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Abstract

Background: Identifying implausible clinical observations (e.g., laboratory test and vital sign values) in Electronic
Health Record (EHR) data using rule-based procedures is challenging. Anomaly/outlier detection methods can be
applied as an alternative algorithmic approach to flagging such implausible values in EHRs.

Methods: The primary objectives of this research were to develop and test an unsupervised clustering-based
anomaly/outlier detection approach for detecting implausible observations in EHR data as an alternative algorithmic
solution to the existing procedures. Our approach is built upon two underlying hypotheses that, (i) when there are
large number of observations, implausible records should be sparse, and therefore (ii) if these data are clustered
properly, clusters with sparse populations should represent implausible observations. To test these hypotheses, we
applied an unsupervised clustering algorithm to EHR observation data on 50 laboratory tests from Partners
HealthCare. We tested different specifications of the clustering approach and computed confusion matrix indices
against a set of silver-standard plausibility thresholds. We compared the results from the proposed approach with
conventional anomaly detection (CAD) approaches, including standard deviation and Mahalanobis distance.

Results: We found that the clustering approach produced results with exceptional specificity and high sensitivity.
Compared with the conventional anomaly detection approaches, our proposed clustering approach resulted in
significantly smaller number of false positive cases.

Conclusion: Our contributions include (i) a clustering approach for identifying implausible EHR observations, (ii)
evidence that implausible observations are sparse in EHR laboratory test results, (iii) a parallel implementation of the
clustering approach on i2b2 star schema, and (3) a set of silver-standard plausibility thresholds for 50 laboratory
tests that can be used in other studies for validation. The proposed algorithmic solution can augment human
decisions to improve data quality. Therefore, a workflow is needed to complement the algorithm’s job and initiate
necessary actions that need to be taken in order to improve the quality of data.
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Background

Implausible observations in electronic health records
Data stored in Electronic Health Records (EHR) offer
promising opportunities to advance healthcare research,
delivery, and policy. Provision of these opportunities is
contingent upon high quality data for secondary use. Data
quality concerns, however, have hampered secondary use
of EHR data [1, 2]. The increasing throughput of EHR
data constantly deposited into clinical data research net-
works have cultivated new opportunities for utilizing in-
novative statistical learning methods to improve quality.

Plausibility is a dimension of data quality that represents
whether EHR data values are “believable”. [3]. It is quite
possible to witness an implausible observation (I0) in EHR
data, such as a negative Alc value. An IO is extremely un-
likely to signify a fact about a patient and may represent an
underlying data quality issue. Detecting such IOs in EHR
data are difficult for two reasons. First, gold standards are
not always available for all clinical observations to set cut-
off thresholds for an implausible observation. Second, even
when gold standards are present, detection of out-of-range
observations requires limits to be determined for each type
of observation, potentially customized at each institution
(due to variance in normal ranges). This rule-based ap-
proach is becoming increasingly impractical given the
every-increasing diversity of observations, ontologies and
measurement units across institutions.

With the abundance of unlabeled data (e.g., vital signs)
in EHR repositories, unsupervised learning can offer solu-
tions for characterizing clinical observations into mean-
ingful sub-groups. In unsupervised learning, the machine
develops a formal framework to build representations of
the input data to facilitate further prediction and/or deci-
sion making [4]. We focus on records of laboratory results
and vital signs in the EHR. The variance and variety of
these domains make it particularly difficult to manually
assign rules for identifying implausible values. Conceptu-
alizing implausible laboratory test results and vital sign
values in EHRs as outliers, we propose and evaluate the
feasibility of an unsupervised clustering approach for de-
tecting implausible EHR vital sign and laboratory test
values in large scale clinical data warehouses.

Outlier detection

Outlier detection has been widely applied in medical
informatics for addressing different issues, such as de-
tecting unusual patient-management actions in ICU
[5], deriving workflow consensus from multiple clin-
ical activity logs [6], characterizing critical conditions
in patients undergoing cardiac surgery [7], discovering
unusual patient management [8], alert firing within
Clinical Decision Support Systems [9], finding clinical
decision support malfunctions [10], identifying high
performers in hypoglycemia safety in diabetic patients
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[11], and classifying the influence factor in diabetes
symptoms [12].

In outlier detection, the objective is discriminate non-
conforming observations from a larger group of observa-
tions that conform to similar attributes (inliers) [13].
Due to discrepancies in defining outlyingness, various
outlier detection techniques have been proposed [14].
Both parametric (model-based) and non-parametric
(model-free) approaches are common for detecting out-
liers. Non-parametric approaches do not assume a-priori
statistical models and therefore can be more suitable for
clinical data that are often irregularly sampled. Distance-
and density-based techniques utilize different proximity
(distance) measures to identify outlying observations.
Distance-based methods use local distance measures,
such as the Mahalanobis distance, to identify outliers
based on distance from the nearest neighbors [15, 16].
Although these methods are popular and often scale to
large data [17], their performance decreases in high di-
mensional spaces [14]. Moreover, the performance of
distance-based methods relies on a distance threshold
for identifying outliers, and in our experience (including
the results in this study), can lead to high false positive
rates when applied to human biological data.

Density-based techniques, in contrast, assume that the
data density around a inlier data point is similar to the
density around its neighbors. Clustering techniques can
utilize a density-based approach, e.g. to identify sparse
clusters for outlier detection [18]. In fact, clustering
techniques can combine attributes from both the
distance-based and the density-based methods. We will
use a hybrid hierarchical-k-means clustering method in
this study, in order to perform a more meaningful detec-
tion of outlying observations from human biological data
based on both distance and sparsity.

The hierarchical K-means clustering method

The goal in unsupervised clustering is to partition data
points into clusters with small pairwise dissimilarities
[19, 20]. K-means [21] is one of the most popular un-
supervised clustering algorithms [19], for its simplicity
and efficiency. It is a top-down algorithm that aims to
minimize the distortion measure by iteratively assigning
data points to cluster centroids to meet a convergence
criterion [4, 19]. K-means is sensitive to outliers [22, 23].
Although this property is often considered a weakness,
sensitivity to outliers makes K-means a good algorithm
for our purpose of identifying rare events in clinical
observations.

For a vector of observations x(1), x(2), ..., x(n), where
x(i) €R", the K-means algorithm aims to predict k
centroids and assign the data points to each centroid to
form clusters C(i), while minimizing the average within-
cluster dissimilarity, as follows:
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1- Randomly initialize k cluster centroids u(1), ..., (k)
2- For a given cluster assignment C, iterate the
following steps until the cluster assignments do not
change:
a.

C(i) == arg,r(nin e (2) ~p (K I1%.

b.
i {C () = k}a(i)
k) == - .
M= C =0
This specification makes K-means’ performance

dependent on initialization of a few hyper-parameters,
including the number of clusters and the initial cluster
centroids [19, 20]. The dependency of K-means on ran-
dom initialization of the cluster centers often results in
the algorithm’s performance being unreliable, when the
number of iterations are small [23]. In contrast to K-
means, hierarchical clustering is a bottom-up or agglom-
erative approach that does not require knowing the
number of clusters in advance. As a result, its perform-
ance is not dependent on random initialization of k clus-
ter centroids. However, compared with the K-means
algorithm, hierarchical clustering algorithm is more
computationally intensive.

Hybrid hierarchical-k-means (HK-means) clustering [23]
combines the strengths of hierarchical clustering in initial-
izing the cluster centroids, and improves efficiency of the
K-means algorithm. The HK-means algorithm relaxes the
dependency of K-means algorithm on random initialization
of cluster centroids by first computing hierarchical cluster-
ing, cutting the tree in k clusters, computing the centroids
for each cluster, and then using the centroids as the initial
cluster centers to run K-means. [23]. This hybrid approach
accelerates the K-means procedure, and thereby, improves
the overall learning [23].

Performance of the HK-means algorithm still depends
on approximation of the number of clusters, k. Initializ-
ing the number of clusters for the algorithm is a challen-
ging problem, for which a number of ad-hoc (or
intuition-based) solutions are available [24—26]. Unfortu-
nately, most of the available solutions do not scale up to
large datasets.

Methods

Approach

We propose an unsupervised approach using the
hierarchical-k-means method to detect outlier values in lab
tests and vital sign values based on two hypotheses. First,
we hypothesize (hypothesis #1) that implausible observa-
tions — that are not due to systematic human error — must
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be sparse (infrequent) in datasets that contain large
amounts of data. For example, we do not expect to fre-
quently see a blood pressure record of 1090/80 in an EHR
repository. Given ontological harmony, we can use data
from EHRs to compare an individual data point with a large
set of similar data points and identify implausible observa-
tions. Therefore, we also hypothesize (hypothesis #2) that a
well-specified unsupervised clustering algorithm should be
able to partition clinical observations into meaningful clus-
ters, from which we can extract clusters with sparse popu-
lations (very small members of data points) as implausible
observations.

Figure 1 illustrates the rationale behind our second hy-
pothesis. The bell-shaped curve in Fig. 1 is a probability
density function for a laboratory result in EHR — ex-
tracted and visually modified from Cholesterol in HDL.
The hypothetical thresholds for normal ranges and
implausible values are delineated on the plot. An un-
supervised clustering algorithm partitions the lab values
into n clusters, each of which embrace a number of data
points. We can obtain the number of data points in each
cluster and flag clusters with population smaller than a
certain threshold as anomalies. Unlike conventional
methods such as using standard deviation to identify
anomalies, the clustering approach would provide a
more flexible solution that is density-based. In addition,
the clustering approach should be able to detect im-
plausible observations regardless of their values.

To test these hypotheses, we implemented the cluster-
ing solution on EHR observation data from a portion of
the Research Patient Data Registry (RPDR) from Part-
ners HealthCare [27], using a hybrid hierarchical K-
means clustering algorithm. Specifically, we used kluster,
an R package that uses iterative sampling to produce
scalable and efficient cluster number approximation
solutions in large datasets [28]. We set different ratios
for flagging a cluster as anomalous. To compare the
results against conventional methods, we also performed
anomaly detection using conventional approaches
(CAD) using standard deviation and Mahalanobis dis-
tance [29, 30] with different configurations for each.

We measured the performance for each algorithm
against a set of silver-standard high and low implausible
thresholds that we manually curated based on literature
search and expert judgment, and validated using data
distributions in RPDR - Table of silver standards is
available in the Appendix (Table 4).

Data

The data used in this study contained ~ 720 million
rows of medical record data representing 50 labora-
tory observations and a small set of common vital
signs, all with distinct Logical Observation Identifiers
Names and Codes (LOINC) codes. This data
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represented contained all results for these 55 observa-
tions in the RPDR for patients at Massachusetts Gen-
eral Hospital and Brigham and Women’s Hospital
between 2001 and 2018. The RPDR derives these data
from various clinical systems, such as the institutional
Clinical Data Repository (CDR), the Longitudinal
Medical Record (LMR) system, and EpicCare. The lab
data are assigned LOINC codes by the Clinical Data
Repository team. Otherwise, the data are not modified
from the source system before being provided to re-
searchers. On average, each observation type con-
tained more than 14 million data points (range 45,
000 to >69 million). These data are made available
for the Accessible Research Commons for Health
(ARCH), a 12-site PCORnet Clinical Data Research
Network (CDRN).

Implementation

Due to the size of data for each type of lab or vital
sign observations, we parallelized the implementation
of our clustering solution for identifying the implaus-
ible lab observations. Through the parallelization, we
also incorporate a hyperparameter that represent the
sparsity assumption in the approach. We used R stat-
istical language and high performance computing
cluster — provided by the Partners HealthCare’s Enter-
prise Research Infrastructure & Services — to imple-
ment the algorithm, described in following steps (also
Fig. 2):

1. Extract data on observation x, stored as db(x), from
RPDR.

2. Shuffle db(x) randomly to avoid any specific sorting
for parallelization.

Break db(x) into j folds such that each fold has n
(or fewer) data points.

We controlled the threshold for flagging clusters
as implausible (a=1) through the selection of the
number of data points for parallelization. We
evaluated the performance of the proposed
methodology using eight thresholds for a: 1/500,
1/1000, 1/2000, 1/3000, 1/4000, 1/5000, 1/6000,
and 1/10,000.

Begin parallel computing:

Extract the subset of db(x) for fold j, db(x| j).
Scale db(x| j) and transform the values to the 3rd
power — to focus on distribution tails.

Apply kluster procedure [28]. to db(x]| ) to
identify k clusters.

Compute HK-means clustering and assign data
points to clusters cluster C(1), ..., C(k).

Count number of data points in each cluster
C(k), pr

Flag all data points in C(k) as implausible, where
pPrsa.

5. Produce a report containing all flagged rows.

To measure performance, we compute confusion
matrix indices, including false/true positives, false/
true negatives, sensitivity, specificity, and fallout
across the eight a s. True positive in the confusion
matrix represents the number of truly implausible
observations (as identified from the silver-standard
labels) that were also identified by the clustering ap-
proach as implausible.
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We also evaluated whether our proposed clustering
approach performed better than conventional anomaly
detection (CAD) methods, namely identifying implaus-
ible values using standard deviation and anomaly detec-
tion with Mahalanobis distance (Table 1).

Results

Sensitivity and specificity metrics for all implementations
can be seen in Tables 2 and 3. Here we present a sum-
mary, beginning with specificity (i.e, how many data
points identified as plausible by the clustering approach
are truly plausible).

Specificity

In all of the 50 lab observations, the clustering approach
performed with a specificity greater than 0.9997
(Table 1). The best specificities were often obtained from
the most stringent a (1/10,000), which identifies a clus-
ter as implausible only if its population is 1/10,000 of
the data subset. In this configuration, we used subsets of

10,000 data points for parallel computing. The 10,000
data points were partitioned into n clusters, and the
cluster with 1 data point was identified as implausible.
The lowest specificity, 0.9938, was from the most liberal
configuration with & =1/500. Overall, we found that
specificity increases as a decreases (Fig. 3).

Sensitivity

Sensitivity focuses on true positives, and in our case,
represents how many of the implausible observations
were picked up by the algorithm. Our sensitivity re-
sults we less consistent than the specificities we ob-
tained from the clustering approach. We did not
have any implausible observations in 9 of the 50 lab
tests — i.e., no true positives in 18% of the labs. In
the 41 remaining labs, we obtained the best perform-
ance from the most liberal configuration &, where 1
in 500 data points was flagged as implausible
(Table 2). It is important to evaluate the sensitivity
results considering the sparsity of positives (implaus-
ible observations) in data. The number of
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Table 1 Specificity from the clustering approach for identifying
implausible lab observations in EHRs

(2019) 19:142

best sensitivity best specificity
LOINC CAD*** Clustering CAD**** | Clustering
10839-9 0.3764 0.0545 1.0000 1.0000
13457-7 1.0000 0.4867 0.9997 0.9999
1742-6 1.0000 0.9375 0.9980 1.0000
1751-7 1.0000 1.0000 1.0000 1.0000
1920-8 1.0000 0.9928 0.9982 0.9999
1959-6 1.0000 1.0000 0.9999 1.0000
1971-1 - - 0.9982 0.9999
1975-2 1.0000 0.8449 0.9951 1.0000
2085-9 - - 0.9998 1.0000
2089-1 1.0000 1.0000 0.9997 0.9999
2093-3 1.0000 1.0000 0.9999 0.9999
2324-2 1.0000 0.9333 0.9966 1.0000
2339-0 1.0000 1.0000 0.9978 0.9999
2571-8 1.0000 0.9974 0.9979 1.0000
26444-0 1.0000 1.0000 0.9995 0.9998
26449-9 1.0000 1.0000 0.9985 0.9999
26450-7 - - 0.9964 0.9999
26478-8 1.0000 1.0000 1.0000 1.0000
26484-6 1.0000 1.0000 0.9987 0.9997
26485-3 1.0000 1.0000 0.9972 1.0000
26499-4 1.0000 1.0000 0.9977 0.9998
26511-6 - - 1.0000 1.0000
2862-1 1.0000 1.0000 1.0000 1.0000
2885-2 1.0000 1.0000 0.9998 0.9999
29463-7 0.1206 1.0000 1.0000 1.0000
2947-0 1.0000 1.0000 1.0000 1.0000
30313-1 1.0000 1.0000 1.0000 1.0000
4548-4 1.0000 1.0000 0.9995 1.0000
5905-5 1.0000 1.0000 0.9983 0.9999
6298-4 1.0000 1.0000 0.9995 0.9999
6598-7 1.0000 0.6577 0.9982 1.0000
6690-2 1.0000 1.0000 0.9981 0.9997
6768-6 1.0000 1.0000 0.9956 0.9999
704-7 1.0000 1.0000 0.9997 0.9999
706-2 - - 0.9985 0.9999
707-0 1.0000 0.9756 0.9883 0.9998
713-8 - - 0.9975 0.9998
714-6 1.0000 1.0000 0.9926 0.9999
718-7 1.0000 1.0000 1.0000 1.0000
736-9 1.0000 1.0000 0.9994 1.0000
737-7 1.0000 1.0000 1.0000 1.0000
742-7 - - 0.9990 0.9998
744-3 - - 0.9968 1.0000
785-6 1.0000 1.0000 0.9999 1.0000
786-4 1.0000 1.0000 1.0000 1.0000
787-2 1.0000 1.0000 0.9999 1.0000
789-8 1.0000 1.0000 1.0000 1.0000
8462-4 1.0000 1.0000 0.9999 1.0000
8480-6 - - 0.9998 0.9999
9830-1 1.0000 1.0000 0.9993 0.9998

* Columns represent different thresholds, a, for flagging a cluster
as implausible
** Best performances are highlighted
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implausible observations in the 41 labs ranged from
1 to over 39,000, representing an average of 0.0576%
of the labs. Considering sparsity, a sensitivity over
0.85 would pick up most of the implausible observa-
tions. We obtained sensitivity of over 0.85 in 39 of
the 41 labs that had at least 1 implausible observa-
tion. In the remaining two labs, Troponin I.cardiac
(LOINC: 10839-9) and Cholesterol in LDL (LOINC:
13457-7), the best sensitivity was 0.0545 and 0.4867,
respectively. Figure 4 illustrates the implausible values
detected by the clustering method for the two labs.
Troponin IL.cardiac (LOINC: 10839-9) was an unusual
case with a much higher proportion of implausible
observations than expected (over 39,000 based on our
silver standard implausible cutoff of [0-20] and nor-
mal range of [0.04-0.39]). Such a large number of
implausible values violates our sparsity assumption
under non-systematic errors — i.e., the issue should
be systematic and hence is observed frequently. For
Cholesterol in LDL (LOINC: 13457-7) there were
over 500 positives, or implausible observations, out of
over 14 million lab records.

Comparing the clustering approach with conventional
anomaly detection

The comparison of our proposed clustering approach
to conventional anomaly detection (CAD) methods
can be seen in Fig. 5. Overall, Fig. 5 shows that the
clustering approach produced overwhelmingly better
specificity than conventional anomaly detection. Best
specificity from CAD methods was obtained from
using 6 standard deviations as threshold for identify-
ing outliers, which was outperformed by the cluster-
ing approach. It is important to notice that small
differences among clustering results are meaningful as
we deal with very large datasets for different observa-
tion types. For example, for a lab test with 10 million
observations, a 0.001 difference in specificity between
the clustering and CAD approaches means 10,000
more flagged observations that may need to be
reviewed for plausibility.

In 31 of the 41 labs, the clustering and CAD produced
similar sensitivity (Fig. 6). Among CAD methods, the
best sensitivity was obtained from applying Mahalanobis
Distances and 3.717526 (sqrt of 13.82) as critical value.
The conventional anomaly detection (CAD) produced
better sensitivity in 9 of the 41 labs for which we had
implausible observations. The two largest delta in sensi-
tivity was for Troponin T.cardiac (LOINC: 6598-7), where
the clustering approach outperformed the best CAD result
by 0.8794, and for Cholesterol in LDL (LOINC: 13457-7),
where the best CAD result improved sensitivity by 0.5133.
Outside these two labs, the average improvement in
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Table 2 Sensitivity from the clustering approach for identifying implausible lab observations in EHRs* Columns represent different
thresholds, a for flagging a cluster as implausible.

a SPECIFICITY
loinc 1/500 | 1/1,000 | 1/2,000 | 1/3,000 | 1/4,000 | 1/5,000 | 1/6,000 | 1/10,000
10839-9 | 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000 1.0000
13457-7 | 0.9988 | 0.9993 0.9996 | 09997 | 0.9998 | 0.9998 0.9999 | 0.9999
1742-6 | 0.9964 | 0.9982 0.9995 | 09998 | 0.9999 | 1.0000 1.0000 1.0000
1751-7 | 09996 | 0.9998 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000 1.0000
1920-8 0.9962 | 0.9976 0.9989 | 0.9993 | 0.9995 | 0.9996 09997 | 0.9999
1959-6 | 0.9992 | 0.9997 0.9999 | 0.9999 | 0.9999 | 0.9999 1.0000 1.0000
1971-1 0.9985 | 0.9993 0.9997 | 09998 | 0.9998 | 0.9998 0.9998 0.9999
1975-2 0.9988 | 0.9994 09998 | 09999 | 1.0000 | 1.0000 1.0000 1.0000
2085-9 0.9984 | 0.9994 09998 | 0.9999 | 0.9999 | 0.9999 1.0000 1.0000
2089-1 0.9992 | 0.9995 0.9996 | 09997 | 09998 | 0.9999 09999 | 0.9999
2093-3 0.9988 | 0.9991 09995 | 09996 | 09997 | 0.9998 0.9998 0.9999
2324-2 0.9970 | 0.9991 0.9999 1.0000 | 1.0000 | 1.0000 1.0000 1.0000
2339-0 0.9972 | 0.9987 09993 | 09996 | 0.9998 | 0.9998 0.9998 0.9999
2571-8 0.9966 | 0.9980 0.9991 0.9994 | 09996 | 0.9998 0.9998 1.0000
26444-0 | 0.9976 | 0.9987 09993 | 09995 | 09996 | 0.9997 09997 | 0.9998
26449-9 | 0.9964 | 0.9983 0.9992 | 09995 | 09996 | 0.9997 0.9998 0.9999
26450-7 | 0.9979 | 0.9990 0.9995 | 09997 | 0.9998 | 0.9998 0.9998 0.9999
26478-8 | 0.9994 | 0.9999 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000 1.0000
26484-6 | 0.9963 | 0.9977 0.9987 | 0.9991 | 0.9993 | 0.9994 0.9995 0.9997
26485-3 | 0.9976 | 0.9990 0.9996 | 0.9998 | 0.9998 | 0.9999 0.9999 1.0000
26499-4 | 0.9969 | 0.9981 09991 | 09994 | 0.9996 | 0.9996 09997 | 0.9998
26511-6 | 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000 1.0000
2862-1 0.9986 | 0.9993 0.9997 | 09998 | 0.9999 | 0.9999 1.0000 1.0000
2885-2 0.9986 | 0.9992 0.9996 | 09998 | 0.9998 | 0.9999 0.9999 | 0.9999
29463-7 | 0.9990 | 0.9994 0.9997 | 09998 | 0.9999 | 0.9999 0.9999 1.0000
2947-0 0.9986 | 0.9993 0.9997 | 0.9998 | 0.9999 | 0.9999 0.9999 1.0000
30313-1 | 0.9990 | 0.9995 0.9998 | 09999 | 0.9999 | 1.0000 1.0000 1.0000
4548-4 0.9986 | 0.9994 0.9998 | 0.9999 | 0.9999 | 0.9999 1.0000 1.0000
5905-5 0.9973 | 0.9984 09992 | 09995 | 0.9996 | 0.9997 0.9998 0.9999
6298-4 0.9984 | 0.9990 09995 | 09997 | 0.9997 | 0.9998 0.9998 0.9999
6598-7 | 0.9994 | 0.9999 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000 1.0000
6690-2 0.9962 | 0.9975 0.9987 | 09991 | 09993 | 0.9994 0.9995 0.9997
6768-6 | 0.9961 | 09979 09990 | 0.9994 | 0.9996 | 0.9997 0.9997 | 0.9999
704-7 0.9984 | 0.9992 0.9996 | 0.9997 | 0.9998 | 0.9998 0.9998 0.9999
706-2 0.9980 | 0.9989 09995 | 09997 | 09997 | 0.9998 0.9998 0.9999
707-0 0.9938 | 0.9969 0.9983 | 0.9990 | 0.9993 | 0.9994 0.9995 0.9998
713-8 0.9965 | 0.9981 09991 | 09994 | 09996 | 0.9997 09997 | 0.9998
714-6 0.9963 | 0.9979 09990 | 0.9994 | 0.9995 | 0.9997 09997 | 0.9999
718-7 0.9993 | 0.9996 09998 | 0.9999 | 0.9999 | 1.0000 1.0000 1.0000
736-9 0.9982 | 0.9991 09998 | 1.0000 | 1.0000 | 1.0000 1.0000 1.0000
737-7 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000 1.0000
742-7 0.9975 | 0.9986 09993 | 09995 | 09996 | 0.9997 09997 | 0.9998
744-3 0.9979 | 0.9992 0.9997 | 09999 | 0.9999 | 1.0000 1.0000 1.0000
785-6 0.9987 | 0.9994 0.9998 | 09999 | 0.9999 | 1.0000 1.0000 1.0000
786-4 0.9992 | 0.9996 0.9998 | 09999 | 0.9999 | 0.9999 1.0000 1.0000
787-2 0.9987 | 0.9995 0.9998 | 0.9999 | 0.9999 | 0.9999 1.0000 1.0000
789-8 0.9994 | 0.9997 0.9999 | 0.9999 | 0.9999 1.0000 1.0000 1.0000
8462-4 0.9997 | 0.9998 0.9998 | 0.9999 | 0.9999 | 0.9999 0.9999 1.0000
8480-6 | 0.9991 | 0.9995 09997 | 09998 | 09999 | 0.9999 09999 | 0.9999
9830-1 0.9968 | 0.9979 0.9988 | 09992 | 0.9994 | 0.9995 09996 | 0.9998

** Best performances are highlighted
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Table 3 Comparing performance between conventional anomaly detection (CAD) and the proposed clustering approach

a* SENSITIVITY
loinc 1/500 | 1/1,000 | 1/2,000 | 1/3,000 | 1/4,000 | 1/5,000 | 1/6,000 | 1/10,000
10839-9 [0.0545%*| 0.0255 | 0.0125 | 0.0084 | 0.0059 | 0.0049 | 0.0040 0.0021
13457-7 | 04867 | 03087 | 02235 | 0.1894 | 0.1837 | 0.1780 | 0.1629 0.1477
1742-6 0.8646 | 09375 | 08305 | 0.6787 | 05498 | 04429 | 03619 0.1943
1751-7 09969 | 09969 [ 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
1920-8 09928 | 09733 | 0.9070 | 09057 | 0.8992 | 0.8830 | 0.8807 0.8036
1959-6 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.6667
1971-1 - - - - - - - -
1975-2 0.8449 | 07666 | 0.6373 | 0.5144 | 0.4251 | 03557 | 0.3008 0.1666
2085-9 - - - - - - - -
2089-1 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
2093-3 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.9583
2324-2 09333 | 07686 | 05412 | 03412 | 02784 | 02078 | 0.1490 0.0863
2339-0 1.0000 | 0.9444 | 1.0000 | 09444 | 1.0000 | 09444 | 0.9444 0.8889
2571-8 09974 | 09963 | 0.9867 | 09664 | 09410 | 09027 | 08773 0.7299
26444-0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
26449-9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
26450-7 - - - - - - - -
26478-8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
26484-6 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
26485-3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
26499-4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
26511-6 - - - - - - - -
2862-1 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.4545 1.0000
2885-2 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
29463-7 | 1.0000 | 09960 | 09901 | 09941 | 09960 | 09901 | 0.9862 0.9783
2947-0 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
30313-1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
4548-4 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
5905-5 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
6298-4 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
6598-7 0.6577 | 04684 | 02683 | 0.1800 | 0.1332 | 0.1040 | 0.0869 0.0492
6690-2 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.9936
6768-6 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
704-7 1.0000 | 1.0000 | 1.0000 | 0.9608 | 1.0000 | 1.0000 | 1.0000 1.0000
706-2 - - - - - - - -
707-0 09730 | 09756 | 0.8947 | 0.8372 | 0.8684 | 09024 | 0.8605 0.6889
713-8 ) ) ) ) ) ) )
714-6 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
718-7 1.0000 | 1.0000 | 09762 | 0.8810 | 09524 | 09048 | 0.9286 0.6905
736-9 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
737-7 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
742-7 - - - - - - - -
744-3 - - - - - - - -
785-6 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
786-4 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
787-2 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
789-8 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
8462-4 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000
8480-6 - - - - - - - -
9830-1 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000

* best performances are highlighted
** ties are in Bold

*** best sensitivity among CAD methods was obtained from applying Mahalanobis Distances and 3.717526 (sqrt of 13.82) as critical value

**** pest specificity among CAD methods was obtained from using 6 standard deviations as threshold for identifying outliers
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sensitivity in 9 labs was 0.1228, which considering the
sparsity of implausible observations is minor.

We further evaluated the differences between CAD
methods and our proposed clustering approach through
number of false positive cases in each of the labs. As
discussed earlier, our goal was to minimize the frequency
of observations falsely identified as implausible. Figure 7
illustrates a pairwise comparison of number of false
positive cases identified by each approach for each of the
50 lab observations. In 45 out of 50 labs (90%), the clus-
tering approach produced a statistically significant
smaller number of false positive cases.

More importantly, when the clustering approach
outperformed the CAD approach, the gaps between
the two approaches signified a large number of false
positives. As the Y-axes show (scale is transformed
in thousands) the conventional anomaly detection
often identifies thousands of more plausible
observations as implausible, compared with the clus-
tering approach.

Discussion
EHRs provide massive amounts of observational
data. Biological data have certain properties that are

distinct in their distribution from other types of the
so called “Big Data.” We designed, implemented, and
tested an unsupervised clustering approach for iden-
tifying implausible records in clinical observation
data. Our approach is based on two linked hypoth-
eses that 1) if no systematic data entry errors exist,
implausible clinical observations in electronic health
records are sparse, and therefore 2) if clustered ap-
propriately, clusters with very small populations
should represent implausible observations. Using
EHR laboratory results data from Partners Health-
care, our results supported both hypotheses. A set of
plots on selected labs are available in Additional file 1:
Figure S1.

We also demonstrated that the clustering approach
outperforms conventional anomaly detection (CAD)
approaches in identifying implausible lab observations.
In biological data, an outlier may or may not be im-
plausible. For example, if an EHR has a patient record
for a 121-year-old woman, the record is very likely an
outlier, but not biologically implausible — according
to the list of the verified oldest people in 1997, a
French woman died at the purported age of 122 years,
164 days. Our results showed that, through the
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sparsity assumption (a) the clustering approach can
improve differentiating the implausibles from the out-
liers, in comparison with the conventional methods.
In anomaly detection, outliers are often conceived as
extreme values at the two tails of the distribution.
Our approach expands the conventional definition of
an outlier, by searching for observations that are
sparse considering their value and the density of the
cluster they belong to, relative to the rest of the data
points. Such observations can be found anywhere
across the distribution of data - ie., implausible
values can still be extremely high or low, or just dif-
ferent enough from the rest of data points. For ex-
ample, on a post-partum unit where ages may be ~
0—4 days old or ~ 14-45years old, one would not ex-
pect anyone 6 years old. In the 50 observation types we
evaluated in this study, we did not find implausible values
outsides of the upper or lower tails of the data distribu-
tion. However, labs and vital signs can be evaluated as
multidimensional data by including various dimensions
such as patients’ demographics and comorbidities, in
which case a proper implementation of the clustering
method can also detect and flag other types of implausible
records.

The clustering approach for identifying implausible
observations offers a precise “Big Data” solution for
clinical and biological observations stored in elec-
tronic medical records. The clustering process is
observation-specific, as the number of clusters and
partitioning is specified for each group of observa-
tions. As a result, it produced low false positives —
plausible  observations mistakenly identified as
implausible. In contrast, we showed that CAD ap-
proaches produce a high number of false positives.
This difference is a huge benefit for the clustering ap-
proach from an informatics standpoint regarding
implementation in large scale data repositories.

Limitations and directions for future research

We used a hybrid hierarchical K-means algorithm,
HK-means, because K-means algorithms are generally
sensitive to outliers and the hybrid method improves
K-means’ reliance on the random centroid
initialization. We can imagine that other distance-
based or density-based unsupervised clustering algo-
rithms might be also effective in identifying rare im-
plausible clinical observations.
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Many of clinical observations stored in EHR data
are unlabeled. Unsupervised learning approaches offer
many promising solutions for patient characterization.
Nevertheless, these approaches require specification of
several hyper-parameter. In our case, performance of
the clustering approach depended on the number of

clusters, initial random assignment of cluster cen-
troids, and the threshold for flagging clusters as im-
plausible. In addition, implementation of the approach
on very large datasets was challenging. To address
some of these challenges, we had to be creative in
selecting the clustering algorithm, applying feature
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transformations, and developing the kluster procedure
[28] to approximate the number of clusters, all of
which would be practical for future unsupervised
learning efforts that aim to ascertain meaningful pa-
tient sub-groups.

We randomly shuffled the data to prevent any po-
tential sorting in breaking the data to folds for paral-
lel computing. Further research is needed to ascertain
whether some systematic approach to parallelization
(e.g., breaking the data by age and gender) can im-
prove the unsupervised implausible observation detec-
tion results.

Moreover, we have tested the clustering approach
against 50 EHR observations. This demonstration was
limited to a small set of observations due to the need for
silver-standards to measure sensitivity and specificity of
our proposed approach. However, we encourage the
readers to envision further applications of this approach
to other clinical observations, as well as complex combi-
nations of observations in multiple dimensions, for
which specification of manual silver-standards are
virtually implausible.

Finally, the primary use case for this method is
intended for an algorithmic screening of EHR labora-
tory observations for potential implausible values that
would not be suggested for secondary use. The meth-
odology can be applied to other use cases, such as
identifying exceptionally well-performing clinicians or
detecting unusual patient management actions, would
require identification of outlying but still physiologic-
ally plausible values. However, because the evaluation
criteria may be different for other use cases (we fo-
cused on false positives for the detection of implaus-
ible observations in large scale EHR repositories),
further work may be needed to adjust the & in order
to optimize performance. For instance, in cases where
outliers are more numerous and/or are closer to the
remainder of the data, chart review would allow a
more definitive (although not always completely de-
finitive) determination of whether a value is clearly
erroneous or not.

Implementation considerations

The algorithmic solution we presented in this paper
proved as a feasible alternative for replacing the
current manual rule-based procedures for identifying
biologically implausible values. Given the size of data
and the emphasis on sensitivity versus specificity, the
choice of a (the ratio for flagging a cluster as im-
plausible) can vary. In large clinical data repositories,
an a between 1/4000 and 1/6000 would provide
good balance between true positives and false nega-
tives. A smaller a is also computationally more ex-
pensive. When the size of the dataset is small, a
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small a@ will be more appropriate. Nevertheless, the
value for & can be adjusted over time to address the
institutional needs and comfort level. Due to superb
specificity, implementing the clustering approach of-
fers a low-risk solution to an expensive manual pro-
cedure that is hard to implement. We envision the
proposed solution to constantly operate on the data
base servers where EHR data are stored. We recom-
mend that our algorithmic solution should be used
to augment (rather than replace) human decision-
making for improving quality of EHR data. After the
implausible values are detected and flagged, a work-
flow is needed to initiate further actions needed in
order to determine the density of the flagged obser-
vations. As we showed, because the flagged records
are also sparse, the frequency of such flags should
not be of concern.

For a specific lab test (Troponin I.cardiac — LOINC:
10839-9) we found an unusual high number of im-
plausible observations (over 39,000), which was calcu-
lated based on our silver standard implausible cutoff
of [0-20] and normal range of [0.04—0.39]. Further
work is needed to fully discern the root cause for this
issue in the data. Nearly all of these implausible
values originated from a single type of Cardiac
Troponin I test run at Brigham and Women’s hospital
between 2001 and 2008. Although RPDR tries to
normalize the units among labs assigned to the same
LOINC code, it is possible that this particular cTT test
is being reported with different units than the other
tests in this LOINC code (for example, 0.41 could be
reported routinely as 41). We are presently in discus-
sion with the RPDR team about this possibility.
Nonetheless, even in this case, all of the clustering al-

gorithms produced results with 100% specificity,
meaning that even when the sparsity assumption is
not fulfilled, false positive cases will not be
introduced.
Conclusion
Detecting  implausible clinical observations in

Electronic Health Record (EHR) data is a challenge,
requiring availability of standards thresholds and rule-
based procedures to query observations that are out
of the plausibility range. Establishing rule-based pro-
cedures to address this task entails extensive hard-
coding that would accumulate over time and
dimensionality. We proposed an alternative viable al-
gorithmic solution, using unsupervised clustering ap-
proach. The clustering approach is superior than
conventional anomaly detection approaches and
adaptable to different types of numerical EHR obser-
vation data.
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Appendix

Table 4 Silver-standard low and high ranges for implausible observation values

LOINC Low implausible High implausible Long common name

1742-6 0 2500 Alanine aminotransferase [Enzymatic activity/volume] in Serum or Plasma
1751-7 0 20 Albumin [Mass/volume] in Serum or Plasma

2862-1 0 20 Albumin [Mass/volume] in Serum or Plasma by Electrophoresis
6768-6 0 5000 Alkaline phosphatase [Enzymatic activity/volume] in Serum or Plasma
1920-8 0 12500 Aspartate aminotransferase [Enzymatic activity/volume] in Serum or Plasma
26444-0 0 100 Basophils [#/volume] in Blood

704-7 0 5 Basophils [#/volume] in Blood by Automated count

706-2 0 50 Basophils/100 leukocytes in Blood by Automated count

707-0 0 50 Basophils/100 leukocytes in Blood by Manual count

1959-6 0 100 Bicarbonate [Moles/volume] in Blood

1971-1 0 50 Bilirubin.indirect [Mass/volume] in Serum or Plasma

1975-2 0 50 Bilirubin.total [Mass/volume] in Serum or Plasma

29463-7 0 1400 Body weight

2093-3 0 1500 Cholesterol [Mass/volume] in Serum or Plasma

2085-9 0 450 Cholesterol in HDL [Mass/volume] in Serum or Plasma

2089-1 0 780 Cholesterol in LDL [Mass/volume] in Serum or Plasma

13457-7 0 1000 Cholesterol in LDL [Mass/volume] in Serum or Plasma by calculation
9830-1 0 100 Cholesterol.total/Cholesterol in HDL [Mass Ratio] in Serum or Plasma
8462-4 0 360 Diastolic blood pressure

26449-9 0 100 Eosinophils [#/volume] in Blood

26450-7 0 100 Eosinophils/100 leukocytes in Blood

713-8 0 100 Eosinophils/100 leukocytes in Blood by Automated count

714-6 0 100 Eosinophils/100 leukocytes in Blood by Manual count

789-8 0 25 Erythrocytes [#/volume] in Blood by Automated count

2324-2 0 2500 Gamma glutamyl transferase [Enzymatic activity/volume] in Serum or Plasma
23390 0 1000 Glucose [Mass/volume] in Blood

30313-1 0.5 75 Hemoglobin [Mass/volume] in Arterial blood

718-7 0.5 75 Hemoglobin [Mass/volume] in Blood

4548-4 0 30 Hemoglobin Alc/Hemoglobin.total in Blood

6690-2 0 500 Leukocytes [#/volume] in Blood by Automated count

26478-8 0 100 Lymphocytes/100 leukocytes in Blood

7369 0 100 Lymphocytes/100 leukocytes in Blood by Automated count

737-7 0 100 Lymphocytes/100 leukocytes in Blood by Manual count

785-6 0 100 MCH [Entitic mass] by Automated count

786-4 0 100 MCHC [Mass/volume] by Automated count

787-2 0 400 MCV [Entitic volume] by Automated count

26484-6 0 100 Monocytes [#/volume] in Blood

742-7 0 100 Monocytes [#/volume] in Blood by Automated count

26485-3 0 100 Monocytes/100 leukocytes in Blood

5905-5 0 100 Monocytes/100 leukocytes in Blood by Automated count

744-3 0 100 Monocytes/100 leukocytes in Blood by Manual count

26499-4 0 400 Neutrophils [#/volume] in Blood

26511-6 0 100 Neutrophils/100 leukocytes in Blood



Estiri et al. BMC Medical Informatics and Decision Making

(2019) 19:142

Page 15 of 16

Table 4 Silver-standard low and high ranges for implausible observation values (Continued)

LOINC Low implausible High implausible Long common name

6298-4 0 30 Potassium [Moles/volume] in Blood

2885-2 0 30 Protein [Mass/volume] in Serum or Plasma

2947-0 0 580 Sodium [Moles/volume] in Blood

8480-6 0 560 Systolic blood pressure

2571-8 0 2500 Triglyceride [Mass/volume] in Serum or Plasma
10839-9 0 20 Troponin l.cardiac [Mass/volume] in Serum or Plasma
6598-7 0 20 Troponin T.cardiac [Mass/volume] in Serum or Plasma

“the silver standard low and high ranges for implausible observation values are defined by the authors based on literature search and expert judgement, and

validate using data distributions

Additional file

Additional file 1: Figure S1. Data distribution and implausible value
detection for a set of selected EHR observation types.* x-axes are
transformed to square root for visualization purpose. (PDF 369 kb)
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