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Abstract

Background: Numerous patients suffer from chronic wounds and wound infections nowadays. Until now, the care
for wounds after surgery still remain a tedious and challenging work for the medical personnel and patients. As a
result, with the help of the hand-held mobile devices, there is high demand for the development of a series of
algorithms and related methods for wound infection early detection and wound self monitoring.

Methods: This research proposed an automated way to perform (1) wound image segmentation and (2) wound
infection assessment after surgical operations. The first part describes an edge-based self-adaptive threshold
detection image segmentation method to exclude nonwounded areas from the original images. The second
part describes a wound infection assessment method based on machine learning approach. In this method,
the extraction of feature points from the suture area and an optimal clustering method based on unimodal
Rosin threshold algorithm that divides feature points into clusters are introduced. These clusters are then
merged into several regions of interest (ROIs), each of which is regarded as a suture site. Notably, a support
vector machine (SVM) can automatically interpret infections on these detected suture site.

Results: For (1) wound image segmentation, boundary-based evaluation were applied on 100 images with
gold standard set up by three physicians. Overall, it achieves 76.44% true positive rate and 89.04% accuracy
value. For (2) wound infection assessment, the results from a retrospective study using confirmed wound
pictures from three physicians for the following four symptoms are presented: (1) Swelling, (2) Granulation, (3)
Infection, and (4) Tissue Necrosis. Through cross-validation of 134 wound images, for anomaly detection, our
classifiers achieved 87.31% accuracy value; for symptom assessment, our classifiers achieved 83.58% accuracy
value.

Conclusions: This augmentation mechanism has been demonstrated reliable enough to reduce the need for
face-to-face diagnoses. To facilitate the use of this method and analytical framework, an automatic wound
interpretation app and an accompanying website were developed.

Trial registration: 201505164RIND, 201803108RSB.

Keywords: Clustering, Edge detection, Image segmentation, Machine learning, Medical image processing,
Surgical site classification, Wound assessment
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Background
TODAY, numerous patients suffer from chronic wounds
and wound infections. As reported, the population preva-
lence rate of chronic wounds in the United States is roughly
2% of general population and 8.5% of the elders. The cost
of treatment is about $25 billion per year [1]. With the
growing demand for more efficient wound care after sur-
gery, the development of information technology to assist
the work of medical personnel has become a major trend
to address these types of problems and reduce the costs of
chronic wound care.
The current methods employed to solve this type of

problem include: Dini et al. [2] use infrared photography to
interpret wound temperature changes; Lubeley et al. [3]
propose mobile three-dimensional (3D) wound measure-
ment; Hani et al. [4] perform 3D surface scans of woundcs
to obtain wound top area, true surface area, depth, and vol-
ume; Wannous et al. [5] develop imaging methods with
depth of field information to judge the depths of wounds.
However, these methods are expensive and require special
photographic equipment; therefore, they cannot be widely
used on general surgery patients.
There are already several commercial software on the

market for clinicians to do wound measurement. All the
software; however, has yet to incorporate automated or
semi-automated wound detection or segmentation. For ex-
ample, Wendelken et al. [6] measure wounds by calculating
wound areas; PictZar Digital Planimetry Software [7] is a
commercial software for wound analysis which provides
measurements such as length, width, surface area, circum-
ference, and estimated volume to the users. But these soft-
ware require user drawings and calibration to carry out the
above measurements.
To minimize the clinician’s initial involvement. Major

trends toward solving this type of problem are to design
special algorithms to automatically recognize the wound
area then analyze the texture characteristics and color
changes of the wound. But the outcome of this approach
are strongly correlated to the segmentation result. This is
due to background and noise in the original captured im-
ages. For example, Oduncu et al. [8] use hue, saturation,
and intensity to measure the color changes of chronic
wounds on the skin, but this method cannot determine the
type of wound; Plassmann et al. [9] propose two active con-
tour models to measure leg ulcers, but this method cannot
assess whether the wound is infected; Kosmopoulos et al.
[10] apply digital analysis to classify regions appearing in
pressure ulcer images, but this method can not be widely
applied to other wound types; Hettiarachchi et al. [11] at-
tempt wound segmentation and measurement in a mobile
setting based on active contour models which identifies the
wound border irrespective of coloration and shape, but the
method is rather sensitive to camera distance, angle and
lighting conditions; Zheng et al. [12] present a new tissue

classification protocol using the RGB histogram distribu-
tions of pixel values from wound color images, but this
method cannot locate wound sites; Mukherjee et al. [13]
propose the framework for automated tissue classification
to assist the clinicians to estimate wound healing progres-
sion. Bayesian and support vector machine (SVM) were
trained by using color and textural features for classifying
granulation, slough, and necrotic tissues. But their methods
were confined to the small dataset of images acquired
under ideal imaging conditions.
Therefore, there is a high demand for developing prac-

tical, robust wound segmentation methods suitable for
most lighting conditions, captured size or angles, and a
series of machine learing based wound assessment algo-
rithms to auto locate wound sites then automate the wound
healing tracking process.
This paper has two major parts: (1) robust wound image

segmentation, and (2) SVM-based wound infection assess-
ment. In the first part, an edge- and color-based
self-adaptive threshold detection image segmentation algo-
rithm is proposed to filter out unnecessary background
noise information. In this algorithm, robust edge detection
is applied to wound images to enforce detected edges as
strong edges. The skin area image is thus established by ex-
cluding pixels that are not skin-colored and normalized by
the appropriate skin color values.
From our observation, the delineated wound area is cor-

related to the detected edges of the skin area. Therefore the
edge detector must calculate candidate and optimized
threshold values; this is done by considering skin wrinkles
to avoid incorrect threshold adjustments. Finally, a comple-
mentary operation is performed to reconstruct the wound
area from the original image.
In the second part, we propose an algorithm to position

wound suture site using feature points extracted by morpho-
logical cross-shaped features from the wound area. Then we
propose an optimal clustering method based on a unimodal
Rosin threshold algorithm to decide the optimal clustering
number. The corresponding feature point sets and ROIs are
obtained from the specified optimal clustering number.
In each ROI, we calculate the corresponding feature vec-

tors for each symptom. These feature vectors are trained by
a SVM-based wound infection assessment module for
wound infection decision-making support. The following
symptoms can be detected by this infection detecting mod-
ule: (1) Swelling, (2) Granulation, (3) Infection, and (4) Tis-
sue Necrosis.
The assessment results were validated by a retrospective

study using confirmed wound pictures from three surgical
physicians. The statistics and comparison for the agree-
ment among three physicians are presented in the
later section. The assessment results for 134 wound
images indicate our method achieve high sensitivity
with low false positive and low false negative rates for
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a wide variety of wound sites and image capture
lighting conditions.
Throughout the modern world, advances in mobile tech-

nology have made taking and uploading photos to the
cloud a daily part of life. In that context, an automatic
wound interpretation app and its accompanying website
are developed to help automate wound healing tracking;
this app can also aid patients for wound self-monitoring.
The remainder of this paper is organized as follows. In

Methods section, we present the methods for robust
image segmentation and SVM-based wound analysis in-
terpretation in detail; we also describe the practical ap-
plications of each method in this part. Then the results
are presented in Results section. Finally, conclusions are
offered in Conclusion section.

Methods
Collect wound materials
In this experiment, total 293 wound images in use are pro-
vided by Department of Surgery and Department of In-
ternal Medicine of National Taiwan University Hospital
(NTUH), with Institutional Review Board (IRB) approval.
Participants gave consent for these photos to be taken. And
gave written consent for these images to be published.
These wound images were captured using below two phone
manufacturers (Apple iPhone 6 plus and Samsung Galaxy
S6) under different settings and capture conditions. This
could simulate the variation that we expect to see in terms
of patient variability, wound type variability as well as vari-
ation due to image capture. This data set is split into two
sets composed of 159 training data and 134 testing data.
The detailed description of this data set can be found in the
later section.

Robust wound image segmentation
From our literature review, recent works for wound seg-
mentation include: Song and Sacan [14] apply neural net-
works, k-means clustering, edge detection, thresholding
and region growing to do wound segmentation for foot ul-
cers images (78 training, 14 testing). It achieves 71.4%

accuracy (MLP kernel) and 85.7% accuracy (RBF kernel);
Wantanajittikul et al. [15] apply FCM & morphology, tex-
ture analysis and SVM to do image segmentation and
characterization for 5 images (burn cases). It achieves 72.0–
98.0% accuracy; Hani et al. [16] apply ICA and k-means to
do granulation detection and segmentation for 30 wound
region images. It achieves 88.2% sensitivity 98.8% specificity;
Veredas et al. [17] apply mean shift & region growing to do
wound segmentation and tissue characterization for 113
wound region images; Hettiarachchi et al. [11] apply active
contour to do wound segmentation for 20 wound region
images under controlled conditions, it achieves 90.0% ac-
curacy; Wannous et al. [18] apply mean shift, JSEG, CSC &
SVM to do wound segmentation for 25 images with back-
ground under controlled conditions. It achieves 73.3–80.2%
(granulation), 56.4–69.8% (slough), 64.9–70.7% (necrosis).

Nonwounded area suppression
Robust edge detection and enforcement From out ob-
servation, the wound region is identified by edges in the
skin area. So we apply Canny edge detection [19] to dis-
tinguish the edges in the examined image. The original
image and the detected edges are depicted in Fig. 1.
Next, to make the detected edges as complete and robust

as possible, here we present how we mend the neglected
part of an edge. We use a 3 × 3 grid as an example, when
the end points of an edge are examined in a 3 × 3 grid of
pixels, four types of endpoints can be identified, as shown
in Fig. 2.
These matrices are called boundary matrices. The white

pixels in a boundary matrix represent the detected edges,
while the remaining black pixels represent the background.
Additionally, the white pixel in the center of the matrix rep-
resents an end point of the edge, which is extended by div-
iding the boundary matrix into one of the following two
types: (1) Exactly one pixel is connected to the edge end-
point (Fig. 3), or (2) Two pixels are connected to the edge
endpoint (Fig. 4).
Notably, both Figs. 3 and 4 showcase several pixels that

are labeled with red numerals. Regardless of whether a

Fig. 1 Original wound image and the edge detected result after applying the CED
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boundary matrix is of Type 1 or Type 2, the method seeks
a pixel marked with the numeral 3 to connect with a pixel
marked with the numeral 2. The boundary matrix can then
be divided into two unconnected regions. The pixel that is
chosen to connect to a pixel marked with 3 is called the ex-
tension point, which is selected according to the difference
between the average gray levels of the two nonconnected
regions. The point that can make the largest difference is
the extension point, and its pixel is set to white to mend
the edges of a wound.
Despite this process, new extension points continue to

be sought by making the previous extension point the
center of a new boundary matrix. The procedure
recurses until the average gray level value difference be-
tween the two nonconnected regions is smaller than a
preset threshold value. The neglected portion of an edge
is gradually filled when this process ends, and the subse-
quent detected edges of the image are all identified as
strong edges.
Figures 5 and 6 showcase the results of two wound im-

ages after performing the edge enforcement algorithm.

Skin area demarcation Due to the fact that images taken
under various lighting conditions would have distinctive
color biases, so different images captured on the same
wound area may present biased skin colors. Thus, we

propose the following steps to obtain the appropriate skin
color value for each wound image:

Step 1: Delimit regions

A set of strong edges from a wound image is con-
sidered. Connected-component labeling (CCL), which
is a method for identifying each object in a binary
image is applied to group the detected edges. Adja-
cent edges are grouped into the same edge set; differ-
ent edge set constitutes the edge set group as GE.
Each edge set of GE can form a region, which con-
tains all edges within the given edge set. If the start-
ing image contains multiple edge sets, the image is
divided into several nonconnected regions, which con-
stitute a collection as RG.

Step 2: Exclude non skin color area pixels

As [20] reported, HSV (Hue, Saturation, Lightness)
color space can describe skin color values. For example,
in ethnically Asian and Caucasian subjects, the H chan-
nel is characterized by values between 0 and 50, and the
S channel has values from 0.23 to 0.68. Because of our
experimental results herein, the HSV skin color values
are defined by the following ranges:

Fig. 2 Total four types of 3 × 3 endpoint grids. (Two and three endpoints)

Fig. 3 Grids with exactly one pixel connected to the edge endpoint
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SHlbpt ið Þ≧0:035SHlbpt ið Þ≦0:7SSlbpt ið Þ≧0:005SSlbpt ið Þ
≦0:8SVlbpt ið Þ≧0:35SVlbpt ið Þ≦0:9;

where:

SHlbpt ið Þ ¼
PP

imgzh lbpt ið Þð Þ
size lbpt ið Þð Þ

SSlbpt ið Þ ¼
PP

imgzs lbpt ið Þð Þ
size lbpt ið Þð Þ

SVlbpt ið Þ ¼
PP

imgzv lbpt ið Þð Þ
size lbpt ið Þð Þ

ð1Þ

and lbpt(i) represents the labeled points for the ith non-
connected region in RG, imgzh, imgzs, imgzv represent
the H, S, V color-space of the edge-enforced image. Sub-
sequently, the regions with HSV values that are not in
the range of skin color are filtered out and form a new
collection as RG’.

Step 3: Calculate the appropriate skin color values

This paper selects the region that contains the most skin
color pixels as the reference region from RG’, and calcu-
lates the optimum skin color values according to Eq. (2):

SHoptm ¼
PP

imgzh optmð Þ
size optmð Þ ;

SSoptm ¼
PP

imgzs optmð Þ
size optmð Þ ;

SVoptm ¼
PP

imgzv optmð Þ
size optmð Þ ;

ð2Þ

where optm is the labeled points for the region that con-
tains the most skin color pixels. Notably, the skin color
values calculated through Eq. (2) represent the general
color for the skin area of the captured image.

Step 4: Build the skin area image

Finally, the presence value of each region for RG’ is
determined according to the following procedure:

Fig. 4 Grids with two pixels connected to the edge endpoint

Fig. 5 From left to right: a Original image; b Canny method applied to the image; c Edge-enforced results of the Canny method
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where: φ (e.g. 0.25); ϕ (e.g. 0.25); χ is (e.g. 0.2); is calcu-
lated according to the most probable difference between
skin and non-skin region. DSH, DSS, DSV are the abso-
lute values for (SHoptm-SHlbpt(i)), (SSoptm-SSlbpt(i)) and
(SVoptm-SVlbpt(i)). lbpt(i) represents the labeled points for
the ith nonconnected region in RG’.
The region with a zero presence value for RG’ will

be treated as non-skin area so will be excluded. The
pixels within the region with presence value one rep-
resent the possible skin area, as depicted in Fig. 7c.
Once this skin area image is established, we will then
conduct the corresponding process to delineate the
wound region for this image.

Delineate the wound area From our observation, the
detected edge sets after applying Canny edge de-
tector (CED) on the result image in the previous
step contain not only the edge sets that can deter-
mine the wound region, but also a number of
broken, as well as redundant edge sets formed by
skin wrinkles.
In order to minimize the effect caused by these skin

wrinkles for further analysis. This paper proposes below
two steps to optimize the Canny threshold value through
adjusting the value to find a stable number of edges:

Step 1: Calculate Candidate Threshold

This step begins by gradually incrementing the threshold
value. Notably, when a higher threshold value is set, the
number of lines detected is reduced, but the prominent
contours remain unaffected. This step then check the edges
with similar slope to avoid disruptions caused by wrinkles.
First, the detected edges are linked together through

connected-component (CC) calculation to form a set
of edge contours which is labeled GA. Second, the
threshold value is increased, the edges are enforced
and re-detected, then collected in a new set labeled
E. Because the threshold is higher, the number of ele-
ments in E must be smaller than the initial edge set.
Subsequently, the adjacent edges in set E are con-
nected through CC calculation to form a new set of
edge contours, which is labeled GB. Any elements in
GA that are also in GB are then removed from GA
and the result is defined as GC.
If there exists a number of edges with similar slopes

for one edge counter in GC greater than the limit value,
and the threshold value is less than the upper bound,
then increment the threshold value and repeats the pre-
vious procedure.
Figure 8a shows an original palm image. Figure 8b pre-

sents an edge detection result that is severely impaired
by the wrinkles of the palm; the lines in the bottom right
of the figure are too complex. Figure 8c shows the result
of segmentation given the edge contours from Fig. 8b. It
is obvious that the cut area for the palm is not complete;

Fig. 6 From left to right: a Original image; b Canny method applied to the image; c Edge-enforced results of the Canny method

Fig. 7 From left to right: a Original image; b Binary image composed of CC calculated connected regions; c Result image after filtering out zero
presence value regions
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specifically, the lower right part of the palm is missing.
Figure 8d presents the result of wrinkle detection. By
linking the end points of each wrinkle, we derive a set of
straight lines; these line sets are then organized by the
slopes of the lines in proximity area.
Similarly, Fig. 9a shows an edge-detected image with a

higher threshold value, while Fig. 9b shows the result of
segmentation given the edge contours from Fig. 9a. Fig-
ure 9c exhibits the straight lines that are produced by
the wrinkles. A third set of figures (Fig. 10a, b, and c)
demonstrate similar results, although with a higher
threshold value than that of Fig. 9.
The segmentation results for skin-colored regions of

the palm image in Figs. 9b and 10b are more complete
than the results offered in Fig. 8c. Therefore, the system
can automatically correct the segmentation results to
make the palm image more complete. The threshold
value obtained in the above step is called the Candidate

Threshold, and is calculated through the following
CAN_THRESHOLD algorithm:

The ε value (e.g. 20) and the Φ value (currently set as
0.26) are calculated from the wound data sets composed
of 159 surgery wound images. The Φ value is an
upper-bound value and can be adjusted in the future.

Step 2: Calculate Optimized Threshold

Fig. 8 a Original image; b Edge-detected image; c Segmented image; d Slope lines image

Fig. 9 From left to right: a Edge-detected image; b Segmented image; c Slope lines image
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Notably, the Candidate Threshold obtained in the
aforementioned steps may cause the CED to detect too
few edges, and thus may remove excess skin area around
the wound region. These are adverse to subsequent ana-
lytical steps such as swelling or infection analysis of the
wound. Furthermore, we must also consider the impact
of skin wrinkles when revising the threshold values
downward.
The steps to optimize the threshold value begins by de-

fining the Candidate Threshold as the base reference value.
First, CCL links adjacent edges to form a set of edge con-
tours termed GA’. The Candidate Threshold value is then
reduced and the image is analyzed to produce a new edge
set named E’. The CC procedure links the adjacent edges in
E’ and forms the set of edge contours termed GB’. The sub-
set of elements in GB’ that is not within the intersection of
GA’ and GB’ is named GC’. Next, the average RGB value
for GC’ is calculated; however, if this value is too close to
the average RGB value for pixels outside GB’ and the
threshold is greater than the lower limit, then decrements
the threshold value and repeats the previous steps.
Ocassionally, pixels depicting wrinkles can cause in-

correct segmentation when the Candidate Threshold is
lowered, which leads to the errors demonstrated by
Figs. 11 and 12.
Therefore, to minimize errors, this method will also

judge the number of wrinkles and related effects in the

image. When the system lowers the threshold value, for
each edge contour in GC’, it will also check whether the
number of edges with similar slope values is greater than
the upper limit value; if this occurs, these edges are ig-
nored when calculating the average RGB values. Thus,
the Candidate Threshold obtained in this step is called
the Optimized Threshold, and is calculated through the
following OPT_THRESHOLD algorithm:

Fig. 10 From left to right: a Edge-detected image; b Segmented image; c Slope lines image

Fig. 11 From left to right: a Original image; b Original segmented image; c Lowered threshold image
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The ε value (e.g. 40), φ value (e.g. 38), ϕ value (e.g. 40)
and χ value (e.g. 40) and Φ value (currently set as 0.06)
are calculated from the same wound data sets composed
of 159 surgery wound images. The Φ value is a
lower-bound value and can be adjusted in the future.
By applying the Optimized Threshold to the CED,

this system can detect the edge sets that are optimal
for the subsequent analysis steps and retain the ap-
propriate skin areas around the wound; these edge
sets are labeled as AE.

Reconstruct the wound area From our observation, the
wound area must include some of the edges from AE, so
it is a subregion which contains all of the edges from AE.
Thus, this paper proposes a method to reconstruct the
wound area by discovering its topological skeleton within
the edge sets from AE to form the backbone of the wound
area for the original image, as outlined in Fig. 13.
Two inputs, namely the full image containing the

wound and nonwound area, and the image of the preced-
ing CED, are entered into a complementary calculation
that produces an image of the wound area subregion. An
example output is presented in Fig. 14. Through above
steps, finally the wound area are designated and the
non-wounded area are suppressed.
To compare the computer segmented results with

physician manual segmented results. We adopt the
boundary-based evaluation method from [21]. Wound
coverage rate and exceeded rate are calculated through
Eq. (3):

CoverageRate ¼ N1−CNð Þ
N1

ExceedRate ¼ CP
N1

ð3Þ

Where N1 is the manual segmented region. CP is the
exceeded region for computer segmentation minus man-
ual segmentation (positive parts). On the contrary, CN is
the negative parts. Table 1 summarizes the evaluated re-
sults and coverage rate for total 100 segmented images
with gold standard set up by three physicians. Overall, it
achieves 76.44% true positive rate and 89.04% accuracy
value, our segmented method can retain all necessary re-
gion compared to the manual segmented results from
three physicians. The exceeded region can be used to
monitor the wound healing process in the surrounding
skin area. From our observation, there are inter-difference
between the agreement of the manual segmented results
even among three professional physicians.
Table 2 presents a summary of the statistics for the ro-

bust image segmentation method, completeness is
judged by three physicians which means the segmented
result can represent the whole wound area for infection
analysis. Figure 15 gives two cases after robust image
segmentation is performed. In both cases, this process
completely removes the noisy background information
but retaines the clinically noteworthy skin area near the
wound region for infection analysis. Figure 16 compares
two cases for computer segmented and manual seg-
mented results. Figure 17 is the complete flow chart for
Robust Wound Image Segmentation method.

Fig. 12 From left to right: a Original image; b Original segmented image; c Lowered threshold image

Fig. 13 From left to right: a Input image; b Image after applying morphology topological skeleton and Hough transformation; c Image after
connecting end points; d Final coverage area
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SVM-based wound analysis interpretation
From our literature review, recent works for wound
interpretation and healing assessment include: Wan-
nous et al. [5] apply J-SEG to do wound segmentation
and classification based on color descriptors such as
mean color descriptor (MCD), locally adapted domin-
ant color descriptors (DCD) with 2-D and 3-D color
histograms to do wound assessment; Veredas et al.
[17] apply neural networks and Bayesian classifiers to
do wound tissue characterization for 113 wound re-
gion images. It achieves 78.7% sensitivity, 94.7% speci-
ficity and 91.5% accuracy; Loizou et al. [22] apply
Snake to do image segmentation and use texture fea-
ture to do wound healing assessment for 40 images
from 10 cases.
For chronic wound healing, in order to do early infec-

tin detection, our method must examine each region
for a specific wound area carefully and throughly.
Therefore, there is a need to develop a wound assesement
method which can detect correct ROIs for a wound area.
Furthermore, it can then examine each ROIs completely
and thoroughly. Here we introduce a SVM-Based wound
infection interpretation method to solve this type of prob-
lem. The segmentation results from the Robust Wound
Segmentation method will be used in this part.

Position wound suture site
The feature points located in the wound suture site that
are capable of expressing the wound position informa-
tion are detected through the following procedure:

Highlight the wound area First, the original image is
converted to a grayscale image according to Eq. (4):

Y←0:299 � Rþ 0:587 � G þ 0:114 � B ð4Þ

where Y is the computed gray scale value for the given
red, green, and blue color channels of the original
wound image.
To highlight the contrast between wound suture sites

and surrounding skin areas, Otsu’s adaptive thresholding
[23] algorithm is adopted to convert the grayscale image
into the binary image. Subsequently, the wound area is
notably more visible in this binary image.

Highlight the wound characteristics To detect the fea-
ture points in wound suture site, this method firstly con-
siders scale-invariant feature transform (SIFT) because
SIFT features can effectively be applied to tasks that re-
quire identification of matching locations in the images.
SIFT was proposed by David Lowe in 1999 [24]. The

Fig. 14 Final wound area image obtained after performing complementary calculation

Table 1 Calculated results from 100 samples & wound area
coverage rate analysis

Statistics Coverage Rate No. (Rate)

TPR 76.44% > 90% 46(46%)

ACC 89.04% 80% ~ 90% 12(12%)

SPC 91.58% 70% ~ 80% 9(9%)

PPV 63.85% 60% ~ 70% 9(9%)

Wound area coverage rate 76.44% 50% ~ 60% 5(5%)

< 50% 19(19%)

Total 100

Table 2 Segmentation results for different sites

Wound site Number of
cases

Completely
segmented

Incompletely
segmented

Face 3 1 2

Chest 47 44 3

Abdomen 23 21 2

Back 11 10 1

Hand 7 4 3

Podiatry 9 7 2

Total 100 87 (87%) 13 (13%)
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algorithm uses Difference of Gaussians (DoG), which
is an approximation of the Laplacian of Gaussian
(LoG) methods. DoG is obtained as the difference of
Gaussian blurring of an image at different scaling
parameters.
Besides SIFT features, cross-shaped features are con-

sidered too. This is because from our observation, most
suture wounds are stitched perpendicular to the orienta-
tion of the main incision. Thus, cross-shaped features
can also be used to identify the location of the wound
suture sites.
Figure 18 showcases two examples of the feature

points detected for cross-shaped (Blue dotted) and SIFT
features (Yellow dotted). Upon examining the compari-
son results from our testing datasets, we decide to apply
the cross-shaped features in the future steps because it
can find suitable feature points while keeping low noise
level from non suture sites.
To detect the cross-shaped features, we apply a

morphology shape method on the wound image to ex-
tract the pixels located in the cross-shaped regions. The
core for the morphology shape method is to define the

structuring element. Therefore, a 5 × 5 cross-shaped
structuring element is defined in Eq. (5):

Cross Kernel ¼

0 0 1 0 0
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

2
66664

3
77775

ð5Þ

The implementations for various Morphological func-
tions can be attributed to the combination of erosion
and dilation operations. Therefore, our method conducts
erosion and dilation on the binary image pixels accord-
ing to the cross kernel defined. Subsequently, the pixels
retained in the image are all pixels located in the
cross-shaped regions.

Extract feature points Apparently, adjacent pixels may
locate in the same cross-shaped area. The pixels retained
in the cross-shaped regions can further be clustered to
form the appropriate wound feature point. Therefore,
CCL algorithm [25] is used to connect adjacent pixels,

Fig. 15 Two examples of original wound image and segmented results after performing robust wound image segmentation

Fig. 16 Two example comparisons between Robust Wound Segmentation and manual segmentated results from the agreement of three
physicians. In each set from left to right: a Robust Wound Segmentation results; b Manual segmented results; c Difference between two results.
Wound coverage rate for left data set is 83.07%; whereas for right data set is 92.45%
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Fig. 17 Flow chart for proposed Robust Wound Segmentation

Fig. 18 Two example results after applying cross-shaped (Left) and SIFT (Right) features
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and then group these pixels into multiple clusters. Ul-
timately, each cluster produces a wound feature point,
which can be used to calibrate the position of the wound
suture site.

ROI detection
In this context, the ROI is the region of the wound su-
ture site. When the feature points are extracted, they are
grouped to form different ROIs through the following
two steps.

Cluster From our observation, the wound feature
points are located in the wound-stitching site, and
these feature points tend to be distributed in clus-
ters. In order to locate each wound suture site, these
extracted feature points are divided into multiple
groups according to their distribution locations. We
use Hierarchical clustering method (HCM) [26] to
group these feature points into a hierarchy tree
(Fig. 19).
Each hierarchy in the tree represents a clustering

method for a different point’s number. Each clustering
method divides these feature points into a plurality of
feature point sets, and each set represents an individual
wound suture site.

Determine optimal clustering number

i. Calculate scores

Various clustering methods will produce different number
of detected wound suture sites. Therefore, we propose an
optimal clustering method here that can determine the most
appropriate number for wound analysis interpretation.
First, the clustering number score for each hierarchy

in the tree are calculated according to Eq. (6):

S ið Þ ¼ max a ið Þ; b ið Þð Þ
b ið Þ−a ið Þ

S ið Þ ¼
1−a ið Þ=b ið Þ; if a ið Þ < b ið Þ
0 ; if a ið Þ ¼ b ið Þ
b ið Þ=a ið Þ−1; if a ið Þ > b ið Þ

8<
:

9=
;

ð6Þ

where S(i) is the silhouette score (SC) for hierarchy i, de-
fined in terms of a(i) and b(i); a(i) is the average element
in a cluster; b(i) is the number of clusters; and i is the
index variable for a and b, which spans from 2 to (num-
ber of feature points / 2).
When the SC is maximal, the average element in a cluster

is minimal and the number of clusters is maximal. This
means that each feature point represents one wound re-
gion, and the number of feature points is equivalent to the
number of wound regions.

Fig. 19 HCM to group the feature points into feature point sets. The unit of distance is measured by the distance between two adjacent pixels in
the image
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By considering the data from many wounds, we can draw a
graph with the number of clusters on the horizontal axis and
the corresponding SC on the vertical axis. Overall, as the
number of clusters increases, the SC increases; however if the
number of clusters increases too much, the system reaches
convergence. From this observation, the SC is defined as Var,
and thus iVar = 1 / Var. Figure 20 depicts the relationship be-
tween iVar and the corresponding number of clusters.
The iVar for an average element in a cluster is in-

versely proportional to the number of clusters, so an
increase in the number of clusters corresponds with a
decrease in the iVar. Thus, when the number of clus-
ters notably increases, the iVar must rapidly decrease.
Eventually, the rate at which iVar drops tapers to
convergence as the number of elements within each

cluster reaches the minimal level. Here, we propose a
method to choose an appropriate cluster number to
derive the best suitable wound region.

ii. Decide the threshold value

For iVar, the declining rate of the value gradually
reaches convergence at the threshold point indicated
in Fig. 19. Empirically, iVar is a unimodal function,
so this research applies a unimodal thresholding
(UT) algorithm [27–29] to locate the threshold
point. The corresponding feature point set is the
most appropriate.

iii. Detect ROIs

Fig. 20 Horizontal axis represents the number of clusters; the vertical axis represents the iVar calculated for each hierarchy. The rate of decline of
iVar gradually begins to converge at the marked threshold point

Fig. 21 Complete flow for wound infection identification process
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For each feature point set, the area containing the feature
points of this set forms the ROI. Thus, this paper calculates
the minimal upright bounding rectangle for the specified
feature point set to be the ROI.

SVM-based approach to interpret and analyze the wound area
With reference to the CDC [30], the present research recog-
nizes four wound infection classification types: (1) Clean, (2)
Clean-Contaminated, (3) Contaminated, (4) Dirty or Infected.
Proceeding from the CDC and clinical physicians’ judgment
criteria, a SVM-Based wound assessment module are de-
signed to detect the following four symptoms: (1) Swelling,
(2) Granulation, (3) Infection, and (4) Tissue Necrosis. Specif-
ically, for Swelling, this module can locate apparent swelling
deformation characteristics along with signs of possible infec-
tion; For Granulation, this module can find any signs of
bleeding or granulation; For Infection, this module can deter-
mine whether the wound area contains any signs of infection;
For Tissue Necrosis, this module can detect any signs of bac-
terial infections on the wound area. Figure 21 illustrates our
SVM-Based approach and its complete analysis flow. The fol-
lowing describes the steps necessary to establish this wound
analysis module:

Establish sample training data sets for wound
infection identifier A postsurgery wound image may dis-
play a variety of wound types. This research selects and re-
views a plurality of meaningful wound areas from the training
data set composed of 159 general surgery wound images,
then extracted an appropriate image size range to build the
wound feature vectors for wound identification. The current
training data set composed of 13 Granulation, 27 Infection,
62 Necrosis, 23 Swelling and 34 Normal cases. Some exam-
ples of our sample training data set used for identification
of various different wound types are attached in the Fig-
ures 26, 27, 28, 29 and 30 in Appendix section. The collec-
tion of training data for the wound infection modules is
ongoing, and the quantity of training data is steadily in-
creasing. Thus, the accuracy of the entire prediction mod-
ule is enhanced over time.

Calculate feature vectors Feature vectors corresponding
to each symptoms (Swelling, Granulation, Infection, and Tis-
sue Necrosis) are designed. Because extensive training data
sets are applied to calculate the feature vectors for each symp-
tom, useful distinctions can be drawn regarding the diversity
of wound infections displayed in images. The steps to calculate
the feature vectors for the Swelling symptom are listed here:

Train the wound infection identifier Finally, the feature
vectors in this paper are trained with a SVM [31, 32]. A poly-
nomial kernel with degree three is used to train the wound
identifier. The accuracy and computation time for tuning the
hyperparameters of the SVM are listed in Table 3. The

Table 3 Performance and computation time using different
polynomial kernel degree

Kernel
Degree

Accuracy For
Anomaly Detection

Accuracy For Symptom
Assessment

Computation
Time

Degree = 1 84.32% 75.37% 1211 MINS

Degree = 2 85.07% 80.03% 232 MINS

Degree = 3 87.31% 83.58% 32 MINS

Degree = 4 83.58% 78.73% 35 MINS

Computation time was measured on an Intel Xeon E3 3.20 GHZ Quad Core
CPU with 16GB RAM installed

Table 4 Performance for surgical data sets

Characteristics of dataset and algorithm n or %

Anomaly Detection

TP 95

TN 22

FP 6

FN 11

Accuracy 87.31%

Symptom Assessment

TP 189

TN 259

FP 24

FN 64

Accuracy 83.58%

Symptom includes: Granulation, Infection, Necrosis, Swelling
Total samples: 134

Table 5 Performance evaluation for each symptom

Granulation Infection Necrosis Swelling

TP 19 44 77 49

TN 87 71 36 65

FP 8 2 5 9

FN 20 17 16 11

Accuracy 79.10% 85.82% 84.32% 85.07%
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polynomial kernel then maps the original variables into a
polynomial feature space, which enables the system to learn
nonlinear models. As Table 3 reports, the results are com-
puted within an acceptably short time by the polynomial
kernel, and particularly with superior classification results
compared with those of a linear kernel.
Equation (7) reveals the polynomial kernel function

used herein:

K xi; x j
� � ¼ γxi

Tx j þ r
� �d

; γ > 0 ð7Þ

where γ, r, and d are the kernel parameters, xi and xj are vec-
tors in the input space (i.e., the vectors of features computed

from training or test samples), r≥ 0 is a free parameter trad-
ing off the influence of higher-order versus lower-order terms
in the polynomial; and d is three (the degree of the
polynomial).

Results
In this research, 134 surgical wound sample images, including
chest, abdomen, back, hand, and podiatry wounds, are proc-
essed by robust image segmentation and SVM-based wound
infection assessment. The majority vote of three medical doc-
tors is applied as a criterion standard to validate the capabil-
ity of the proposed mechanism. Anomaly detection and

Fig. 22 Analysis result for a very complex back surgery. There are total 12 ROIs detected. Six of them are interpreted as normal (Black), three of
them are interpreted as necrosis (Red), two of them are interpreted as infected (Red), one of them is interpreted as granulation (Red)

Fig. 23 Analysis results for a non-infected sutured wound region. All of the three detected ROIs are interpreted as normal (Black)
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Symptom assessment are carried out where Anomaly de-
tection checks if the image is assessed as “Normal” or
“Abnormal” with respect to its ground truth; Symptom as-
sessment checks whether the symptom (Granulation, In-
fection, Necrosis, Swelling) is presented in the wound
area. Each symptom will be examined in the wound area
for TP, TN, FP, FN, so there will be 536 (=134*4) tests for
symptom assessment. The results of Accuracy, TP, TN, FP,
FN for Anomaly detection and Symptom assessment are
presented in Table 4. And the detailed evaluaton results for
each symptom assessment are presented in Table 5. Figure 22
depicts a very complex general surgery on back case wherein
six of the 12 detected ROIs are regarded as potentially in-
fected regions. Figure 23 shows a non-infected sutured
wound case wherein all three detected ROIs are regarded as
normal region. Figure 24 presents a complex cardiac pace-
maker surgery wound region, the assessment result indicates
that of the 10 detected ROIs, five of them are regarded as po-
tentially infected regions. Finally, Fig. 25 showcases a rather
simplified cardiac pacemaker surgery where all six detected
ROIs are regarded as normal region.

Discussion
This augmentation mechanism was intentionally designed for
clinical decision support, and it has been demonstrated reli-
able enough to reduce the need for face-to-face diagnoses.
The performance of the SVM-Based wound infection

assessment will continue to improve through the ongoing ac-
cumulation of training data sets. In the future, our research
will focus on incorporating wound image texture feature in-
formation (including energy, entropy, and skew) into the fea-
ture vectors to improve the overall prediction performance.
The work of using deep-learning technique for the wound in-
fection assessment module is already on-going. Another work
to use the standard 24 color card to determine the exact
wound size and do color calibration is on-going too, this can
give very precise statistical information for the wound area.

Conclusion
In this paper, an algorithm to conduct edge enforcement,
automatic threshold adjustment, and wound area recon-
struction for robust wound image segmentation based on
edge and color information is proposed. This algorithm
can eliminate background noise while processing the rele-
vant image data. Additionally, a SVM-Based wound as-
sessment algorithm that calculates the positions of wound
suture sites, and an optimal clustering method based on a
unimodal Rosin thresholding algorithm to detect precise
ROIs, together with feature vectors calcuted to be used for
infection interpretation is proposed. To facilitate the use
of this method and analytical framework, an automatic
wound interpretation app and an accompanying website
are developed.

Fig. 24 Analysis results for a patient who underwent a chest surgery. There are total 10 ROIs detected. Five of them are interpreted as normal
(Black), two of them are interpreted as Necrosis (Red), three of them are interpreted as Infected (Red)

Fig. 25 Analysis result for a patient who underwent a cardiac pacemaker surgery without wound infection. All six detected ROIs are interpreted
as normal (Black)
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Appendix

Fig. 26 Normal non-infected sample data set

Fig. 27 The swelling sample data set. In order to detect if there are any signs of swelling for the skin around wound area, or apparent swelling
deformation characteristics along with signs of possible infection. This paper incorporates the wound swelling sample data set

Fig. 28 The granulation sample data set. The granulation sample data set is added to find out any signs of granulation occurred in the wound
area. If the wound has any signs of granulation or bleeding, it requires immediate medical assistance intervention

Fig. 29 The infected sample data set

Hsu et al. BMC Medical Informatics and Decision Making           (2019) 19:99 Page 18 of 20



Abbreviations
CC: Connected component; CCL: Connected component labeling;
CED: Canny edge detector; DoG: Difference of Gaussians; HCM: Hierarchical
clustering method; IRB: Institutional Review Board; LoG: Laplacian of
Gaussian; NTUH: National Taiwan University Hospital; ROI: Region of interest;
SC: Silhouette score; SIFT: Scale-invariant feature transform; SSI: Surgical Site
Infection; SVM: Support vector machine; UT: Unimodal thresholding

Acknowledgments
The authors would like to thank all of the medical staff in the Department of
Surgery and the Telehealthcare Center at the NTUH who assisted with this
research.

Funding
The publication costs, as well as the collection, analysis, and interpretation of
data for this article were funded by the “III Innovative and Prospective
Technologies Project (1/1)” of the Institute for Information Industry which is
subsidized by the Ministry of Economic Affairs of the Republic of China. The
design of the study was supported by the Ministry of Science and Technology,
Taiwan under Grant MOST 105–2221-E-002-119-MY3.

Availability of data and materials
The datasets used and/or analysed during the current study are available
from the corresponding author on reasonable request.

Authors’ contributions
JTH concepted and designed the experimental system, carried out the
measurement, analysis and wrote the manuscript. YWC concepted and
designed the experiment and revised the manuscript critically. TWH
proposed and conceived the research, revised the manuscript critically. HCT,
JMW, HYS and CSH provided the wound data set and set up gold standard
for wound segmentation result, wound type for each wound image,
proposed and conceived the research. YCZ concepted and designed the
experiment. SYK and FL proposed and conceived the research. All authors
have read and approved the final version of the manuscript.

Ethics approval and consent to participate
The wound images used in our experiments were provided by Department
of Surgery and Department of Internal Medicine of NTUH, with IRB approval.
Participants gave written consent for these photos to be taken.

Consent for publication
Participants gave written consent for these images to be published.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1Graduate Institute of Biomedical Electronics and Bioinformatics, National
Taiwan University, Room 410, Barry Lam Hall, No.1, Sec.4, Roosevelt Road,
Taipei 10617, Taiwan, Republic of China. 2Department of Surgery, National
Taiwan University Hospital, No.1, Changde St., Zhongzheng Dist., Taipei
10048, Taiwan, Republic of China. 3Department of Internal Medicine, National
Taiwan University Hospital, No.1, Changde St., Zhongzheng Dist., Taipei
10048, Taiwan, Republic of China. 4Data Analytics Technology and
Applications Research Institute, Institute for Information Industry, 11F, No.
106, Sec. 2, Heping E. Rd., Taipei 106, Taiwan, Republic of China. 5Department
of Electrical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt
Road, Taipei 10617, Taiwan, Republic of China.

Received: 7 September 2017 Accepted: 9 April 2019

References
1. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F,

Gurtner GC, Longaker MT. Human skin wounds: a major and snowballing
threat to public health and the economy. Wound Repair Regen. 2009;17(6):
763–71.

2. Dini V, Salvo P, Janowska A, Di Francesco F, Barbini A, Romanelli M.
Correlation between wound temperature obtained with an infrared camera
and clinical wound bed score in venous leg ulcers. Wounds. 2015;27(10):
274–8.

3. Lubeley D, Jostschulte K, Kays R, Biskup K, Clasbrummel B. 3D wound
measurement system for telemedical applications. In: 39th annual congress
of the German society for biomedical engineering, ISSN; 2005. p. 0939–
4990.

4. Hani AFM, Eltegani NM, Hussein SH, Jamil A, Gill P. Assessment of ulcer
wounds size using 3D skin surface imaging. In: Visual informatics: bridging
research and practice; 2009. p. 243–53.

5. Wannous H, Lucas Y, Treuillet S. Enhanced assessment of the wound-
healing process by accurate multiview tissue classification. In: Medical
imaging, IEEE transactions on 30.2; 2011. p. 315–26.

6. Wendelken ME, Berg WT, Lichtenstein P, Markowitz L, Comfort C, Alvarez OM.
Wounds measured from digital photographs using photodigital planimetry
software: validation and rater reliability. Wounds. 2011;23(9):267–75.

7. PictZars Digital Planimetry Software. http://www.pictzar.com/. Accessed 02
Aug 2018.

8. Oduncu H, Hoppe A, Clark M, Williams RJ, Harding KG. Analysis of skin
wound images using digital color image processing: a preliminary
communication. Int J Low Extrem Wounds. 2004;3(3):151–6.

9. Plassmann P, Jones TD. Improved active contour models with application to
measurement of leg ulcers. J Electron Imaging. 2003;12(2):317–26.

10. Kosmopoulos DI, Tzevelekou FL. Automated pressure ulcer lesion diagnosis
for telemedicine systems. IEEE Eng Med Biol Mag. 2007;26(5):18.

11. Hettiarachchi NDJ, Mahindaratne RBH, Mendis GDC, Nanayakkara HT,
Nanayakkara ND. Mobile-based wound measurement. In: Proceedings of the
IEEE point-of-care healthcare technologies; 2013. p. 298–301.

12. Zheng H, Bradley L, Patterson D, Galushka M, Winder J. New protocol for
leg ulcer tissue classification from colour images. In: Engineering in
medicine and biology society, 2004. IEMBS’04. 26th annual international
conference of the IEEE, vol. 1; 2004. p. 1389–92.

Fig. 30 The tissue necrosis sample data set. In order to detect if there are any signs of bacterial infections, black necrotic tissue, pus, or other
tissue necrosis signs for the wound area, this paper incorporates the necrotic tissue sample data set

Hsu et al. BMC Medical Informatics and Decision Making           (2019) 19:99 Page 19 of 20

http://www.pictzar.com/


13. Mukherjee R, Manohar DD, Das DK, Achar A, Mitra A, Chakraborty C.
Automated tissue classification framework for reproducible chronic wound
assessment. Biomed Res Int. 2014;2014:1–9.

14. Song B, Sacan A. Automated wound identification system based on image
segmentation and artificial neural networks. In: Proceedings of the IEEE
international conference bioinformatics and biomedicine; 2012. p. 1–4.

15. Wantanajittikul K, Theera-Umpon N, Auephanwiriyakul S, Koanantakool T.
Automatic segmentation and degree identification in burn color images. In:
Proceedings of the international conference on biomedical engineering;
2011. p. 169–73.

16. Hani AFM, Arshad L, Malik AS, Jamil A, Yap F. Haemoglobin distribution in
ulcers for healing assessment. In: Proceedings of the international
conference on intelligent and advanced systems; 2012. p. 362–7.

17. Veredas F, Mesa H, Morente L. Binary tissue classification on wound images
with neural networks and bayesian classifiers. IEEE Trans Med Imaging. 2010;
29(2):410–27.

18. Wannous H, Treuillet S, Lucas Y. Supervised tissue classification from color
images for a complete wound assessment tool. In: Proceedings of the IEEE
EMBS international conference; 2007. p. 6031–4.

19. Canny J. A computational approach to edge detection. IEEE Trans Pattern
Anal Mach Intell. 1986;8(6):679–98.

20. Oliveira VA, Conci A. Skin detection using HSV color space. In: H. Pedrini, &
J. Marques de Carvalho, workshops of Sibgrapi; 2009.

21. Monteiro FC, Campilho AC. Performance evaluation of image segmentation.
Lect Notes Comput Sci. 2006;4141:248–59.

22. Loizou CP, Kasparis T, Mitsi O, Polyviou M. Evaluation of wound healing
process based on texture analysis. In: Proc. IEEE Int. Conf. Bioinf. Bioeng.;
2012. p. 709–14.

23. Otsu N. A threshold selection method from gray-level histograms. IEEE
Trans Syst Man Cybern. 1979;9(1):62–6.

24. Lowe, David G. Object recognition from local scale-invariant features.
Proceedings of the international conference on computer vision. pp. 1150–
1157. doi:https://doi.org/10.1109/ICCV.1999.790410.

25. Dillencourt MB, Samet H, Tamminen M. A general approach to connected-
component labeling for arbitrary image representations. J ACM. 1992;39(2):253–80.

26. Dubes RC, Jain AK. Algorithms for clustering data: Prentice Hall; 1988. ISBN:
0-13-022278-X.

27. Rosin PL. Unimodal thresholding. Pattern Recogn. 2001;34(11):2083–96.
28. Coudray N, Buessler, Urban. Robust threshold estimation for images with

unimodal histograms. Pattern Recogn Lett. 2010;31(9):1010–9.
29. Voorhees H, Poggio. Detecting textons and texture boundaries in natural

images. In: IEEE international conference on computer vision; 1987. p. 250–8.
30. Centers for Disease Control and Prevention (CDC). Surgical site infection

(SSI) event. CDC website. 2016. http://www.cdc.gov/nhsn/PDFs/pscManual/
9pscSSIcurrent.pdf. Accessed 15 Mar 2016.

31. Hsu C-W, Chang C-C, Lin C-J. A practical guide to support vector
classification, technical report. Taipei: Department of Computer Science and
Information Engineering, National Taiwan University; 2003. pp. 1-12.

32. Hsu C-W, Lin C-J. A comparison of methods for multiclass support vector
machines. IEEE Trans Neural Netw. 2002;13(2):415–25.

Hsu et al. BMC Medical Informatics and Decision Making           (2019) 19:99 Page 20 of 20

https://doi.org/10.1109/ICCV.1999.790410
http://www.cdc.gov/nhsn/PDFs/pscManual/9pscSSIcurrent.pdf
http://www.cdc.gov/nhsn/PDFs/pscManual/9pscSSIcurrent.pdf

	Abstract
	Background
	Methods
	Results
	Conclusions
	Trial registration

	Background
	Methods
	Collect wound materials
	Robust wound image segmentation
	Nonwounded area suppression

	SVM-based wound analysis interpretation
	Position wound suture site
	ROI detection
	SVM-based approach to interpret and analyze the wound area


	Results
	Discussion
	Conclusion
	Appendix
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

