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Abstract

under different clinical scenarios.

Background: Many clinical concepts are standardized under a categorical and hierarchical taxonomy such as ICD-
10, ATC, etc. These taxonomic clinical concepts provide insight into semantic meaning and similarity among clinical
concepts and have been applied to patient similarity measures. However, the effects of diverse set sizes of
taxonomic clinical concepts contributing to similarity at the patient level have not been well studied.

Methods: In this paper the most widely used taxonomic clinical concepts system, ICD-10, was studied as a
representative taxonomy. The distance between ICD-10-coded diagnosis sets is an integrated estimation of the
information content of each concept, the similarity between each pairwise concepts and the similarity between the
sets of concepts. We proposed a novel method at the set-level similarity to calculate the distance between sets of
hierarchical taxonomic clinical concepts to measure patient similarity. A real-world clinical dataset with ICD-10
coded diagnoses and hospital length of stay (HLOS) information was used to evaluate the performance of various
algorithms and their combinations in predicting whether a patient need long-term hospitalization or not. Four
subpopulation prototypes that were defined based on age and HLOS with different diagnoses set sizes were used
as the target for similarity analysis. The F-score was used to evaluate the performance of different algorithms by
controlling other factors. We also evaluated the effect of prototype set size on prediction precision.

Results: The results identified the strengths and weaknesses of different algorithms to compute information
content, code-level similarity and set-level similarity under different contexts, such as set size and concept set
background. The minimum weighted bipartite matching approach, which has not been fully recognized previously
showed unique advantages in measuring the concepts-based patient similarity.

Conclusions: This study provides a systematic benchmark evaluation of previous algorithms and novel algorithms
used in taxonomic concepts-based patient similarity, and it provides the basis for selecting appropriate methods
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Background

An enormous volume of digitized clinical data is gener-
ated and accumulated rapidly since the widespread
adoption of electronic medical records (EMRs). These
massive quantities of data hold the promise for propel-
ling healthcare’s evolution from a proficiency-based art
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to a data-driven science, from a reactive mode to a pro-
active mode, and from one-size-fits-all medicine to per-
sonalized medicine. Personalized medicine refers to
tailoring medical treatment to the individual characteris-
tics of each patient, which literally means the ability to
classify individuals into subpopulations that differ in their
susceptibility to a disease or their response to a specific
treatment. In particular, the personalized medicine is
based on the ability of quantitatively measuring the indi-
vidual distances between patients in a population.
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Patient similarity analytics focus on homogeneous co-
horts within heterogeneous patient populations [1]. With
a patient similarity measure in place, many advanced ap-
plications can be enabled, such as improving the precision
of predicting a curative effect [2], recommending therapy
[3], identifying the relationship between diseases and
co-occurrence [4], and aiding clinical decision-making at
the point-of-care. In this way, patient similarity represents
a paradigm shift that introduces innovation to optimize
the personalization of patient care.

A challenge of patient similarity analysis is to identify
the appropriate and effective usage of the non-numerical
clinical concepts in EMR to derive a similarity measure
between pairwise patients. Consider a case where patient
A has postrheumatic arthropathy (M12.0), patient B has
rheumatoid arthritis (M06.9) and patient C has rheum-
atic arthritis (100.x01). The simple word-based similarity
method regarding the consistency of the names of con-
cepts cannot judge whether A is more similar to B or C.
However, from a doctor’s point of view, A and B are ob-
viously similar since both postrheumatic arthropathy
and rheumatoid arthritis are inflammatory polyarthropa-
thy whereas rheumatic arthritis is a type of acute rheum-
atic fever. Fortunately, many clinical concepts have been
classified in hierarchical taxonomies such as ICD-10,
ICD-9-CM-3, and ATC, which encode diseases, proce-
dures, and drugs respectively [5]. The UMLS also pro-
vides a semantic network to integrate millions of
concepts represented in the UMLS Metathesaurus. The
hierarchical structure implies semantic relationships and
distances between concepts. Therefore, measuring taxo-
nomic concept similarity is a generic issue in patient
similarity analysis.

In the recent past, many clinical concepts such as diag-
noses [3, 6-9], symptoms [8, 10], demographics [7, 8, 10],
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health behavior [10], laboratory tests [3, 7, 10], signs [8],
procedures [3] and drugs [3, 6, 7, 10] have been used to
measure patient similarity and support clinical decisions.
Among these studies, measuring taxonomic concept simi-
larity has been indispensable. However, there is still no con-
sistent conclusion regarding the best approach to assess the
similarity between patients or subpopulations, which are
usually modeled as a set of concepts. Therefore, the choice
of the most appropriate algorithm at different levels and
under various clinical scenarios is still a challenge.

Related work

Taxonomic concepts imply semantic relationships and
distances. As shown in Fig. la, taxonomic concepts are
usually organized hierarchically. Intuitively, concepts
under the same branch will be more similar than con-
cepts from different branches. Generally, the semantic
similarity [11, 12] between two taxonomic concepts can
be measured by two approaches [13]: the probabilistic
approach and the information-theoretic approach. Prob-
abilistic approaches are traditional data-driven methods
proposed for categorical data and they address the fre-
quency distribution of the concept in the patient set.
Information-theoretic approaches consider the informa-
tion content (IC) of concepts. The IC of a concept is a
fundamental dimension stating the amount of embedded
information in computational linguistics [14, 15]. Con-
crete and specialized entities in a discourse are generally
considered to present more IC than general and abstract
ones. Boriah [13] proved that the information-theoretic
approach performs better than the probabilistic approach
when explaining observed groups in clinical data. In this
paper, we restrict out discussion to the information-theoretic
approaches.
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There are many approaches to calculate the IC of a
taxonomic concept. A simple way is to assign different
IC values to different levels of concepts (as shown in
Table 1 IC #1 Formula). Therefore, a specific concept
has a higher IC value than a general concept. Consider-
ing ICD-10 as an example, the IC of a virtual root is 1,
then, the IC of a chapter of ICD is 2, and so on, so that
the IC of the full range of ICD expansion nodes is 5
[16]. The other more complicated ontology-based IC
computation model is proposed by Sanchez [14]. As
shown in Table 1 IC #2 Formula, this method calcu-
lates the IC of a concept depending on the count of
taxonomic leaves of a concept’s hyponym tree (|lea-
ves(a)|) and the number of taxonomic subsumers
(|subsumers(a)).

With the IC of concepts, there are several ways to
measure the similarity of two concepts. Four representa-
tive code-level similarity (CS) formulas are listed in
Table 1. For the sake of notation, & and b are two con-
cepts such that their similarity will be measured, as
shown in Fig. la. ¢ is defined as the least common an-
cestor (LCA) of a4 and b in the taxonomy. r and / repre-
sent the root and the total levels in the taxonomy,
respectively. The CS #1 Formula, which is a binary simi-
larity judgment, is efficient and simple to implement but
cannot provide enough discrimination power in many
applications. The CS #2 Formula is based on the
information-theoretic definition of similarity proposed
by Wu [16]. The CS #3 Formula by Li [17] introduced
two parameters to scale the contribution of the IC of
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LCA and the IC of two concepts. On a benchmark data
set, the author obtained the optimal parameters settings
as a =0.2 and f = 0.6, respectively. The CS #4 Formula is
a simplified form of CS #2 Formula when a4 and b are in
the deepest level. While it is not suitable when a and b
are in other cases.

A patient usually suffers from multiple health prob-
lems and is diagnosed with a group of ICD codes, i.e., an
ICD-10 set (as shown in Fig. 1b). The patient similarity
is measured by the resemblance of two concept sets.
Considering that A and B are two sets of taxonomic
concepts, a is one of the concepts in A and b belongs to
B. Six formulas to calculate set-level similarity (SS) are
listed in.

Table 1. For the binary code-level similarity, some
classical methods, such as Dice, Jaccard, Cosine, and
Overlap, can be used to calculate set-level similarity. The
other two formulas measure the resemblance of two
concept sets through different approaches. The SS #5
Formula uses the most similar concept pair’s average
value to represent the set-level similarity. The SS #6 For-
mula considers all the concept pair’s average similarity
value as the set-level similarity.

ICD is a widely used taxonomy in clinical classification
systems. Several patient similarity measures have been
developed to detect similarity in patient records by refer-
ring to the ICD codes of diagnoses in the past few years.
Gottlieb [7] used discharge ICD codes of past and
current hospitalizations to construct a patient medical
history profile to compute the similarity of patients. In

Table 1 The formula used in the taxonomic concept-based patient similarity

# Formula Reference
Information Content (IC) 1 levels(@ —r) [13]
2 ot [14]
- ‘Og(‘\/ebaves((r))\tﬂ
Code-level Similarity (CS) 1 0, ifa=b -
1, otherwise
2 129 116, 23]
1C(a)+IC(b)
3 1_ealIC(@)+IC(6)-2IC()). % 117
4 Ic(h-Ic(c) _
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2 Jaccard | -
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Zhang’s research [6], the patient similarity was evaluated
by the Tanimoto coefficient of co-occurring ICD-9 diagno-
sis codes. A novel distance measurement method for cat-
egorical values such as ICD-10 that takes the path
distance between concepts in a hierarchy into account
was proposed in Girardi’s research [18]. In Rivault’s re-
search [19], diagnoses (ICD-10), drugs (ATC), and medical
acts (CCAM) are used to reconstruct the care trajectories.
The longest similar subsequence that accounts for the se-
mantic similarity between events is proposed to compare
medical episodes. However, all of these algorithms still
lack a system evaluation. The strengths and weaknesses of
various combinations of these algorithms under different
clinical applications are not clear.

In different clinical scenarios, the taxonomic concept set
sizes are different. According to the observation of clinical
data in a one-year EMR dataset, the average number of dis-
tinct drugs used for each patient visit is approximately 13,
and the average number of distinct diagnoses is approxi-
mately 8. However, the procedures during a patient visit may
vary from tens to hundreds. Even when dressing the same
taxonomy, there are different approaches to perform the pa-
tient similarity analysis. The patient-patient diagnosis similar-
ity analysis addresses a relatively small set size. However, for
patient-subpopulation or subpopulation-subpopulation diag-
nosis similarity analysis, the method may need to cope with
different scenarios in which the concepts’ set sizes may be
relatively large and unbalanced. Choosing appropriate
formulas to measure the distance of concept sets to as-
sist patient similarity analysis under different scenarios
remains a challenge.

In this study, we create a more complicated clinical sce-
nario for patient similarity analysis. The study cohort data
were collected from the same nephrology department with
basically similar conditions but with different complica-
tions. We systematically evaluated the previous algorithms
and two new set-level similarity algorithms with different
evaluation approaches, such as data visualization and the
F-score measure of a specific prediction task.

Methods

Data set for this study

The EHR dataset that used for this study were obtained from
a third-level grade-A hospital, Shanxi Dayi Hospital. The data
sharing and utilization agreements were signed and approved
by the IRB of Dayi Hospital (Project N.O. 2012AA02A601).
The detail of data was interpreted in Additional file 1. The
patient consent was waived, as utilization of anonymized his-
tory data does not currently require patient consent.

Visual evaluation of the IC-level algorithms

A total of 433 distinct 4-character ICD-10 subcategories
as interpreted in Additional file 1 are used to evaluate
the algorithms to calculate IC of taxonomic concepts.
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The data set covers most common clinical problems in
nephrology department. Two IC algorithms and the
code-level similarity # 2 Formula were used to calculate
the distance between each pair of these ICD-10 codes.
Based on these results two distance matrices were gener-
ated. To visualize the structural information of distance
matrices of ICD codes, a graph drawing tool is applied
to implement the geometric representation of networks,
named multi-dimensional scaling layout (MDS) [20]. It
reduces the dimension from high space to low space as
well as maintains the relative positions of individuals
and well-organized layout. Different ICD-10 concepts
were colored by their subcategories. The better IC algo-
rithm can be expected to demonstrate a clear discrimin-
ation power between different ICD-10 subcategories.

Set-level similarity algorithms

Two novel algorithms are proposed as shown below. The
SS #7 Formula calculates all the concept pair’s average
similarity values to present the set-level similarity using a
different mean approach compared to SS #6 Formula.

1

R CS(a, b) #7
|A[B|

acA,beB

The SS #8 Formula, named minimum weighted bipartite
matching, considers a matching algorithm for a weighted
undirected bipartite graph: given a bipartite undirected
graph G = (A, B) and a weight function w = CS(a, b), where
A and B are disjoint, and all edges link between A and B,
then, a matching is a subset of edges with a minimum
sum of weights and at most one edge is incident to a or b
[21], i.e., a group of edges representing the most similar
pairs from patient A and patient B, respectively. The Hun-
garian matching algorithm, also called the Kuhn-Munkres
algorithm, is used to find the match [22].

Combinations of algorithms

We use a triple such as < IC, CS, SS > to represent a com-
bination of algorithms of three levels. To make ease of
evaluations, not all the combinations were exhaustively
evaluated. As the limitation of the binary code similarity
has been reported in many studies, the code-level similar-
ity #1 Formula and corresponding set-level similarity #1
to #4 Formula were not considered in this study. Combi-
nations that have been proved to be less than optimal are
excluded from this study [17, 23]. Ten representative and
meaningful combinations were studied in this paper, as
listed in Table 2.

Prototype of subpopulations

An EMR dataset that contains age, hospital length of stay
(HLOS) and diagnosis codes of 921 patients is used in this
study. Four subpopulations (Table 3) are pre-defined by
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used of statistics or heuristic approaches. The distribution
of age and HLOS of this cohort and how to select criteria
are introduced in detail in the Additional file 1.

For each subpopulation, its prototype is defined as the
collection of the core diagnoses of its patients. Each
diagnosis has a similarity score compared with every
other diagnosis. A prototype score of each diagnosis is
defined as the sum of similarity scores with every other
one. Core diagnoses are selected based on its prototype
score which reflects the similarity of this diagnosis with
all of the other diagnoses in this subpopulation.

prototype score(d”) = Z CS(d*,d)
deD

Three different code-level similarity formulas (CS #2,
CS #3 and CS #4) were used to build three groups of
prototypes. Then, through measuring the average of the
code-level similarities between long and short HLOS
subpopulations, the prototypes with more significant dif-
ference, i.e. a larger distance, at different prototype sizes
are used for the further prediction task.

HLOS prediction task

Supposing that if a targeted patient has higher similarity
to one subpopulation than others, the targeted patient
could be considered as one of them and share same

Table 3 Numbers of patients of four pre-defined
subpopulations

Criteria 18 < Age <50 Age 2 51
1 <HLOS<18 283 257
19 < HLOS<50 82 83

HLOS (longer than 19 days or shorter than 18 days) with
this subpopulation. Therefore, calculating the similarity
between the targeted patient and the prototypes of sub-
populations could work as a classifier and classify the
target patient into the most similar subpopulation. Then,
the average HLOS of the subpopulation is used to pre-
dict the HLOS of the target patient. In this task, differ-
ent combinations of algorithms are used to measure
similarity between the target patient and two subpopula-
tions (long HLOS vs short HLOS) when using different
prototype sizes. The patients with higher similarity to
short HLOS subpopulations are predicted to be dis-
charged from the hospital within 18 days. The real
HLOS of the test data is used as the gold standard and
to calculate the precision, recall and F-score. The
E-score is the harmonic mean of precision and recall
and will be used to evaluate the performance.

Results

Visual evaluation of IC-level algorithms

The path-based IC #1 Formula and the ontology-based IC
#2 Formula were used to generate the distance matrix be-
tween 433 4-character ICD-10 codes that encompassed the
most popular clinical diagnoses in nephrology department
separately. Then, these two distance matrixes were visual-
ized using the MDS, as shown in Fig. 2. ICD-10 codes from
different subcategories were plotted with different color. It
is obvious that the ontology-based IC #2 Formula was able
to generate a clearer discrimination between different chap-
ters while the path-based IC #1 Formula could separate in-
dividual codes more clearly. Therefore, the best choice
depends on the concept background of the application
under investigation. When the application focuses on a spe-
cific subcategory, the path-based IC #1 Formula is better
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and more efficient. However, the ontology-based IC #2 For-
mula is better suited for a more comprehensive concept
background.

Prototype of subpopulations
We evaluated the similarity between the long HLOS
subpopulation prototype and the short HLOS subpopu-
lation prototype with respect to the prototype size as
shown in Fig. 3. The similarity between prototypes was
measured by the common average of similarities of each
code pairs. Basically, three groups of prototypes that
were generated based on three code-level similarity for-
mulas are comparable. When set size is larger the over-
lap in different prototypes tend to be larger and the
difference between prototypes tend to be smaller. As the
prototype score was not considered in the similarity
measurement, the similarity score of two prototypes ap-
proaches to 1 when the prototype size increases. We
used the area under curve and identified that the proto-
types generated by CS #3 Formula (the green line in Fig.
3) achieved a better separation under different prototype
sizes. This group of subpopulation prototypes was used
to further evaluate all the algorithms and their combina-
tions. The prototype score of each ICD code within each
subpopulation computed by using different combina-
tions of IC, CS can be accessed in the Additional file 2.
For a closer inspection of the prototypes of four sub-
populations, the top 50 diagnoses concepts from each
subpopulation prototype were plotted using their dis-
tance and scaled prototype score in the subpopulations
(as shown in Fig. 4). As expected, each subpopulation
prototype was dominated by the diseases of kidney and
urinary systems (the purple circles in Fig. 4). A difference

was observed in the chronic conditions such as diabetes
and hypertension (the pink and green circles in Fig. 4). Ba-
sically, these chronic complications had higher weights in
the elder and long HLOS subpopulations. Hypertension
was very common in all of the subpopulations with kidney
disease, as it is one of the leading causes of kidney failure.
However, diabetes was seemingly associated with the long
HLOS in both elder and young subpopulations. There
were also slight differences among the groups of kidney
diseases. The Additional file 2 details the prototype score
of each ICD code within each subpopulation; a full list of
95 unique 4-character ICD codes, the adjacency matrix
and coordinates of each code is provided.

Performance of algorithms

To measure how well various combinations performed
at predicting whether a patient will be discharged from
the hospital within 18 days, we designed a classifier that
a target patient would be classified into a subpopulation
if he had a higher similarity score with the prototype of
this subpopulation than another. The similarity scores of
each patient and each prototype are listed in the Add-
itional file 3. The performance of algorithm combina-
tions is evaluated by assessing the ability of the classifier
to determine whether test patients had higher similarity
to the prototype of short-term cohort.

The effect of a single variable on the prediction per-
formance by controlling other effect factors constant is
analyzed respectively, e.g., CS algorithm and SS algo-
rithm are constant when IC algorithms are compared.
For each combination, we took the similarity scores ob-
tained by all patients in the test set (i.e. 216 patients)
and measured the precision, recall and F-score. In Fig. 5,
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only F-score is shown (for details please refer to Additional
file 4). The results regarding precision and recall can be
found in the Additional file 5. The details of the similarity
score between each case and each prototype with various set
sizes computed by using different combinations of IC, CS
and SS can be found in the Additional file 3.

IC-level evaluation

As mentioned above, IC performance visualization ana-
lysis, the ontology-based IC #2 Formula had better dis-
criminative power at the chapter-level compared to the
path-based approach. However, the IC #1 Formula was
able to separate different concepts under the same sub-
category more distinctly. In the prediction task, most of
the concepts were from the same subcategory, as shown
in Fig. 4. Therefore, the result shown in Fig. 5a con-
firmed that the performance of the IC #1 Formula was
superior to that of the IC #2 Formula in a narrow con-
cept background.

Code-level evaluation

As shown in Fig. 5b, three code-level algorithms were
compared in this task. The code-level algorithm #3 For-
mula, which is more computation-intensive, does not

provide an obvious promotion in performance. However,
it provides two parameters, a and {3, which will be help-
ful when the taxonomy is more complicated, making it
possible to control and adjust the performance. We did
not optimize these two parameters in this study. The
other two code-level similarity algorithms achieved a
similar performance. CS #4 Formula, as a simplified CS
#2 Formula, was sometimes able to achieve appreciably
better results.

Set-level evaluation

As shown in Fig. 5c, the performance of different
set-level similarity algorithms was not consistent with
each other. SS #8 algorithm was the most vulnerable
one. It performs better when the prototype concepts size
is relatively smaller than 45. However, when the proto-
type concept size increases, the prototype of different
subpopulations will have approximately the same com-
ponents as all these subpopulations that belongs to the
same clinical department. Therefore, minimum weighted
bipartite matching lost its discrimination power for clas-
sification. It does not consistently outperform the other
three set-level algorithms. The others are relatively stable
and improved gradually as the prototype concept size
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increased. The same results were confirmed when using
the IC #2 as the controlled IC algorithm. More details
are accessible in the Additional file 5.

Discussion

Balance between efficiency and effectiveness

The overall performance of an algorithm is measured in
terms of efficiency and effectiveness. Regarding the in-
formation content methods, the IC #2 Formula costs
more in data preprocessing time than the IC #1 Formula
since the former one needs to count the leaves of the
child tree of every node in the ICD tree and we calcu-
lated the IC value of every code in advance to accelerate
computation in this test. With the preprocessing com-
pleted, the time cost of real-time operation of the two
IC methods makes very little difference. Regarding the
code-level similarity methods, the CS #3 Formula uses
five exponents, and the efficiency is somewhat poor.
However, in the set-level similarity methods, the time
complexity of the minimum weighted bipartite matching
(the SS #8 Formula) method is O(#%), while for the other
three it is O(#%), where 7 is the count of concepts, which
is a significant difference, especially when the set size is
large. Efficiency and effectiveness are central terms in
assessing algorithm performance, yet the challenge for
patient similarity is to balance efficiency with effective-
ness in practice.

Concept set sizes and scenarios

The concept set size not only influences the computa-
tional load but also impacts the algorithm performance
appreciably in some scenarios. The major performance
difference among these algorithms combinations are
from the set-level similarity computation. It is due con-
sidering the exponential pairs when the size increases.
The average of the similarity scores will be diluted if
most of them are dissimilar. The imbalance of the two
compared concept set size could also bring similar prob-
lems. In this study, the prototype size changed from 1 to
100. The performance of different combinations was not
stable when the prototype size was below 20. However,
most average approach methods will become stable in
the later stage.

The concept set background should be considered
when choosing the algorithm as well. The two IC-level
algorithms have different applicable scenarios. The
set-level similarity algorithms also have different re-
sponses to the diversity of the set contents. Figure 6a
shows the different set-level algorithms’ responses to the
change of prototype size. In Fig. 6a, the similarity score
between the prototype (age 18~50, HLOS 1~17) and the
prototype (age 18~50, HLOS 18~50) used in the evalu-
ation was computed by using different set-level algo-
rithms at different set sizes. A smaller set-level score
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means higher similarity. Although the responses are
highly correlated, the response ranges are obviously dif-
ferent. Figure 6b shows the exact pair-wise correlation
value of the four SS algorithms. A larger circle and a
redder color represent higher correlation.

The minimum weighted bipartite matching approach

The minimum weighted bipartite matching method finds
the best matches in an undirected bipartite graph. This
method has not been well recognized to measure the simi-
larity of concept sets in published studies. However, it
shows better performance for similarities at the set level
in the evaluation. It was also confirmed when using differ-
ent IC levels or code-level algorithms. Minimum weighted
bipartite matching tries to find the most similar diseases
and ignores the redundant ones, whereas the average ap-
proaches (SS#6 and #7 Formulas) dilute the similarity and
magnify the dissimilarity, which makes the similarity score
of sets approach to 1 when the set size increases.

In Fig. 6, SS #5 Formula, which uses the average of the
most similar pairs from each set, showed similar features to
preserve the set-level similarity with the minimum weighted
bipartite matching. However, when the sizes of two sets are
unbalanced, where the patient set size is approximately 4
and the prototype size ranges from 1 to 100, the most simi-
lar pairs from the larger set can dilute the whole similarity.
Therefore, in our evaluation, < 1,2,5 > only shows a slightly
better performance compared to <1,2,6 >and < 12,7 > be-
fore the turning point which is same as the turning points of
< 1,2,8 > when two subpopulations are almost identical.

In a summary, the minimum weighted bipartite
matching method is better suited to measuring set simi-
larity especially when the sizes of two sets are large or
unbalanced. But it is not an efficient choice when the set
size is small and balanced.

Taxonomic concept-based patient similarity

A taxonomy-based similarity measurement is suitable
for other situations in addition to the diagnoses-related
similarity. It could be used in the field of other standard
clinical terms, e.g., MeSH [24], ICD-10-CM [25], and
ATC etc. These standard clinical terms are hierarchical
and taxonomic and are arranged in a tree structure.
These codes support both the path-based IC method
and the ontology-based IC method. The algorithms to
compare a pair of codes and two sets of codes are simi-
lar to the algorithms for diagnoses introduced in this
paper. For instance, Celebi [26] defined a drug thera-
peutic similarity as the average of the Jaccard similarity
coefficient of ATC codes of all levels. Patients with a
superficial injury (ICD-10T14.0), open wound (ICD-10
T14.1) of different body regions, e.g., scalp (MeSH
A01.456.810), ear (MeSH A01.456.313), and neck (MeSH
A01.598), can be compared by using the taxonomic codes.
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Fig. 6 Correlation between set-level methods. a Using four set-level similarity algorithms to measure the distance of two prototypes with
different prototype set sizes. b The correlation between each two SS methods

Conclusions

Patient similarity is a big data tool to improve the precision
of predicting future health states of patients, which has im-
portant clinical significance and paves the way to personal-
ized medicine. The accumulating raw data in the health
care domain can be used to assess patient similarity by le-
veraging the taxonomic standard codes. In this paper, we
considered diagnoses with ICD-10 as an example and com-
pared related various methods for IC of taxonomic con-
cepts, code-level similarity and set-level similarity with new
proposed algorithms. Each algorithm at different levels was
evaluated through data visualization and a prediction task.
Our research suggests that 1) A better IC calculation algo-
rithm depends on the concept background. The efficient
path-based IC is also effective when the application focuses
on a narrow subdomain. However, it is not as good as
ontology-based IC to separate subcategories in a more
comprehensive scenario. 2) All of the IC-based code-level
similarity algorithms are comparable to each other. 3) The
minimum weighted bipartite matching algorithm performs
better to measure the set-level similarity at different set
sizes and for unbalanced set sizes.
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