Questionnaire vs. EHR sources

The Cohen’s weighted kappa between the external ques-
tionnaire smoking status and our pipeline-identified
status was 0.56 (95% CI 0.46-0.65) for 252 notes and the
concordance was 63.9%. Between the questionnaire and
our combined EHR data sources (pipeline and semi-
structured) for 400 notes, the weighted kappa was 0.62
(95% CI 0.56-0.69) and the concordance was 67.8%.
Finally, when we collapsed our smoking categories to
ever/never, the Cohen’s kappa was 0.59 (95% CI 0.51—
0.68) and concordance was 83.6% for 403 records. The
summary statistics of these assessments can be found in
Table 1, and the cross-tabulation of the label classes
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Table 1 Smoking status and lung cancer screening eligibility
identification in the EHR using an informatics pipeline

Concordance between NHCR reported status and smokers’ registry
status

Pipeline: Clinical  Pipeline and Ever smoker vs.

notes only Semi-structured  Never smoker

(n=252) (n=400) (n=403)
Cohen’s Kappa  0.56 062 0.59
Concordance 63.9% 67.8% 83.6%

Summary statistics for smoking status detection using the informatics pipeline
on clinical notes only, the pipeline merged with semi-structured data, and the
merged pipeline with semi-structure data simplified to ever smoker vs.

never smoker

from the joint EHR-data sources can be found in
Table 2.

The correlation between the NLP pipeline and the ex-
ternal questionnaire reported pack years was —0.12 for
the 36 records with both NLP and questionnaire re-
ported histories (data not shown). Between the semi-
structured and the external questionnaire, the correl-
ation between reported pack years was 0.60 for 56 re-
cords (data not shown). Finally, the correlation between
the combined EHR sources and the external question-
naire reported pack years was 0.39 (n=281). Figure 2
shows the correlation plot of the combined EHR sources
vs. the external questionnaire.

Usage case: lung cancer screening identification

Due to the external questionnaire not reporting cessation
dates, we were unable to test the cessation date algorithm
against an external source; therefore, we assumed all
former smokers had quit within the past 15 years for our
use case. A manual review of the records with a pipeline-
identified date confirmed that the extracted dates matched
the clinical note dates in 21 of 26 cases.

From the NHCR questionnaire, we found 329 current
and former smokers with a 30+ pack year history, making
them eligible for lung cancer screening. An additional 1,
079 participants were not eligible. We could not assess 96
participants due to no pack year information.

From the combined EHR information sources, we
identified 54 people who were eligible for lung cancer
screening based on the EHR information and 161 indi-
viduals were not eligible. We could not assess 1,283 re-
cords (missing status »=1,101, status present but
missing pack year history n = 188). The cross-tabulation
of these individuals can be found in Table 3.

Restricting to those individuals whom we could classify in
both the NHCR questionnaire and EHR, we found a PPV of
85.49% (41/48), NPV of 83.8% (124/148), sensitivity of 63.1%
(41/65), and specificity of 94.7% (124/131) (Table 4). When
we restricted to the NLP identified information only, we
note a significant loss in sensitivity (Table 4).
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Table 2 Smoking status classification between the external questionnaire and the joint EHR sources
EHR smoking status Total
Current Former Never Smoker Unknown
External smoking status Current 160 9 9 1 68 247
Former 55 31 27 1 500 614
Never 23 6 80 1 533 643
Total 238 46 116 3 1,101 1,504

Cross-tabulation of the smoking statuses individuals reported on an unrelated questionnaire against our informatics pipeline identified smoking statuses.
Current = current smoker; former = former smoker; never = never smoker; smoker = smoker temporality unknown; unknown = record did not contain enough
information relating to smoking behaviors to classify. Bolded numbers are concordant for status between the EHR and external records

Discussion

We assessed the potential application of a smokers’ regis-
try informatics pipeline [19] integrating semi-structured
and NLP-identified smoking behaviors against external
data to assess the potential real world application. Our re-
sults indicate modest agreement (kappa=0.62) between
the EHR and an external questionnaire for assessment of
smoking status. Due to heterogenous reporting, capturing
pack year histories from clinical notes was found to be less
reliable than semi-structured data. However, even with the

application of our pipeline, only about one-third of the
EHR records assessed contained information relation to
smoking status, and even fewer contained information re-
lating to other smoking behaviors.

One of the most striking findings of this study was the
lack of data within the EHR. We requested data on 3,000
NHCR participants and planned to match text notes to
+/- 6 months of the NHCR questionnaire date. Unfortu-
nately, few records met this criterion and we dropped the
temporal alignment requirement. Even so, we were unable

Pack years in NHCR vs. EHR
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Table 3 Lung cancer screening eligibility classification between the external questionnaire and EHR sources
EHR lung cancer screening eligibility Total
Eligible Not eligible Missing data
External lung cancer screening eligibility Eligible 41 24 264 329
Not eligible 7 124 948 1,079
Missing data 6 13 77 96
Total 54 161 1289 1504

Lung cancer screening eligibility prediction based on external reporting and EHR derived smoking status and pack year history

to match nearly half of our participants to EHR records.
We later identified this as a problem resulting from a sig-
nificant number of participants enrolling in the NHCR be-
fore our hospital system adopted Epic in 2011 or patients
being seen by our clinicians for the colonoscopy only.

We also restricted our study to semi-structured data and
notes from the same date to minimize temporal errors in
the comparison between the pipeline and semi-structured
data. This was due to the expectation that more semi-
structured would be available due to the meaningful use cri-
teria for Medicare and Medicaid reimbursement. However,
this field is only required to be updated once every 2 years.

Despite having smaller sample sizes than initially
planned, this is the first study designed to assess an
informatics pipeline against external data. We demon-
strated that such tools, while still in need of further re-
finement, could have meaningful real-world applications
to improve health services delivery to high risk patients.
This is best demonstrated by our assessment of identify-
ing individuals eligible for lung cancer screening, a ser-
vice currently used by only about 3% of eligible patients
[23]. While the sensitivity of our pipeline alone was low,
incorporating semi-structured data improved identifica-
tion to a level that is likely clinically actionable, captur-
ing 85% of screening-eligible patients for whom we had
enough data to assess (Table 3, Table 4).

While not our primary aim, we demonstrate that an in-
formatics pipeline applied to unstructured text may, with
the implementation of some heuristic rules, fill in data
missing from semi-structured fields. We used our pipeline
to identify smoking status on 252 individuals, 178 for
whom semi-structured data was lacking. This information

Table 4 L.ung cancer screening eligibility

Pipeline: Clinical Pipeline and
notes only (n=161) Semi-structured
(n=196)
PPV 75.0% 85.4%
NPV 77.2% 83.8%
Sensitivity 20.9% 63.1%
Specificity 97.5% 94.7%

Summary statistics for identifying patients eligible for lung cancer screening
using EHR data. These metrics assumed true eligibility was captured by the
NHCR questionnaire

was modestly concordant with the external information,
even in the absence of semi-structured data (Cohen’s
kappa = 0.56 for status, Table 1). Further we found that
among individuals listed as current smokers in semi-
structured fields, 71.2% were also listed as current by our
pipeline. These findings are important, as the support the
integration of these two data sources, a more cost-effective
approach than applying the pipeline to all records.

We also provided pack year estimates for 38 pa-
tients for whom this information was not available in
semi-structured fields. However, here we note signifi-
cant limitations. Some of the extracted pack year his-
tories were extremely low due to misclassification of
partial history information as full pack year informa-
tion. We suggest a heuristic cutoff between 5 and 15
pack year, filtering out values lower than this number
as these often reflect only frequency (packs per day)
or duration (years smoked). Further refinement of the
pack year algorithm to properly filter out partial
smoking history without a heuristic cutoff is needed
to improve sensitivity below this threshold. Still, we
are the first to report on an algorithm that can ex-
tract pack year information from unannotated free-
text clinical notes. Our code is available with this
paper for others to use and improve upon.

As has been noted in other institutions, the absence of
important information within the EHR can be highly
prevalent [24] and remains a challenge; the exact miss-
ingness rate of smoking behaviors beyond status has, to
our knowledge, not been assessed. Additional work by
others is also needed to determine if there are alternative
to those we propose for improving smoking behavior
identification in existing records.

Despite the challenge of missing eligible individuals
due to missingness or the slight tendency of our algo-
rithm to classify down (current smokers to former,
former to never), this study suggests that when informa-
tion related to smoking behaviors is present we can le-
verage that data to improve clinical workflow. By better
identifying subpopulations of patients who benefit from
targeted information and intervention strategies, we can
improve the delivery of pertinent health information
while managing the cost and personnel time needed to
implement effective screening, disease prevention, and
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smoking cessation services [15, 25-30]. Current practice
encourages clinicians to use the ask-advise-connect
model [31], determine lung cancer screening eligibility,
and go through shared decision making within a visit
[32]. However, physicians may not be fully trained on
how to complete these processes [33-35], or find that
those eligible for services have more pressing concerns
that need to be addressed in the limited time clinicians
have with patients [36]. Individuals automatically identi-
fied as potentially eligible for smoking-related services
could be sent shared decision-making paperwork before
a clinical visit or referred to tobacco experts for immedi-
ate follow up, empowering them to be proactive in pre-
ventative and early detection care.

Further work on the integration of these algorithms
within EHRs may lead to customizable tools in the fu-
ture, such as creating daily lists for cessation experts
alerting them about patients attending the clinic for rou-
tine appointments who may benefit from a warm hand-
off [37, 38]. Administrators could benefit from these
data as well by being able to proactively identify areas of
need within their hospital catchment area based on the
known health risks associated with smoking, informing
future hospital resource allocation.

Even individuals with missing information could bene-
fit from these proposed improvements of hospital sys-
tems. Individuals whose records lack partial or complete
smoking behavior histories could be sent a prompt to fill
in demographics information on the EHR web-portal be-
fore their next visit that includes questions about smok-
ing. In collecting smoking behaviors information from
the patients before visits, additional questions could be
included to assess quit-readiness, allowing tobacco ces-
sation coaches to be more fully prepared to connect with
patients immediately after a clinical appointment. Shift-
ing the burden of cessation counseling to specialists
using these methods would allow patients and clinicians
to more fully address a patient’s primary reason for seek-
ing medical treatment while also working towards redu-
cing unhealthy behaviors [25, 29, 30, 37, 39—44].

Given these potential future benefits, there are limita-
tions to the work presented here. This analysis is only a
demonstration of the feasibility of a potential product.
Future work assessing computational needs, cost, and
fully developing usage cases for an integrated system
need to be completed. This study is also limited by our
cross-sectional design; future work using longitudinal
data remains to be completed. We also note that our
pipeline often underestimates pack years due to mistak-
ing frequency or duration information as full pack year
history. This forces us to recognize the need to use
heuristics to reduce errors in implementation until more
sophisticated algorithms are developed and validated.
Further, while our cohort is larger than any previously
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used for assessing lung cancer screening [45], the attrition
of numbers we faced was unexpected and thus the sample
size is smaller than originally planned. And while we
found that our smoking status algorithm performed simi-
larly in the Integrating Biology and the Bedside (i2b2) test
set when trained on our local data (data not shown), we
have not validated the entire pipeline on an external hos-
pital system. Finally, there is a risk that by utilizing a can-
cer screening questionnaire for our external information,
the patients included in this study are not fully representa-
tive of the patients encountered in a standard clinical set-
ting, which could limit generalizability.

Still, utilizing an external questionnaire tests the reliabil-
ity of a smoking informatics pipeline applied to an EHR
against a presumed ground truth rather than just against
the knowledge we know is there from abstraction. Further,
since the NHCR questionnaire was completed for some-
thing unrelated to smoking, we believe patients were un-
likely to be as self-conscious about their smoking behaviors
as they would be in a survey designed to capture this infor-
mation [46]. Another strength is that while our pipeline
has some difficulty with classifying former smokers, this
problem is easily correctable. First, patients and clinicians
often use the term ‘former smoker’ differently, as many
quit attempts fail [47-49]. Since those identified as current
smokers would be included in the registry, and those incor-
rectly classified as never smokers in this cross-sectional
study are likely to be accurately reclassified when we move
to whole-record assessment, few people are likely to be det-
rimentally impacted in the long run. Further, by merging
the pipeline information with semi-structured data, we can
‘fact-check’ the algorithm’s findings as the registry is built.
Another benefit of our pipeline’s tendency to be more
conservative is that never smokers are rarely classified as
smokers, and those incorrect classification was usually due
to generic instructions (ex: “if you currently smoke”).
Minor modifications to our existing pipeline could filtering
out these phrases and improve future classification.

Future directions include external validation and whole-
record classification of records to reduce the number of
patients with missing data, assess consistency in reporting
over time, and identify other use cases for our smokers’
registry. Further, we proposed to develop the software
needed to fully integrate this pipeline in to both ours and
external EHRs. We plan to release our trained pipeline
and interface through Observational Health Data Sciences
and Informatics (OHDSI) [50] once we have finished this
work to efficiently distribute our pipeline for free to other
institutes. We will also continue to collaborate with clini-
cians and researchers to develop a comprehensive list of
potential uses, identify what reports should be generated
and for whom, and how those reports can aid clinicians in
being more proactive with smokers to prevent or reduce
the impact of smoking on health.
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Conclusions

We have built an informatics pipeline for creating a
smokers’ registry from patient data within the EHR sys-
tem. Further, we have validated the information quality
against an external questionnaire and demonstrated a
usage case. While the PPV (85.4%), NPV (83.1%), and
sensitivity (61.2%) of this usage case were modest, the
specificity (94.8%) ensures that resources are directed at
the correct audience. Improving data capture by either
clinicians or by creating a patient data entry portal could
reduce the level of missingness noted in this study, while
also improving the performance of tools such as auto-
mated identification of patients potentially eligible for
lung cancer screening. From this work, we have found
that an EHR-based smokers’ registry using clinically col-
lected data is feasible and could improve routine care by
improving patient identification for cessation and
screening services without adding additional time bur-
dens to the clinical team.
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