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Abstract

Background: Mobile health (MH) technologies including clinical decision support systems (CDSS) provide an efficient
method for patient monitoring and treatment. A mobile CDSS is based on real-time sensor data and historical
electronic health record (EHR) data. Raw sensor data have no semantics of their own; therefore, a computer system
cannot interpret these data automatically. In addition, the interoperability of sensor data and EHR medical data is a
challenge. EHR data collected from distributed systems have different structures, semantics, and coding mechanisms.
As a result, building a transparent CDSS that can work as a portable plug-and-play component in any existing EHR
ecosystem requires a careful design process. Ontology and medical standards support the construction of semantically
intelligent CDSSs.

Methods: This paper proposes a comprehensive MH framework with an integrated CDSS capability. This cloud-based
system monitors and manages type 1 diabetes mellitus. The efficiency of any CDSS depends mainly on the quality of
its knowledge and its semantic interoperability with different data sources. To this end, this paper concentrates on
constructing a semantic CDSS based on proposed FASTO ontology.

Results: This realistic ontology is able to collect, formalize, integrate, analyze, and manipulate all types of patient data. It
provides patients with complete, personalized, and medically intuitive care plans, including insulin regimens, diets,
exercises, and education sub-plans. These plans are based on the complete patient profile. In addition, the proposed
CDSS provides real-time patient monitoring based on vital signs collected from patients’ wireless body area networks.
These monitoring include real-time insulin adjustments, mealtime carbohydrate calculations, and exercise recommendations.
FASTO integrates the well-known standards of HL7 fast healthcare interoperability resources (FHIR), semantic sensor network
(SSN) ontology, basic formal ontology (BFO) 2.0, and clinical practice guidelines. The current version of FASTO
includes 9577 classes, 658 object properties, 164 data properties, 460 individuals, and 140 SWRL rules. FASTO is
publicly available through the National Center for Biomedical Ontology BioPortal at https://bioportal.bioontology.
org/ontologies/FASTO.

Conclusions: The resulting CDSS system can help physicians to monitor more patients efficiently and accurately.
In addition, patients in rural areas can depend on the system to manage their diabetes and emergencies.
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Background
The number of people suffering from chronic health con-
ditions is increasing. In 2008, non-communicable diseases
like diabetes were responsible for 63% of all deaths all over
the world [1]. Chronic disease management places consi-
derable pressure on patients, healthcare systems, and
communities worldwide [2]. Treatment of these diseases
usually takes long time and costs a lot of money. Because
of societal aging and the increased number of patients
with chronic conditions, more and more people will
require long-term personalized medical care. Diabetes
mellitus (DM) is a chronic metabolic disease. It is a major
healthcare problem even among the most developed
countries. In 2015, an estimated 1.6 million deaths were
directly caused by DM, and it is expected to be the
seventh leading cause of death in 2030 (http://www.who.
int/news-room/fact-sheets/detail/diabetes). If the current
trend continues, one in three Americans will have diabetes
by 2050 (http://www.diabetes.org).
The most serious type of DM is type 1 (T1D). It is an

autoimmune disease where the body destroys the
insulin-producing β cells in the pancreas. Patients with
T1D do not produce any insulin, and must exogenously
inject this hormone four to six times per day to keep
blood glucose levels under control [3]. People with T1D
need to check their glucose level several times per day,
called continuous glucose monitoring (CGM) [4]. Based
on these monitoring data, as well as other factors (e.g.
meals and exercise), they can decide what types of insu-
lin they need, when to inject them, and how much; what
types of food to eat, and in what quantities; and what
types and intensities of exercise to engage in. Insulin
may be combined with other medications, such as met-
formin, pramlintide, blood pressure drugs, cholesterol
drugs, aspirin, and other medications related to the
patient’s complications. These medications have side
effects, and they can conflict with each other, with
diseases, or with foods. As a result, creating a custo-
mized treatment plan (TP) is a complex process, and if
not done carefully will result in serious short-term and
long-term complications [5]. Short-term complications
include hypoglycemia and hyperglycemia; long-term
complications include autoimmune diseases, dyslipi-
demia, retinopathy, cardiovascular diseases, nephro-
pathy, and neuropathy. Patients cannot make these
crucial decisions solely, and always need to consult
healthcare professionals. The healthcare team (ophtha-
lmologist, endocrinologist, dietitian, pharmacist, dentist,
and educator) studies the entire patient profile and
suggests tailored TPs for specific periods.
Handling this challenge requires a medical expert to

be reachable to the patient constantly, or the patient has
to be hospitalized at all times. Neither of these options is
practical. With the ever-increasing world population, the

conventional patient–doctor appointment has lost its
effectiveness because resources are not available for such
monitoring and hospitalization. To overcome the limita-
tions of existing hospitals and doctors, technology can
play a vital role. An artificial pancreas can be utilized by
diabetics aged 14 or older. It is a closed-loop control sys-
tem composed of a CGM device checking the patient’s
glucose level in real time (e.g. every 5 min) and injecting
insulin accordingly [6]. Although this device monitors
some biometrics in the patient’s body, considering other
features (including complications, medications, demo-
graphics, and symptoms) is critical. For correct interpre-
tation of monitored vital signs, they must be understood
in the context of the entire patient profile [7, 8]. For
example, the sensed blood glucose (BG) level is sometimes
high, but the patient may take drugs that are the main
cause of this rise such as steroids, anti-psychotics, cortico-
steroids, statins, niacin, antipsychotics, and decongestants
[9]. In addition, the patient may suffer from other diseases
that increase BG levels, such as pancreatitis, hypercortiso-
lism, pancreatic cancer, gingival disease, and stroke [10].
As a result, making insulin-injection decisions based only
on sensed blood glucose level is not sufficient.
A new approach that demonstrates improved

well-being and quality of life is mobile health (MH) [11].
MH supports continuous remote monitoring of blood
glucose, which is essential for an insulin therapy regimen
[12]. There are many choices when implementing MH
for continuous patient monitoring [13]. Patients can be
monitored 24 h a day by manually entering biomedical
parameters; the collected data are sent to medical ex-
perts who provide advice regarding treatment. However,
this approach is not suitable because asking patients to
enter many values is not convenient and is error prone.
Furthermore, this process increases the medical expert’s
workload, and he or she may not reply to the patient on
time. A clinical decision support system (CDSS) is a
knowledge-based system that can mimic medical experts
in data analysis and decision-making. It can automate
the monitoring process, reduce medication errors, and
improve quality of care. Mobile patient-monitoring
CDSSs based on medical sensors, mobile, and wearable
devices support the implementation of this solution [14,
15]. The mobile phone becomes a ubiquitous tool with
nearly 100% availability in developed countries [12].
These devices have recently gained powerful computing
capabilities and enable open application development.
Klasnja and Pratt [16] discussed the factors that make
the mobile phone a promising platform for health inter-
ventions. In addition, the recent advances in information
and communications technology infrastructures, inclu-
ding wireless communications, cloud computing, and
big data analytics provide promising techniques for
developing MH systems. They transform healthcare

El-Sappagh et al. BMC Medical Informatics and Decision Making           (2019) 19:97 Page 2 of 36

http://www.who.int/news-room/fact-sheets/detail/diabetes
http://www.who.int/news-room/fact-sheets/detail/diabetes
http://www.diabetes.org


ecosystems from hospital-centered to patient-centered,
and remotely involve patients in their health monitoring
process. Mobile patient monitoring was defined by
Pawar et al. [17] as “the continuous or periodic measure-
ment and analysis of a mobile patient’s bio-signals from
a distance by employing mobile computing, wireless
communications, and networking technologies.” With this
major shift, MH systems detect, monitor, prevent, and
control chronic diseases by providing “anywhere and
anytime” healthcare scenarios. However, to this date,
most clinical care continues to be provided without the
aids of CDSSs [18] because patients and medical experts
do not believe in CDSS decisions.
A comprehensive MH CDSS should be based on two

main sources of data: real-time sensor data and historical
electronic health record (EHR) data [15]. Current MH
studies for diabetes management are based on monitored
vital signs [19] solely without giving attention to the
complete EHR [15]. Consequently, the decisions resulting
from these studies are misleading and not medically
acceptable. That is because raw vital-sign observations do
not provide the context required for interpreting those
observations properly. Vital-sign observations have diffe-
rent meanings depending on the context, i.e., the historical
conditions of the patient collected from distributed EHR
systems [7]. Collecting, modeling, and reasoning with
sensor data in the context of the EHR play critical roles
in tackling the MH CDSS challenges. However, integra-
tion of heterogeneous sensor and historical medical
data is a complex task [8, 18]. In addition, integration
of CDSS knowledge with the EHR ecosystem is another
burdensome.
Having said that, our pursuit in this project is to devise

an interoperable MH framework suitable for mobile
diabetes monitoring and to provide customized,
long-term, and real-time treatment plans (TPs). These
plans are created according to integrated real-time
patient vital-sign data with collected historical profile.
No study in the literature propose complete TPs for T1D
including insulin, diet, exercise, education, and emergen-
cies. To guarantee the plug-and-play capability, semantic
interoperability is handled based on the HL7 fast health-
care interoperability resources (FHIR) standard for data
storage and communications and for knowledge repre-
sentation. The framework has four different modules,
namely patient module, cloud-based CDSS module,
backend EHR systems module, and mobile health services
module. The patient module is for mobile monitoring of
the patient based on a set of sensors. Every patient has a
wireless body area network (WBAN) to collect bio-
medical signs. These data are integrated with distributed
historical EHR data stored in the cloud, based on the
FHIR standard. The cloud-based CDSS module collects,
integrates, and interprets patient data and proposes TPs.

The integration of different data formats is based on se-
mantic annotation of sensor data based on the semantic
sensor network (SSN) and basic formal ontology (BFO)
ontologies, standardization of medical data based on the
FHIR standard, and binding with standard medical ter-
minologies. The backend EHR systems module is respon-
sible for collecting the patient’s historical data from
distributed EHR systems. The services module provides a
collection of services for patients and physicians inclu-
ding real time guidance, provision of TPs, and emergen-
cies. Building a representative, accurate, and complete
CDSS knowledge base is the most important step toward
generating a medically acceptable CDSS. We describe in
full details the development process of a unified seman-
tic model called FHIR and SSN-based T1D Ontology
(FASTO), which is a standard, modularized, interoper-
able, and comprehensive OWL 2 medical ontology.
FASTO integrates the semantic capabilities of the SSN,
BFO, FHIR, clinical practice guideline (CPG), and med-
ical terminologies in a unified, homogeneous, and intelli-
gent manner. All FASTO knowledge is collected from
the most recent CPGs [20]. Combination of FASTO and
OWL 2 reasoner such as Pellet implements the seman-
tically intelligent CDSS. Thanks to the FHIR standard,
ontology semantics, and medical terminology, we believe
the proposed MH framework can enable broader adop-
tion of and transparent integration with already imple-
mented EHR systems.
In the rest of this paper, we review the related work in

Section 2. We then briefly present the proposed MH
framework in Section 3. In Section 4, we discuss the pa-
tient and services modules. Section 5 discusses the CDSS
module and the FASTO construction process. Section 6
details the backend systems of the proposed CDSS.
Section 7 evaluates the proposed semantic ontology, and
Section 8 provides a discussion about the paper findings
and limitations. Finally, Section 9 concludes the paper
with a discussion of future work.

Literature review
Diabetes and mobile health
The majority of chronic disease CPGs recommend the
inclusion of self-management programs in routine disease
management [11, 20]. However, limited research has been
done in this domain. Brzan et al. [21] evaluated 65 apps
based on four measures: [1] monitoring blood glucose
levels and medications, [2] nutrition, [3] physical exercise,
and [4] body weight. They concluded that 56 of these
apps did not meet even minimal requirements, or did
not work properly. They concluded that only nine apps
could be versatile and useful enough for successful
self-management of diabetes. They asserted that a
CDSS app must be connected to an EHR system, and it
must support interoperability. Basilico et al. [22] evaluated
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952 mobile apps for diabetes management and concluded
that none of them provided complete TPs, or even insulin
calculators. As a result, their adoption in the real world is
limited. Rose et al. [23] asserted that existing diabetes
monitoring studies have not provided DM management in
a standard manner. Fatehi et al. [24] concluded that exis-
ting MH apps provide fragments of care plans for dia-
betes, and asserted that the roles of a CDSS and an
EHR are needed to facilitate accurate care. Recently,
Caballero-Ruizet al. [5] asserted that the current limi-
tations in telemedicine systems for diabetes include
usability, real-time feedback, and decision support ca-
pabilities. Cappon et al. [4] reviewed the wearable CGM
sensor technologies including commercial devices and
research prototypes. They discussed the role of CGM
to improve CDSSs and big data analytics for personal-
ized medicine. They asserted that the integration of
CGM massive data collected by low cost sensors with
EHR historical data would be essential to develop new
strategies for personalized diabetes management. Quinn
et al. [25] proposed a glucose-monitoring system called
WellDoc. This system only collects glucose readings
and physical activity data from type 2 diabetics, and up-
loads them to a server where a physician can give feed-
back by email. There are no CDSS features in WellDoc;
as a result, we cannot consider it as a MH system. In
the absence of a CDSS, the clinician must [1] study
patients’ big data, [2] identify trends and correlate re-
lated changes in these data for all patients with failing
health, and [3] contact those patients who possibly
need intervention. Existing T1D MH approaches are
standalone applications that provide partial capabilities
that are not sufficient [24]. Some studies concentrated
on the collected glucose data from sensors only to
determine new insulin doses and types of insulin; other
studies concentrated on lifestyle programs. In the fol-
lowing, we discuss some of these studies. COMMOD-
ITY12 is the most famous multi-agent CDSS for
diabetes treatment [26]. The system provides treatment
for type 2 diabetics, but we will concentrate on type 1 dia-
betics. COMMODITY12 has not handled the semantic
interoperability between different system’s components in-
cluding backend database and sensor data. In addition, the
quality of its proposed TPs is not acceptable in medical
domain because the system has not considered the whole
patient’s medical history [27]. Keith-Hynes et al. [28]
proposed DiAs, a smartphone-based system for T1D
monitoring. However, this research is very abstract and
only discusses the structure of the proposed framework.
Kan et al. [11] proposed the ubiquitous health manage-
ment system for diet (UHMS-HDC), which includes a diet
diary and nutritional guidance. This system is based on a
relational database (RDB), and there are no semantic
inferences. In addition, this system only works as a

standalone application because it does not handle inter-
operability. Su et al. [29] proposed a CDSS to generate
personalized exercise plans based on an ontology and HL7
v3. However, they ignored the related issues of diet and
medicine. Schmidt and Norgaard [30] proposed a bolus
calculator app that determines a bolus dose based on an
equation. These types of system are not medically accept-
able because bolus dose must be part of a chronic and
continuous plan. All of the discussed studies proposed
partial solutions to the MH challenge, and all have critical
limitations. Some studies have not handled interoperabil-
ity such as COMMODITY12, UHMS-HDC, and DiAs.
Others have handled only parts of the problem such as Su
et al. for exercise plan management. In addition, most of
these studies proposed systems for type 2 diabetes, which
is very different from type 1. As a result, Greenes et al.
[31] concluded that wide adoption and broad use of a
CDSS in clinical practice has not been achieved.
The more suitable solution is to automate the treat-

ment process based on a CDSS, which reduces face-to-
face visits, and keeps patients from unnecessary dis-
placements. This way, medical experts optimize their
time, and can concurrently manage hundreds of
patients in a more efficient way [5]. There are two
options for implementing this solution. In the first
option, the patient continuously collects WBAN bio-
metrics on a mobile device and uses a local CDSS
for direct monitoring and suggesting of TPs. How-
ever, smart phones do not have enough storage, proces-
sing, memory, and battery resources to process the data
generated from sensors, and to give real-time decisions. In
addition, a real CDSS needs other patient data from an
EHR, where interoperability is a major problem. In the
second option, all patient data are collected in the cloud
from heterogeneous sources and are integrated with dis-
tributed hospital EHR ecosystems. Cappon et al. [4]
asserted the role of data integration to implement accurate
CDSSs. The resulting model can provide timely assistance,
supports scalability of data storage and processing power,
and supports global accessibility by any number of
patients and physicians at any time and from any place.
A WBAN is a special-purpose wireless sensor network

that incorporates different networks and wireless devices
to enable remote monitoring in various environments.
Internet of Things (IoT) based systems have been used
in different fields in the medical domain. Szydło and
Konieczny [14] proposed a system for cardiovascular
diseases; however, this system takes decisions based on
the sensed data only, and does not take the full patient
history into account. The WANDA. B monitoring sys-
tem [32] provides an integrated architecture to monitor
heart failure patients in real time. Unfortunately, it does
not provide support for medication dosages and indivi-
dual health plans. The MyHeart Project [33] is a mobile
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system to remotely monitor heart failure patients based
on wireless sensor networks. However, the system does
not support medicine intake management and sophis-
ticated treatment plans. Regarding diabetes, a review of
smartphone, IoT, cloud, and WBAN applications de-
signed to help in diabetes management was presented in
[34]. The IoT was proposed as a good environment for
diabetes management in [35]. Cloud computing systems
for diabetes control were discussed in [36]. However, we
can see that, so far, applications are limited, and they
focus on some specific part of management (tracking
physical activity, glycemic control, etc.), but there is no
complete perspective on the problem [27].

The ontology and mobile health
Ontology plays an important role in building intelligent, dis-
tributed, and interoperable CDSSs because it provides expli-
citly formal and uniform semantic models [2, 29, 31, 37].
The ontology is a knowledge representation formalism,
where the resulting knowledge is sharable, manageable,
accessible, understandable, and processable by machine [8].
It is based on formal description logic such as SROIQ (D),
an ontology language such as OWL 2, a rule language
such as SWRL, and a query language such as SPARQL.
Its semantic reasoning process is based on semantic
reasoners such as Pellet, Fact++, and Hermit [38]. A
standard ontology supports personalized reasoning,
knowledge sharing, automatic reasoning, and semantic
interoperability between heterogeneous sources [39].
Personalized service is the provision of the “right”
information for the “right” user at the “right” time and
in the “right” way. It provides evolving and tailored
assistance to a user based on her/his unique medical
profile. Kan et al. [11] proposed a ubiquitous health
management system for healthy diets without using
ontology, so the proposed system suffered from inter-
operability issues as asserted by the authors in their
study. There are limited diabetes ontologies in the litera-
ture. Our DDO [9] and DMTO [10] are most complete
and medically intuitive diabetes ontologies in the litera-
ture. They are designed with the interoperability in mind.
As a result, we extend the knowledge of these two ontol-
ogies in our current study. Esposito et al. [2] proposed a
four-tier smart mobile and context-aware architecture to
support the rapid prototyping of MH applications for
different scenarios; the system is mainly based on the pro-
cessing capabilities of the mobile phone. For interoperabi-
lity, Esposito et al. depended on a local data model based
on an ontology. Although the ontology can support
semantic interoperability, careful design is critical where
the ontology must be based on standards [40]. There are
considerable challenges facing the useful implementation
of a successful ontology-based CDSS for mobile patient
monitoring [41]. These challenges include how to extract

medical knowledge from CPGs, how to formalize this
knowledge as OWL2 axioms and rules, how to integrate
sensor data standards with EHR data modeling standards,
how to collect patient profile from distributed hospitals in
a standard form, and how to build complete TPs that can
provide real-time and long-term assistance. Lanzola et al.
summarized the relevant approaches in this field [42].
Esposito et al. [2] asserted that existing mobile health
proposals do not handle the real MH challenges, and they
listed some of them as semantic interoperability and
integration challenges. The integration challenges of
heterogeneity in EHR systems and IoT data in a cloud
environment were explained in [43]. None of the
current studies provides a complete platform for T1D
management [27].

Interoperability and mobile health
To monitor patients more accurately, sensor-based vital
signs must be interpreted in the context of the entire
patient profile. Patient data are always distributed,
encoded with different medical terminologies, and
structured with different “standard” data models [39].
Interoperability techniques can help to integrate and
share these heterogeneous data sources. Please notice
that interoperability is not the main focus of this
paper; however, we believe it is a main requirement
to develop an acceptable CDSS. Most mobile app
studies propose standalone frameworks, and this is
one of the main reasons for their limitations and
medical rejection [7]. Standards have been developed
to define how EHR data should be structured, seman-
tically described, and communicated. These standards
include openEHR, HL7 (v2, v3, and FHIR), ASTM E1384,
CEN’s TC 251, and ISO TC 215 [39]. They are often relay
on medical terminologies such as SNOMED CT (SCT),
LOINC, ICD, RxNorm, and UMLS. HL7 (www.hl7.org) is
a standardization organization that provides about 90% of
healthcare services [39, 44]. Recently, HL7 proposed the
FHIR standard based on HTTP and RESTful services. It is
a global standard, which combines the best characteristics
of HL7’s v2, v3, and clinical document architecture
(CDA). It provides a rich and extensible information
model based on the concept of a modular resource. FHIR
defines around 116 generic types (i.e. form templates) of
interconnecting resources for all types of clinical infor-
mation. It defines four paradigms for interfacing between
systems, including RESTful API, documents, messages,
and services [45]. FHIR is expected to achieve interoper-
ability faster, easier, and cheaper than other standards.
Leroux et al. [46] asserted that the adoption of a single
format for data storage and exchange decreases the de-
velopment and data exchange time, and the FHIR model
has the potential to manage clinical data in its own right.
FHIR received increased attention from the Harvard
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SMART project (https://smarthealthit.org/) and other
public initiatives such as Opencimi.org. Gøeg et al. [47]
asserted the priority of FHIR because it is based on web
technologies, which ease implementation; in addition,
FHIR is more suitable for mobile applications because it is
based on a RESTfull service-oriented architecture. Using
this HTTP-based paradigm, mobile problems such as
short battery life are less likely to occur. Although this
standard supports interoperability, an ontology can en-
hance semantic interoperability between different systems,
especially between WBAN and EHR data [48]. “A solid
ontology-based analysis with a rigorous formal mapping
for correctness” is one of the 10 reasons why FHIR is better
than other standards [49]. As a result, integrating
FHIR-based EHR data with a CDSS knowledge base onto-
logy can improve the seamless integration and interoper-
ability of decision support features in an EHR ecosystem.
No studies in the literature have discussed this issue. In
addition, FHIR was modelled as an OWL 2 ontology
(http://wiki.hl7.org/index.php?title= RDF_for_Semantic_In-
teroperability). It has not been connected to any formal
top-level ontologies like BFO, and it has not been utilized
in real applications yet, especially in the medical domain.

Study objectives
In light of the above, we propose an ontology-based
mobile health CDSS for type 1 diabetes monitoring and
treatment. This cloud-based and comprehensive architec-
ture allows patients to be connected with different service
providers as well as different sources of medical data. The
system is based on a set of standards to handle interoper-
ability challenges. Integration of these standards is based
on ontology representation and reasoning. To support
transparent integration and semantic interoperability
between the CDSS and distributed EHRs, this proposal is
based on the most recent HL7 interoperability standard of
FHIR. The SSN is utilized to integrate sensor data with
historical EHR data. To unify the semantic meaning of all
used terminologies and knowledge, all terms used are
understood and embedded under BFO universals. We
collected medical knowledge from the most recent T1D
CPGs, scientific research, and official web sites [20]. CPGs
are documents that collect all the available medical
evidence with regard to a particular disease. They support
the evidence based medicine paradigm. Knowledge of
CPGs is implemented as OWL 2 axioms and SWRL rules
to build and infer tailored TPs and to provide real-time
monitoring for diabetics. Security and privacy issues,
however, are outside the scope of this paper. Specifi-
cally, this proposal makes the following major contri-
butions, compared with previous methods.

� We propose an interoperable, expandable, and
cloud-based mobile CDSS framework for T1D

management. This CDSS can remotely monitor
diabetics according to their real-time WBAN
metrics, and suggests adjustments in insulin dosages,
exercise plans, and diet plans. The CDSS can
discover critical situations, including hypoglycemia
and hyperglycemia, and can suggest emergency
procedures. In addition, it is able to propose
actionable, evidence-based, standard, accurate, and
medically complete TPs based on patient conditions
and preferences collected from real-time data and
historical EHR profiles.

� Effective CDSS depends mainly on the quality of its
knowledge base. As a result, we propose a real,
holistic, global, and extensible T1D-treatment OWL 2
ontology (FASTO) based on SHOIQ (D) description
logic. This ontology is the core knowledge base of the
proposed CDSS. It supports temporal reasoning about
patient observations and TPs. FASTO is built using
the Protégé 5.1 ontology editor.

� This CDSS suggests plans that include critical
treatment components of insulin monitoring and
management, lifestyle (i.e. diet and exercise), and
education. To support evidence-based medicine, the
TP-formulated treatment rules are extracted from
the most recent standard diabetes CPGs. We employ
SWRL rules to represent CPG knowledge, and we
use ontology reasoners to implement the CDSS
inference engine.

� We propose a method to collect and integrate all
patient data from heterogeneous sources in a
centralized cloud-based EHR database based on the
most recent HL7 standards (i.e. FHIR). This
database is used to instantiate FASTO. In addition,
this database can be utilized by machine learning
techniques to enrich CDSS knowledge.

� The majority of the system processes are
executed in the cloud. FASTO and an ontology
reasoner provide real-time knowledge-as-a-service
to patients and physicians. As a result, the
resources (i.e. memory, battery, and processor) of
a patient’s mobile device will be preserved for
monitoring.

� The FASTO novel knowledge model reuses
several standard ontologies, including the BFO 2.0
top-level ontology, vital-sign ontology, medical
terminologies, and SSN sensor ontology. To
support effective and efficient data exchanges
between distributed and heterogeneous system
modules (i.e. CDSSs, WBANs, and EHR
distributed systems), we created our proposed
system based on the most recent and publicly
acceptable interoperability standard of HL7 FHIR.
All FASTO concepts are unified with FHIR
resources. The utilized SSN concepts are
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implemented according to the semantics and
structures of FHIR resources, and all ontology
classes are modeled as subclasses of BFO univer-
sals. The data are exchanged between modules
based on FHIR servers and in JSON format.

� The resulting fully-fledged FASTO ontology is trans-
parent and independent from EHR systems’ different
data formats and different sensor data standards,
thanks to the FHIR standard. As a result, our CDSS
is portable, offering a plug-and-play capability with
any EHR ecosystem after little configurations.

The quality of the proposed CDSS framework is based
totally on the design quality of FASTO. As a result and
due to space restrictions, we provide an overview of the
whole CDSS framework, and then focus more on the
development and testing of the CDSS ontology.

Methods
This section discusses the proposed mobile patient mon-
itoring framework (see Fig. 1). This framework supports
the continuous and mobile monitoring of T1D patients
based on cloud computing solutions, which provides
accessibility, extensibility, flexibility, cost savings, and
deployment speed. Our framework has four main
modules: the patient module, the services module, the
cloud-based CDSS module, and the backend EHR
systems module. Each module provides a particular set
of functionalities. These modules are integrated in a
standard way based on ontology and FHIR. HL7 FHIR
servers are responsible for collecting data from distri-
buted hospital information systems to be stored in a
cloud-based EHR. As a result, these modules are loosely
coupled. Therefore, change in one module does not alter
the whole architecture. The system mainly depends on

Fig. 1 The architecture of the proposed CDSS framework at high-level of description. This is the proposed framework modules including patient
module, the mobile health services module, the cloud-based CDSS module, and the backend EHR systems module
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ontology semantics, standard terminologies, and HL7
FHIR to solve the major challenges of syntax and seman-
tic interoperability.
Different from the state-of-the-art systems, we inte-

grate low-level sensor data and EHR data with high-level
ontology knowledge in a standard way to make accurate
and medically acceptable decisions. Our main goal is to
produce a global data model and a standard knowledge
base, which decreases system development time and data
transformation errors. To achieve this goal, the logical
data models of all designed databases and FASTO
semantics are based on the FHIR resource information
model. We reviewed the emerging FHIR model defini-
tions to identify resources appropriate for modeling of
basic clinical contents (e.g. medications, care plans,
observations). In a parallel process, some common data
models, such as Open mHealth (http://www.open-
mhealth.org) standard schemas and clinical element
models (http://www.opencem.org), are reviewed to build
a medically complete system. Standard medical termi-
nologies are used for encoding the used terms. Numerical
values are encoded with standard units of measurement.
The resulting system supports seamless and transparent
interoperability between a CDSS and an EHR. In the
following sections, we will discuss each module in detail.

Patient and Mobile health services modules
The patient module is responsible for collecting a
patient’s WBAN sensed data and dispatching them for
further processing. It is based on a set of heterogeneous
off-the-shelf biosensors that monitor and communicate
physiological parameters of the individual, including
physical activity, blood glucose level, and vital signs.
These sensing devices have interface (APIs) that allow
access to the collected data. The time-stamped, streamed
data are automatically transmitted to a wireless base unit
(WBU) (i.e. a mobile phone) via Bluetooth for further
preprocessing and formatting. To achieve end-to-end
semantic interoperability, the ISO/IEEE 11073 family of
standards is used as an open standard for message
formatting and as communication protocol between the
WBAN and the WBU. The messages are built by applying
ISO/IEEE 11073-104zz device specifications to the ob-
served data according to sensor type (e.g. blood pressure,
weighting scale, glucose level, heart rate). Furthermore,
real-time data can be manually entered by the patient, like
the intent to eat x grams of carbohydrates (carbs) for every
meal, the height, the intent to play exercises, etc. These
data are sent to the cloud-based EHR database based on
specific criteria (e.g. during a specific event, at a specific
time, or manually).
The mobile phone acts as an aggregation manager,

where data are collected, preprocessed, standardized,
and stored in a personal health record (PHR). The PHR

is implemented as a SQLite RDB (http://www.sqlite.org).
Raw, real time sensor data have no semantics, which
cannot be used collaboratively with hospital EHR data.
As a result, the received sensor data based on ISO/IEEE
11073 are mapped or converted into FHIR resource for-
mats and collected in the PHR. Suitable resources for a
PHR include observation (for sensor data, amount of
carbs, height, BMI, and exercises), patient (for age,
name, address, gender, contacts, etc.), device (for sensor
devices), and carePlan (for current care plan). As a re-
sult, the WBU has three functions executed sequentially.
The first is a message receiver function that is respon-
sible for collecting data from the WBAN. The second is
a message transformer function, which converts ISO/
IEEE 11073 messages into FHIR resources using JSON
format and stores them in PHR. Interoperability between
FHIR and IEEE 11073 is well established. The third
function is a message sender, which sends the patient’s
sensed and non-sensed data from the WBU to the cloud
as inter-linked JSON documents. To easily map PHR
data to cloud EHR data, all system databases are
designed based on FHIR resources.
Selected resources are formatted as JSON RESTful

messages because they are widely used and have a
relatively small overall data size. Resources can be
posted individually, or a Bundle resource could be used
as a container for a collection of inter-linked resources
and transmit them at one time. These messages are sent
via WIFI wireless connection to the nearest access point,
and then via 3G/4G/5G to be integrated into a centra-
lized cloud-based EHR. The collected cloud data are
utilized as the ABOX of FASTO. The list of the system’s
services is implemented in the services module.

Cloud-based CDSS module
This module is the core of the proposed architecture. It
provides knowledge as a service approach to deal with
the heterogeneity, distribution, and scalability of medical
data. It is responsible to gather patient data from differ-
ent sources (sensors and EHRs) and standardize,
process, analyze, and visualize them in accordance with
knowledge extracted from CPGs [20]. This module has
two main components, namely CDSS engine and
FHIR-based EHR database.

The CDSS engine
The CDSS engine is based on ontology and its reasoner
capabilities. The ontology provides a formal, sharable,
reusable, machine readable, interpretable, structured,
extensible, and semantically intelligent representation of
knowledge. The input to the reasoner is the complete
patient profile of real-time continuously sensed data plus
historical EHR data. The output is the continuous moni-
toring of the patient by providing real-time blood glucose
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monitoring and complete T1D TPs. The ontology reason-
ing process personalizes the available medical knowledge
according to the patient’s individual conditions. Accord-
ingly, it provides a customized action plan suitable for the
specific patient. Note that the ontology contains only the
data required to make a decision at one concrete moment,
but the complete patient medical record remains in the
cloud-based EHR.
In this section, we describe the detailed process for

creating the FHIR and SSN-based mobile ontology for
T1D treatment (i.e. FASTO). The main steps are
depicted in Fig. 2. We depend on many sources to create
a medically accurate and complete ontology. These
sources include existing ontologies and medical termi-
nologies, domain expert knowledge, the most recent
research, and official web sites. In addition, we study the
most recent CPGs to extract treatment knowledge and
convert it into SWRL rules and ontology axioms. We
pay a close attention to interoperability in the construc-
tion process to support the creation of a sharable,
reusable, and publically acceptable knowledge base. The
collected data are aggregated from heterogeneous
sources encoded with heterogeneous medical termino-
logies and designed by heterogeneous data models. As a
result, all ontology knowledge is standardized according
to the HL7 FHIR standard. In addition, all used terms
are based on standard terminologies, which deeply
support the enrichment of the ontology as well.
FASTO is designed in modules to support extensibility

and reusability. Each module handles a specific dimension
of the modeling process. Some modules are imported
from standard ontologies, and other modules are built
from scratch to add T1D treatment knowledge. We
employed a top-down strategy to define the proposed
ontology, which is based on BFO 2.0 as the upper-level
foundational ontology to unify the meanings of used
terminology. BFO is a domain-independent and compre-
hensive ontology; it has rigorous conceptualization, and
hence, supports reusability, modularity, extensibility, and
interoperability. First, we defined the top-level classes in
our ontology, and then, we semantically aligned them
with BFO universals. Ontology alignment can be

defined as a set of correspondences or relations (e.g.
equivalence ≡, subsumption ⊑, and disjointness ⊥)
between two ontologies [50]. Next, we deeply modeled the
semantics for each of these classes as a sub-ontology
designed for a specific purpose. We based this mainly on
reusing existing standard ontologies when possible.
We collected these ontologies from BioPortal (e.g.

diabetes mellitus diagnosis ontology [DDO], DMTO,
RxNorm, SCT, LOINC, and BFO) and from the W3C
(e.g. the SSN and the FHIR ontology: http://w3c.github.
io/hcls-fhir-rdf/spec/ontology.html). The treatment deci-
sion is based on two main sources of data, namely
WBANs and EHR systems. Some classes and properties
were added to integrate the sensed data with data
extracted from hospital EHR systems. In addition, treat-
ment knowledge extracted from CPGs (www.nice.org.uk,
www.guideline.gov, the American diabetes association:
www.diabetes.org, and Canadian diabetes: www.diabetes.ca),
professional web sites (e.g. www.medscape.com, www.drugs.
com, www.medicinenet.com, www.uptodate.com, www.fda.
gov, and http://sideeffects.embl.de/), and scientific research
[11, 51–56] is manually modeled as axioms and rules.
To automate the ontology population process and pa-

tient data aggregation, it is urgent to maintain
bi-directional and one-to-one mapping between FHIR
resource messages, cloud database constructs, and
FASTO constructs. In other words, resources are “loss-
lessly round-trippable” between different formats. Our
cloud database is designed based on an FHIR resource
schema to easily transform resource instances to RBD
instances. Every FASTO class is manually translated into
a specific FHIR RDF resource. Please note that FHIR
resources are modeled with different formats, such as
JSON, XML, and RDF. Constraints and data types of
FHIR resources are mapped to OWL 2 constructs,
axioms, data types, and SWRL rules by using the Protégé
5.1 ontology editor (https://protege.stanford.edu). Ex-
tensions to and customizations of selected resources are
implemented as needed for the T1D domain.
First, we formally defined the data elements that are

required to represent T1D treatment. This step was
informed by our previous work for type 2 diabetes

Fig. 2 The FASTO construction steps. These are eight sequential steps for building the proposed FASTO ontology from defining diabetes
treatment elements up to instantiation and validation
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diagnosis (i.e. DDO) and treatment (i.e. DMTO), and
SCT modeling (SCTO). Second, to standardize this
knowledge based on the FHIR resource format, we
manually browsed and analyzed these resources to iden-
tify needed resources. Note that we depend on the FHIR
standard for trial use (STU 3) specification. Third, we
profiled selected resources to customize them according
to our CDSS requirements. Fourth, we determined the
SSN ontology classes required to represent our domain
and mapped these classes to BFO universals. Fifth, we
mapped some of the selected resources to the SSN
ontology classes and modeled the rest of the resources
as subclasses of BFO universals. These mappings depend
on a deep understanding of the used ontologies and
lengthy discussions with experts, such as BFO authors.
Sixth, elements and constraints of the resources were
modeled as ontology classes, properties, axioms, and
SWRL rules. Seventh, we added T1D treatment know-
ledge in the form of relations, properties, axioms, and
SWRL rules. FASTO follows the principles of ontology
development established by the OBO Foundry (http://
www.obofoundry.org).

Define T1D treatment elements
We tried to minimize manual data input from patients.
As a result, critical patient data are collected automati-
cally from three main sources, thanks to the FHIR
standard interface. The first source is the patient
WBAN, which includes sensors’ real-time vital signs,
glucose levels, and weights. The second source is the
patient profile collected from distributed EHR systems.
These data include the patient’s demographics (weight,
age, gender, smoking status, and height), BMI, pre-
ferences, symptoms, lab tests (e.g. HbA1c, LDL, etc.),
allergies, complications, previous plans, family history,
and medications. The third source is the data manually
sent by the patient as real-time non-sensed data, such as
an intent to eat carbohydrates, an intent to play exer-
cises, and other emergency consultation data. Another
type of knowledge modeled in the ontology is the TP
components, which include the care team, the care plan,
treatment goals, food and dietary meals, exercises, in-
sulin, and education. The ontology includes additional
semantic knowledge regarding units of measurement,
interactions (drug-drug, drug-disease, and drug-food),
allergies, drug side effects, etc.

Identify FHIR resources and profiling
Table 1 describes medical data elements representing
T1D treatment and their mappings to a set of inter-
linked FHIR resources. A custom TP suggests actions to
handle specific conditions for a specific patient. Most
features required to build custom treatment plans are
imported from an FHIR model, including who (e.g.

patient, physician, care team, or relative), why (e.g. goals
and risks), what (e.g. medications, medication allergies,
vital signs, lab tests, diet, and exercise), and where (e.g.
location). We utilize about 23 resources to build
complete plans. Each resource has a unique ID, con-
nected based on patient identifiers. Profiling is a re-
quired step because FHIR is a generic model. We added
and/or removed some fields in some resources; in
addition, we changed some field constraints. For
example, the category field from CarePlan is removed
because we only consider CarePlan.category =
698,360,004|Diabetes self management plan.
We depend on the FHIR vital sign, BMI, and blood
glucose profiling. To preserve the monotonicity of
FASTO, we considered the final state for all resources
(e.g. Observation.status = “final” and Con-
dition.verificationStatus = “confirmed”).
Background knowledge such as foods and interactions
(e.g. food-drug, food-disease, drug-drug, and drug-di-
sease), and drug side effects are modeled away from
FHIR but are used in a standard way with resources
such as NutritionOrder and Detectedissue, respectively.
Remote-monitoring resources (e.g. observation) are
mapped to SSN classes, and all classes are mapped to
BFO universals. All references are modeled as object
properties.
For extensibility reasons, all FHIR primitive and com-

plex data types are implemented as OWL 2 classes with
appropriate cardinality restrictions. All primitive data
types (e.G. integer, data, URI, etc.) are defined as sub-
classes of the fhir:primitiveDatatype class,
which is defined as: fhir:primitiveDatatype ⊑
{(fhir:element ⊑ ‘BFO:information content
entity’)⊓(fhir:hasValue max 1 rdfs:lit-
eral)}. We implemented 16 primitive types, and each
one of them is mapped to one or more XSD types by
putting constraints to literal values. Complex data types
are modeled with a specific name for each property. We
implemented 14 complex types. For example, the
fhir:timing class is defined as:

Units of measurement (UoMs) are implemented in SCT
under the (282372007) concept, and UO OWL 2
ontology (https://bioportal.bioontology.org/ontologies/UO)
provides another design method. However, we depend on
the standard selected by HL7, i.e. the unified code for
units of measurement (UCUM: http://unitsofmeasure.org/
ucum.html). The unitOfMeasure class is defined as
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Table 1 T1D treatment essential data elements

TP data
element

HL7 FHIR resource Description SSN class SSN
Mapping

Cloud database
table

BFO universal

Patient +
demographic

Patient Person who plays the patient role
(e.g. age, address, gender)

– – Patient ⊑BFO:
BFO_0000023

Physician Practitioner Person who plays the role of physician,
nutritionist, etc.

– – Practitioner ⊑BFO:
BFO_0000023

Relative Related person Person who plays the patient’s family
member role

– – Related person ⊑BFO:
BFO_0000023

Vital sign Observation Vital signs such as blood pressure,
temperature

observationValue Exact Observation ⊑BFO:
OBI_0000027

Blood glucose
level

Observation Patient blood glucose level from sensor observationValue Exact Observation ⊑BFO:
OBI_0000027

Lab test result Observation Lab test result (e.g. HbA1c, LDL, and
RPG)

– Observation ⊑BFO:
OBI_0000027

Physical
examination

Observation Such as height, weight, BMI, and
level of activity

observationValue Exact Observation ⊑BFO:
OBI_0000027

Social history Observation Patient medical history (e.g. smoking
history, alcohol intake)

– – Observation ⊑BFO:
OBI_0000027

Patient
symptom

Condition Persistent patient symptoms that need
long term management

– – Condition ⊑BFO:
BFO_0000019

Complication Condition Pregnancy and current and previous
diseases or diagnoses

– – Condition ⊑BFO:
BFO_0000019

Body site of
sensor

BodySite Describe sensor place platform Partial
match

BodySite ⊑BFO:
BFO_0000006

Adverse even AdverseEvent Events occur during the course of
patient medical care

– – AdverseEvent ⊑BFO:
BFO_0000016

Patient allergy AllergyIntolerance Description of patient allergies – – AllergyIntolerance ⊑BFO:
BFO_0000016

Patient
location

Location Location of the patient – Exact Location ⊑BFO:
BFO_0000006

Family history FamilyMemberHistory Medical history of patient’s family
members

– – FamilyMemberHistory ⊑BFO:
BFO_0000182

Treatment
plan

CarePlan Define patient’s future, current, or past
custom care plan

– – CarePlan ⊑BFO:
OBI_0000011

Goal Goal Define the medical goal of a care plan – – Goal ⊑BFO:
BFO_0000019

Diet NutritionOrder Describe ordered diet – – NutritionOrder ⊑BFO:
BFO_0000019

Drug Medication Define a drug such as insulin – – Medication ⊑BFO:
BFO_0000040

Plan
medication

MedicationRequest Medication prescription for patient – – MedicationRequest ⊑BFO:
IAO_0000030

Medication
dosage

Dosage Dosage instruction information – – Dosage ⊑BFO:
BFO_0000019

Taken
medications

MedicationStatement Patient’s current medications list – – MedicationStatement ⊑BFO:
IAO_0000030

WBAN
sensors

Device Describes WBAN components
(e.g. sensor)

sensing device Exact Device ⊑BFO:
BFO_0000040

Patient-
physician

Encounter Interaction between a patient and
healthcare provider

– – Encounter ⊑BFO:
OBI_0000011

Patient-
physician

EpisodeOfCare Track provider for ongoing care of
the patient

– – EpisodeOfCare ⊑BFO:
OBI_0000011

Care team CareTeam Group of practitioners responsible for
patient monitoring

– – CareTeam ⊑BFO:
BFO_0000023

Exercise Procedure A procedure done by patient as a part of
treatment plan

– – Procedure ⊑BFO:
BFO_0000019

UoM Element Units of measurement – – – ⊑BFO:
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⊑(∃hasUoMCode.xsd:string)⊓ ∃hasUoMDisplay.xsd:-
string), where both display and code are imported
from UCUM.

Determine SSN classes and map them to BFO
This knowledge is related to modeling WBAN components
and the biomedical parameters they measure. Sensors in a
patient’s WBAN have heterogeneous types and data for-
mats. Recently, there has been rising interest in ontologies
to improve integration of and communication with sensor
networks. The main idea is to annotate sensor data with
spatial, temporal, and thematic semantic metadata to
achieve interoperability and provide contextual informa-
tion. The ontology supports the connection of sensor data
and other sources of data. In addition, it provides semantic
reasoning capabilities. The SSN (http://purl.oclc.org/NET/
ssnx/ssn) is an OWL 2 ontology created by W3C [57]. It is
a general sensor ontology based on the DOLCE (http://
www.loa.istc.cnr.it/old/DOLCE.html) upper-level ontology
to support reuse and semantic interoperability. The
SSN leverages the Sensor Web Enablement (SWE)
standard. In this paper, we extend the SSN to be used
for T1D treatment. On the other hand, FASTO is
based on BFO as the top-level ontology in order to
support semantic interoperability between distributed
systems. BFO (http://basic-formal-ontology.org) is a
realistic ontology, and many medical ontologies are
based on it [9, 10]. In addition, the ontology for general
medical science (https://bioportal.bioontology.org/ontol-
ogies/OGMS), which is the most high-level ontology in the
medical domain, is based on BFO. The semantic align-
ment of SSN top-level concepts with BFO universals is
based on detailed discussions with the authors of BFO
and on existing research [58], see Fig. 3. This alignment is
described in the following description logic axioms, where
ssn, bfo, fasto, and sban namespaces are used.

We used prefixes to indicate the sources of knowledge
(e.g. fasto for FASTO). The previous subsumption

axioms are extended by other anonymous classes for
each class. For example, ssn:sensingDevice is
defined as follows:

The SSN ontology has 10 main modules. We will not
import all of them into the current version of FASTO. We
concentrate on the sensors, their sensed objects, and result-
ing observations. For example, no classes related to the
physical characteristics of the sensors and the WBAN are
imported, such as batteryLifetime, Latency, Manu-
facture, MaintenanceSchedule, Security, Pro-
cessor, OperatingPowerRange, ResponseTime,
SystemLiveTime, Frequency, Resolution, Detec-
tionLimit, and Sensitivity. Most of these classes
are in the MeasuringCapability and Operatin-
gRestriction modules. The other classes and their
related properties are imported with the same semantics. A
total of 10 classes, 26 object properties, and 5 data proper-
ties are imported from the SSN ontology. The data are
collected in the ontology based on the HL7 FHIR standard
format and vital sign ontology (http://purl.bioontology.org/
ontology/VSO) terminology. All patient vital sign classes are
subclasses of OGMS_0000029 or the vital sign class;
in addition, these classes and bloodGlucoseLevel are
subsumed by featureOfInterest. The process of
transforming raw sensor data into JSON format is done on
the WBU (i.e. the mobile phone). Collected data from
WBANs has temporal and location dimensions. The tem-
poral dimension is modeled by the SWRL TO ontology
(http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.
owl). The SWRLTO ontology is lighter than the W3C Time
ontology (https://www.w3.org/TR/owl-time) and, at the same
time, is sufficient. It has four main classes (STO:valid-
Time, STO:granularity, STO:validInstant, and
STO:validPeriod), two object properties (STO:has-
Granularity and STO:hasValidTime), and three data
properties (STO:hasFinishTime, STO:hasStartTime,
and STO:hasTime). In addition, it provides some temporal
capabilities using SWRL buildins. The SSN is extended by
some knowledge from the SmartBAN ontology (https://
www.etsi.org/technologies-clusters/technologies/smart-body-
area-networks) including fasto: Node⊑ssn:physica-
lObject and fasto: WBAN⊑ssn:system⊑ssn:phy-
sicalObject classes, and SBAN:hasContact object

Table 1 T1D treatment essential data elements (Continued)

TP data
element

HL7 FHIR resource Description SSN class SSN
Mapping

Cloud database
table

BFO universal

IAO_0000030

Education Procedure Patient education as a part of
the treatment plan

– – Procedure ⊑BFO:
OBI_0000011
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property. We defined two new classes of fasto:weara-
bleSystem and fasto:wearableSensorPlatform
to extend the definition of ssn:system and ssn:plat-
form, respectively, for sensors located on the patient’s
body, respectively.
In addition, a new object property, fasto:place-

dOn, is defined for the axiom of (wearableSen-
sorPlatform⊑∀ placedOn.humanBodyPart), and
body parts can be defined according to the foundational
model of anatomy (https://bioportal.bioontology.org/on-
tologies/FMA). According to the recent CPGs, blood
glucose, not HbA1c, must be used to monitor T1D
patients [20]. In addition, to build an accurate and
continuing TP, a complete medical evaluation should be
conducted based on a complete patient profile. Raw data
collected from different sensors cannot easily work
together owing to the lack of semantic interoperability.
SSN converts these data to semantic data, but inte-
grating sensors data with EHR data is another challenge.
To handle this challenge, collected knowledge needs to
be standardized to achieve semantic interoperability
among its sources. As a result, we will extend the
previously modeled knowledge by FHIR resources.

Map resources to SSN and BFO
According to Table 1, all selected resources are modeled as
subclasses or equivalent classes to either SSN classes or
BFO universals. This mapping is based on a deep
study of these ontologies and long discussions with
BFO authors. The resulting mapping helps to unify

the meaning of ontology knowledge, which improves
the portability, shareability, reusability, and customiz-
ability of the resulting knowledge.

Model resources knowledge with OWL constructs
In this step, we extend the semantics of SSN in a standard
way based on FHIR semantics. Medical, location, and tem-
poral concepts are linked to SSN knowledge. In addition,
we model the FHIR semantics for the other non-sensor
EHR data and relate this knowledge to SSN concepts. The
implementation of resource knowledge is achieved ac-
cording to the official resource schemas. HL7 FHIR pro-
vides the basic forms for each resource. To be applicable
in our domain, all resources are profiled according to our
domain. All classes in Table 1 were modeled by first profil-
ing the FHIR resources and then extending these re-
sources with some knowledge required for our problem
domain. Resources are modeled as FASTO classes, and
each resource element is modeled as an object property
using the pattern [ResourceName.ElementName].
The following are the semantics for some classes based on
FHIR resources described in description logic syntax. We
extended the medication resource as follows:

In addition, the insulin class is subsumed by the
medication class as follows:

Fig. 3 The basic SSN concepts and BFO universals associations. These are the main mapping classes between SSN ontology and the upper level
ontology of BFO
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The class person≡{patient⊔practitioner⊔re-
lative} is defined as follows:

The patient class is extended to capture the sensor
and WBAN knowledge as follows.

The observation resource is used to model all types of
observations including sensor observations (e.g. vital signs
and blood glucose level) and non-sensor observations (e.g.
lab tests and physical examinations results). All temporary
patient characteristics are collected in the patientPro-
file class including observations (i.e. observation-
Value), complications (i.e. condition), symptoms (i.e.
condition), adverse events (i.e. adverseEvent), med-
ications (i.e. medicationStatement), encounters (i.e.
encounter), food (i.e. food), care plans (i.e. care-
Plan), etc.

We preserve the flexibility of FASTO, where the
same piece of knowledge can be accessed in dif-
ferent ways. For example, patient complications can
be collected according to encounters or from the
profile. To achieve interoperability and complete-
ness, the SSN’s observationValue class was
extended according to the Observation FHIR re-
source, which defines its observed quantity, coding,
and UoM as follows:

Figure 4 depicts the observationValue class in its
context with sensor, WBAN, patient profile, and
carePlan classes. Many classes, and many class prop-
erties, were removed to keep the figure simple. The
Condition class is used to model patient’s pregnancy,
current or historical symptoms, diagnoses, and compli-
cations based on the Condition.category object
property. We imported the possible diabetes symptoms

from our DDO, and possible diagnosis and complica-
tions from our DMTO. The condition class is used
to define specific conditions for specific patient to be
considered in TP instantiation.

FHIR has two classes to define medications in general:
medication class and the patient’s specific medi-
cations (medicationStatement). However, it has no
equivalent logic for diseases. It has the condition
class for patient-specific conditions, but there is no
resource for modeling diseases in general. For each
disease, this class is critical in order to define its code
and contradicted drugs, foods, and exercises. We intro-
duced a disease class as follows:

Standard medication adverse effects are imported from
the ontology of adverse events (OAE: http://purl.bioontol-
ogy.org/ontology/OAE) ontology, and every medication has
its list of adverse effects. The binding of a patient with
specific adverse events, (i.e. taking an incorrect drug or an
incorrect dose of a drug) is defined by the adverseEvent
class. Patient context, including current conditions or
treatments, is essential in establishing a cause-and-effect
relationship for an adverse event. As a result, we relate
adverseEvent and patient profile classes with the
hasAdverseEvent object property. In addition, the
patient’s allergy and intolerance to foods and other sub-
stances is modeled in the allergyIntolerance class.
Because allergies may not depend on the context as adverse
events, this class is directly related to the patient class.
The MedicationRequest class is used to prescribe
insulin for the patient, and medicationStatement is
used to collect the medication history of the patient.

Treatment plan modeling is one of the main targets of
our ontology. The carePlan class collects the seman-
tics of the TP. Every care plan should have medication,
diet, exercise, and education activities. In addition,
real-time insulin dosage consultations according to
changes in carbohydrates consumption and exercises are
modeled.
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We extended carePlan to define the type of insulin
regimen by using the hasInsulinRegimen object
property. The insulinRegimen ≡{FixedRegime-
n⊔intensiveInsulinTherapy} class is defined as
follows:

In addition, carePlan has six specific, measurable,
achievable, realistic, time-oriented (SMART) goals of blood
glucose goal, daily per-meal glucose goal, blood pressure
goal, HbA1c goal, weight goal, and other customizable goal.

The carePlanActivityComponent class defines the
long-term parts of the plan in the form of activities by using
medicationRequest for insulin, nutritionOrder for
diet, and procedureRequest for education, as illustrated
in Fig. 5. For real-time adjustment of insulin dosage and carb
grams, the patient class has three properties linked with
the breakfast, lunch, and dinner classes. These classes
are subclasses of the meal class, which is defined as
(∃hasTotalCarbsInGrams.xsd:integer)⊓(∃has-
Food.food) ⊓(∃hasValidTime.validInstant)⊓(∃has-
CorrectionInsulinUnits.xsd:integer)⊓(∃
hasCarbsInsulinUnits.xsd:integer)⊓(∃has-
TotalInsulin.xsd:integer). The patient moni-
toring process depends on data collected from hospitals.
As a result, the Organization resource is required. The
proposed system suggests TPs for physicians to approve,
and the final decision is from physicians. There must be a
specific party responsible for the monitoring process. As a

Fig. 4 The observationValue class in its context. These are the main classes related to the observationValue class including the patient, sensor,
and patientProfile classes
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result, the Practitioner, CareTeam, and Relative resources
are used. To organize the monitoring process, Encounter
and EpisodeOfCare are utilized. Each of these resources
was designed as an OWL 2 class with suitable properties.
For space restrictions, readers can find their DL defini-
tions in the ontology.

Model T1D treatment knowledge with FHIR resources
The resulting FASTO ontology is rich enough to define
any type of TP for diabetics. In this section, we exten-
sively define T1D treatment knowledge according to
available CPGs, expert knowledge, and online resources
[11, 51–56]. Creating a TP for T1D patients is a complex
process because it requires the customization of many

parameters. A TP has three main sub-plans: medication
for insulin prescription, lifestyle for diet and exercise
definitions, and education for defining custom learning
topics. We simulate the operation of β cells. These cells
sense the BG level, analyze the collected data, and de-
liver insulin accordingly. The WBAN senses the patient’s
vital signs; the ontology collects these data, combines
them with the EHR profile, and makes a semantic
analysis; finally, a customized plan is given to the patient
with details on insulin management, lifestyle, and educa-
tion. This knowledge is implemented as SWRL rules and
OWL 2 axioms. FASTO manages three main situations,
as shown in Fig. 6.
The first situation is to create long-term TPs according

to the entire patient profile, previous TPs, and temporal

Fig. 5 The carePlan class in its context. These are the main classes related to the carePlan class including the goal, and carePlanActivity classes

Fig. 6 Diabetes treatment main tasks. These are the main components of diabetes carePlan including initial care plan, real time monitoring,
emergency handling, and plan maintenance
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abstraction of sensor data (if any). All of the cloud-based
EHR data are instantiated in the ontology as standard
FHIR resources. The second situation is real-time patient
guidance to adjust insulin doses, carb amounts, and
exercises according to dynamic patient needs and sensor
readings. This step is based on real-time observations
collected from the WBAN plus some calculated factors,
such as insulin sensitivity factor (ISF) and insulin-to-
carbs ratio (ICR) [59]. The third situation is handling
emergencies, where the patient in danger of hypoglycemia
(blood glucose <3.6mmol/L) or hyperglycemia (blood
glucose >9.0mmol/L). These situations are kept away
from long-term TPs because they require special pro-
cedures for diagnoses and handling. In this version of
FASTO, we will implement the first two situations.

Initial care plan construction This plan tries to man-
age the balance between things that increase BG (e.g.
food, illness, emotion, etc.) and things that decrease BG
(e.g. insulin, exercise, diet, etc.)
Insulin prescription This step determines the types of

insulin, the number of units, and the frequency needed
to control patient glucose. Insulin is a hormone. If ad-
ministered by mouth, it is digested like other proteins.
Therefore, injection is the primary method of adminis-
tration. It mainly depends on patient weight in order to
determine the starting dose or total daily dose (TDD).
Age, diabetes duration, other complications, and other
medications are also considered. There are only two
main regimens, i.e. intensive insulin therapy (IIT) and
daily fixed (DF). IIT (basal-bolus, prandial, or multiple
daily injections) is the most popular and flexible regi-
men. However, it is sometimes not suitable, especially
for children, because it is more complex. IIT is based on
selecting one basal insulin (e.g. 50% of TDD) that works
as a background long-acting or intermediate-acting insu-
lin such as Detemir or Lantus. Based on the patient’s
choice, the basal dose can be taken as one shot at bed-
time or divided into two (one in the morning and one in
the evening). In addition, IIT selects one rapid-acting in-
sulin (bolus or pre-meal), such as Aspart or Novolog, to
be used to cover food. The other 50% of the TDD is di-
vided into three injections per day (e.g. 15 min before
each of the three meals). Measuring blood glucose be-
fore meals is critical. If it is lower or greater than the tar-
get BG, then the meal’s predefined dosage must change
accordingly. If the patient skips a meal then he/she must
skip the bolus dose. On the other hand, the DF regimen
is easier to administer, but less flexible. It is created
based on the usual carbs taken per meal and the usual
exercises per day. DF does not take into consideration
any changed amounts of carbs and exercise during the
day. As a result, the patient must stick with a specific
predefined diet and exercise pattern to avoid

hypoglycemia. There are two main types of DF regimen.
The once-daily regimen is when the patient takes one
shot in the morning or in the evening via long-acting in-
sulin (e.g. detemir). The twice-daily regimen is when the
patient takes two shots (i.e. 2/3 of TDD as the morning
dose and 1/3 of TDD as the evening dose). The morning
dose is divided again into 2/3 in an intermediate-acting
dose (e.g. NPH insulin), and 1/3 in a short-acting dose
(e.g. regular insulin). The evening dose is also divided,
but in half, with 1/2 in an intermediate-acting dose, and
1/2 in a short-acting dose. The patient mixes the two
types of insulin in one syringe for morning and evening
doses. There are premixed insulins such as the 70/30
preparation, which is suitable for morning shots, and a
50/50 preparation, which is suitable for evening shots.
They are based on premixed insulins (e.g. Novolin 70/30,
Humalog Mix 50/50) administered in one or two shots
per day. For this version of the ontology, we assume the
patient will not take any snacks between meals just to sim-
plify the calculations.
To create a customized plan, the selected insulin

regimen must first be approved by the patient, and
second be checked for compatibility with patient condi-
tions. To personalize the treatment plans, we must
check the drug-drug, drug-disease, and drug-food inter-
actions. A patient currently taken drugs, including insu-
lin, can conflict with other drugs, diseases, or foods. For
example, Novolog (insulin aspart) is contradicting with
more than 125 drugs (e.g. gatifloxacin, macimorelin) and
some diseases (e.g. hypokalemia). In addition, many
drugs affect the blood glucose level or the body’s sensi-
tivity to insulin. Drugs such as corticosteroid, octreotide,
beta-blockers, epinephrine, thiazide diuretics, statins,
niacin, pentamidine, protease inhibitors, L-asparaginase,
antipsychotics, cortisone, Seroquel, niacin, beta 2 ago-
nists, and diuretics cause hyperglycemia, but drugs such
as quinine cause hypoglycemia. Diseases such as meta-
bolic syndrome and acromegaly cause hyperglycemia, but
pregnancy and disorders that affect the liver, heart, or
kidney can cause hypoglycemia. All of these factors must
be taken into consideration to create a real customized
plan. To support interoperability, accuracy, and medical
acceptance, we employed many sources to build the TP
knowledge including standard CPGs, medical experts,
and official websites. We use SWRL to represent moni-
toring and treatment knowledge in the form of rules.
As shown in Fig. 7 (a), the creation of an insulin plan

has a set of steps starting with setting goals for HbA1c,
weight, and BG levels and ending in a standardization
process. We faced many challenges to prepare the
medical knowledge implemented in this ontology. As a
result, the TPs implemented in this version of the onto-
logy do not show the full representation and reasoning
capabilities of our proposal. Based on the patient’s age,
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we determine whether the patient is a child, adolescent,
adult, or oldAdult. FASTO has 140 SWRL rules. The list
of SWRL rules is disclosed in the Additional file 1. We
will give some examples to illustrate the idea. For ex-
ample, Rule 1 identifies adult patients.

Results of these rules with the patient’s pregnancy sta-
tus are used to define plan goals, as shown in the Rule 2
example. In addition, if the patient has some cardiovas-
cular diseases or experienced hypoglycemia, they will
also affect the goals definition.

Rule 2 determines the TP goals as “IF patient is adult
AND pregnant THEN goals are HbA1c<6.5% AND
pre-meal BG >=90mg/dL and <=100mg/dL”. These
values can easily be changed based on new evidence.
This knowledge is standardized according to FHIR, and
its UoMs are based on UCUM.
Selection of a regimen is based on patient preferences

if the patient is an adult, but for pregnant and child, IIT
is medically the best choice. For example, Rule 3 decides
the regimen for an adult pregnant patient.

According to the selected regimen, we calculate the
TDD and divide it into shots for the entire day. Patient
weight is an SSN ontology observation, and its value is
represented as the FHIR ObservationValue instance.
As a result, the ontology will accept sensor observations
and standardize them according to FHIR. In this version
of our ontology, we depend mainly on patient weight (W)
to determine TDD, as shown in Eq. 1. For DF regimen,

the resulting TDD is divided into the morning dose (MD)
and evening dose (ED), as shown in Eq. 2. The morning
dose is divided into long or intermediate-acting insulin
(MDL) and short-acting insulin (MDs), as shown in Eq. 3.
The evening dose is divided into long or intermediate-act-
ing insulin (EDL) and short-acting insulin (EDS), as shown
in Eq. 4.

TDD ¼ 0:6 �W unit=day ð1Þ

MD ¼ 2
3
� TDD; ED ¼ 1

3
� TDD ð2Þ

MDL ¼ 2
3
�MD ¼ 2:4

9
�W units;MDS

¼ 1
3
�MD ¼ 1:2

9
�W units ð3Þ

EDL ¼ 1
2
� ED ¼ 0:1 �W units; EDS ¼ 1

2
� ED

¼ 0:1 �W units ð4Þ
Rule 4 calculates the TDD of any insulin regimen

based on patient weight.

Rule 5 divides TDD of a fixed regimen into four parts
according to the previous equations.

After calculating dosages, we select the most appropriate
insulin depending on the patient’s current complications
and currently taken drugs. This check prevents contradic-
tions with the patient’s current state. For example, Rule 6
checks if the patient is currently taking a drug that is con-
tradicted with insulin detemir (e.g. testosterone, beta-block-
ers, decongestants, and hydrochlorothiazide)

Fig. 7 Initial care plan components. These are the detailed modules of the initial care plan including insulin, diet, exercise, and
education modules
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These contradictions are used to select the suitable
insulins. For example, Rule 7 select glargine long acting
insulin if patient contradicts with detemir insulin.

Each DF regimen is assigned two insulins (i.e. long
acting and rapid acting), and each one has two dosages.
For example, if W = 30 kg, then MDL = 8 units,MDs =
4 units, EDL = 3 units, and EDs = 3 units. The patient
mixes the morning dose in one syringe and the evening
dose in another. Premixed insulins are not considered in
this version of the ontology. This plan will be main-
tained every 3 months based on HbA1c and weight
goals. The initial IIT insulin regimen divides TDD into
basal dose (BA) and bolus dose BO, as shown in Eq. 5,
Eq. 6, and Eq. 7:

BA ¼ f � TDD ð5Þ
BO ¼ 1− fð Þ � TDD ð6Þ

Premeal dose ¼ BO
3

ð7Þ

where f is a factor with values 0.3, 0.4, 0.5, or 0.6, based
on patient conditions. Current medical literature does
not clearly define when to use each factor, but most
CPGs use 0.5. The BA dose is given as one shot taken in
the morning or evening, or divided into two shots. Rule
8 determines the basal dose using UCUM, its route of
administration according to SCT, and its timing accord-
ing to SCT.

In the same way, the BO dose is divided into three shots
to be taken before the three meals. These shots will
change according to the patient’s real-time BG, meal
carbs, and exercise. As modeled in the DP regimen, names
of basal and bolus insulins are determined according to
patient’s current medications and complications.
The last step is the standardization of the resulting

knowledge. This straightforward step is achieved by
mapping the modeled knowledge to a medicationRe-
quest object. This class is connected to the care-
Plan’s carePlanActivityComponent by reference
object property, as show in Fig. 5.

Diet plan definition Diet is critically related to T1D
TPs because patients on insulin therapy always gain
weight [60]. Obesity is associated with insulin resist-
ance and cardiovascular diseases, where patients are
considered to have “double diabetes.” As a result, diet
and insulin sub-plans are tightly linked. Sometimes,
we adjust insulin regimens to facilitate weight man-
agement; other times, we adjust insulin dosages to
cover changing meal carbs. Diet is the meal planning
process. The diet plan defines what to eat, in what
quantities, and when [54], in order to maintain a near
normal BG level, blood pressure, lipid level, and body
weight. This is known as medical nutrition therapy.
Total meal carbs has the greatest effect on glycemic
control (more than proteins and fats), and this fact
has been confirmed in all CPGs. As a result, we de-
pend on the amount of carbs to create the diet plan.
Mainly, the plan has three meals, and each meal has
a specific amount of carbs. The plan does not deter-
mine specific foods for each meal, but it provides
basic food groups according to the patient’s prefer-
ences, activity level, food-drug and food-disease con-
tradictions, age, and weight. In addition, the diet plan
determines the weight goal of carePlan. The diet
plan is defined in five steps, as shown in Fig. 7 (b).
First, we calculate the patient basal metabolic rate

(BMR) based on the Harris-Benedict Equation [61]. It
depends on the patient’s weight (in pounds or kilo-
grams), height (in inches or centimeters), and age (in
years). BMR is calculated for men and women using the
metric system (cm/kg) by using Eq. 8 and Eq. 9, respect-
ively. Using imperial measurements (inches/pounds), it
is calculated for men and women by using Eq. 10 and
Eq. 11, respectively.
BMR ¼ 13:75 � weight in kgð Þ þ 5; 003 � height in cmð Þ

− 6:755 � age in yearsð Þ þ 66:5

ð8Þ
BMR ¼ 9:563 � weight in kgð Þ þ 1:85 � height in cmð Þ

− 4:676 � age in yearð Þ þ 655:1

ð9Þ
BMR ¼ 6:2 � weight in poundsð Þ þ 12:7 � height in inchesð Þ

− 6:76 � age in yearsð Þ þ 66

ð10Þ
BMR ¼ 4:35 � weight in poundsð Þ þ 4:7 � height in inchesð Þ

− 4:7 � age in yearsð Þ þ 655:1

ð11Þ
A diet sub-plan is implemented with the FHIR

nutritionOrder class, and BMR is added to the plan
as supplementary knowledge using the nutritionOr-
derSupplementComponent class (see Fig. 5). We
created SWRL rules to calculate BMR for male and fe-
male patients according to the used UoM. The FHIR
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patient’s age and SSN weight and height observations
are applied based on Eqs. 8, 9, 10 and 11. Rule 9 gives
an example for calculating the BMR of a female by
using the metric system (cm/kg). The resulting BMR
has a UoM from the UCUM, and the value has the
SCT code “165,109,007.”

Second, we determine the patient’s activity level (AL)
based on lifestyle (Table 2); then, we multiply AL with
the BMR to get the number of calories to maintain the
current patient weight (MC), as shown in Eq. 12.

MC ¼ AL � BMR ð12Þ

For example, Rule 10 determines the AL of the patient,
and Rule 11 calculates his/her MC.

Third, we calculate the patient ideal weight (IW) be-
cause the current weight may not be the healthier
weight. We follow the WHO, where the healthy BMI
range is: 18.5 to 25 for both men and women. BMI can
be calculated according to Eq. 13. As a result, the IW is
in the range calculated by Eq. 14 and Eq.15.

BMI kg=m2
� � ¼ Weight in kg= Height in mð Þ2 ð13Þ

Lowest IW in kg LIWð Þ ¼ 18:5 � Height in mð Þ2
ð14Þ

Highest IW in kg HIWð Þ ¼ 25 � Height in mð Þ2
ð15Þ

SWRL rules are tailored to calculate previous equations.
For example, Rule 12 calculates LIW and HIW weight values.

Fourth, by comparing the IW range with the current
weight (W), we determine how many calories the patient
needs in order to maintain, gain, or lose. In addition, we
determine the carePlan’s weight goal (WG). If
W ∈ [LIW, HIW], patient has normal weight. In this
case, the patient has to maintain his/her weight, and the
WG should equal W. If W < LIW, the patient is under-
weight; he/she needs to gain weight of at least LIW −W kg.
To gain this weight, the patient needs extra (LIW −W) ∗
7700 calories. The WG should be at least W+ (LIW −W)
kg. If W >HIW, the patient is overweight or obese; he/she
needs to lose weight of W −HIW kg. To lose this weight,
patient needs to reduce calories by (W −HIW) ∗ 7700, or
he/she will have to depend on the exercise plan. In this
case, WG is at most W − (HIW −W) kg. We must define
the period in days (d) required to lose or gain weight of
(OW) and then determine the number of calories to reduce
or add per day with (OW ∗ 7700)/d. The number of calories
per day (CpD) is calculated as follows. CpD =MC,
and if W ∈ [LIW, HIW]; CpD =MC + (OW ∗ 7700)/d,
if W < LIW; and CpD =MC − (OW ∗ 7700)/d, if W >HIW.
The grams of carbs are equal to CpD/4, which are distri-
buted in meals at 30% for breakfast, 35% for lunch, and
35% for dinner. For example, Rule 13 determines the
weight goal and the total daily calories for a patient
who is of overweight. In addition, it codes the results
using SCT and UCUM.

Fifth, we determine the number of meals (i.e. three meals
for this version of FASTO), the number of calories for each
meal, and the types of food that are allowed and forbidden.
This step depends mainly on the patient’s preferences, on
WG, and on current medications and complications. Ac-
cording to the selected regimen, the patient may or may not
be able to change the meal carbs, as will be shown next.
The nutritionOrder class supports general know-

ledge about diet objects, including the diet’s patient,
dateTime, encounter, allergies, preferred and excluded
foods, nutrients, etc. (see Fig. 5). However, we have to
specifically determine each meal’s carbs and calories to be

Table 2 Activity levels of patients

Life style Activity level
value

Sedentary (little or no exercise) 1.2

Lightly active (light exercise/sports 1–3 days/week) 1.375

Moderately active (moderate exercise/sports
3–5 days/week)

1.55

Very active (hard exercise/sports 6–7 days a week) 1.725

Extra active (very hard exercise/sports & physical
job or 2x training)

1.9
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able to perform real-time monitoring. As a result, we extend
the nutritionOrder resource to incorporate meal knowledge.

We add to nutritionOrder the object properties of
NutritionOrder.meal and NutritionOrder.dailyCalories to de-
fine the order’s meal and the total daily calories, respectively.
Every order is linked to a single meal. As a result, we connect
a meal class to the nutritionOrder class, which is crit-
ical for insulin, diet, and exercise management. In this version
of FASTO, we concentrate on whole calories and carbs per
meals. The ontology defines the recommended foods, but it
does not define specific foods and specific quantities. Please
note, the required knowledge to implement specific foods is
defined in FASTO, but the required SWRL was not
added. For example, Rule 14 determines forbidden
foods based on the patient’s current medications.

Exercise plan definition The exercise plan is a vital
component of T1D management. Exercises improve in-
sulin sensation. As a result, the combination of regular
exercise with diet is critical for a successful care plan in
order to prevent cardiovascular diseases and maintain
normal BG levels. This plan defines the type of activities
suitable for the patient, their timing and intensity, and
their periods to avoid hypoglycemia. Patients on the DF
regimen are not allowed to change their ALs as defined
according to their lifestyles. On the other hand, patients
on IIT can change exercises, and in real-time monitoring,
FASTO adjusts the carb grams and insulin dosages ac-
cordingly. In this step, we define only the basic exercise
sub-plan for both IIT and DF regimens, as shown in Fig. 7
(c). We extend FHIR resources by adding the exercise-
Plan class based on the Schema.org (https://schema.org)
standard. To define the patient’s exercise sub-plan, we
connect the exercisePlan class to the carePlanAc-
tivity class by using its reference object property.

This design supports the assignment of many exercise com-
ponents to the same exercise plan, and each component has
its own frequency, intensity, repetition, exercises, and duration.

In addition, each exercise has its own properties, including
contradictions, code, metabolic equivalent of task (MET)
value, total weekly duration, etc.

Please note, unplanned exercises and their associ-
ated changing procedures in insulin dosages and carb
grams are handled in the real-time monitoring phase.
First, we determine the patients who are forbidden
from doing exercises according to their current condi-
tions. For example, a pregnant woman is forbidden
from exercises if she is [1] extremely underweight
(BMI < 12 kg/m

2
), [2] has hypertension (e.g. preeclamp-

sia), morbid obesity, placenta Previa, fetal anemia, or
chronic bronchitis. Rule 15 identifies patients with
hypertension, dyslipidemia, preproliferative retinopathy,
nephropathy, cigarette smoking, and age > 30 as for-
bidden from doing exercises.

Second, according to the previous step, we determine
the forbidden and recommended exercises according to
the patient conditions (e.g. complications and pregnancy)
and preferences. For example, Rule 16 collects the exer-
cises not allowed for a patient according to his/her dis-
eases. Rule 17 determines the list of recommended
exercises for patients if they are preferred and not forbid-
den. For example, if a patient has foot ulcers, then he/she
must avoid jogging; a patient with cataracts should avoid
cycling; a patient has severe nonproliferative retinopathy
should avoid jumping, jarring, and breath-holding exer-
cises. Finally, we define the regular exercise plans based
on the selected exercises and patient’s age and conditions.

For interoperability, each final planned exercise in the
exercisePlan class can be mapped to the proce-
dureRequest instance in a straightforward way.
Education plans definition Education is a crucial

ongoing process to improve the patient’s decision-making
ability, self-monitoring behaviors, problem solving ability,
and active collaboration with the MH system. The main
steps are shown in Fig. 7 (d). The patient could be a child
or an elder adult, so a specific family member (i.e. a rela-
tive if any) must be assigned as the coordinator for the
delivery of training courses. First, according to the
patient’s age, language, and education level, a suitable
learning style (i.e. reading, visual, auditory, games, or case
studies) is selected. For example, Rule 18 states that a
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visual learning style (e.g. video, images, etc.), and reading
are suitable for highly educated adults.

Second, the learning topics for the patient depend on
his/her current conditions, including currently taken me-
dications, complications, and insulin-monitoring history.
The most common learning topics include insulin, medi-
cations, diet, monitoring, emergency, exercise, and compli-
cations. For example, Rule 19 asserts that if the patient is
on IIT then he/she must take courses in glucose monito-
ring, insulin management, and diet management.

Third, each learning topic has many associated courses.
For example, the insulin topic needs many courses, including
type 1 diabetes mellitus, what insulin is and its types, insulin
regimens, ways to inject, dosing, storage, adverse effects, al-
lergies, and contradictions. The medication topic needs
courses in the administration, dosages, adverse effects, and
contradictions. The diet topic requires courses in weight loss,
gain, and maintain; nutrition and their carbs; and carb count-
ing. The monitoring topic has courses in BG pattern man-
agement, blood pressure monitoring, weight monitoring,
lipid monitoring, and for calculating ISF and ICR. The emer-
gency topic has courses in hypo/hyperglycemia symptoms
and ways for their management. The complications topic has
many courses, depending on the current complications of
the patient. For each complication, a course is required to
describe what it is, ways to manage its medications, and its
contradictions. Finally, the exercise topic has courses for
selecting sports and calculating the needed calories.
FASTO defines a set of courses for each topic and se-

lects a customized format for the patient’s courses accord-
ing to his/her defined learning style and learning topics.
For example, Rule 20 assigns a set of courses for patients
having insulin topic and who prefer reading style. In this
version of FASTO, we manually tailored a set of courses
for the proposed styles and topics. In the future, we will
link machine-learning techniques to select appropriate
courses and customize these courses automatically.

Finally, each course is mapped to a procedureRequest
instance and sent to the patient’s mobile device (Rule 21).

Real time plan adjustment Now, we concentrate on pa-
tients following the IIT regimen in order to adjust their
insulin dosages in real time. Many situations necessitate
adjustment in basal and bolus insulin dosages, including
carb intake per meal, pre-meal glucose level, anticipated
physical activities, weight changes, newly taken drugs, fast-
ing blood glucose, and new complications (including sur-
geries and infections). Patients on IIT measure BG at least
four times daily (e.g. before meals, at bedtime, prior to ex-
ercise, when suspecting low blood glucose, after
hypoglycemia, and prior to driving). These sensor values
are used to adjust the bolus insulin dosages. This adjust-
ment is based on the two evaluation factors of ISF (i.e.
correction factors) measured in millimoles per liter per
unit (mmol/L/U) or milligrams per deciliter per unit (mg/
dl/U) and ICR measured in carbs/U [55]. The pre-meal
and bedtime goals are used to manage BG in real time.
On the other hand, temporal abstraction of collected
sensor data is used to study the behavior of these obser-
vations and determine patterns of glucose management
(e.g., weight increases, high glucose after every lunch,
hypoglycemia every night, etc.). These patterns are used
to adjust basal insulin dosages as follows.
First, we calculate the patient’s ISF. The ISF is the

number of BG points that are reduced by one unit of
bolus insulin. It depends on the UoM for BG. If BG is
measured in mg/dl then we use the 1800 rule (i.e. f = 1800
in Eq. 16), and if BG is measured in mmol/L then we use
the 100 rule (i.e. f = 100 in Eq. 16).

ISF ¼ f
TDD

ð16Þ

The ISF is used to adjust the bolus regimen based on the
planned range for the target per-meal BG. For example, if the
patient has a pre-meal BG goal of [100–150] mg/dl and ISF
= 50, then based on his/her current BG level, the cor-
rections to bolus doses can be described as shown in
Table 3.
Table 3 assumes that a patient consumes the same

amount of carbs for every meal, but this is not realistic.
As a result, ICR is used to manage the dynamic number

Table 3 The role of ISF in the adjustment of meals’ bolus insulin
dosage

Pre-meal blood
glucose

Before breakfast Before lunch Before dinner

< 70 −1 -1 -1

100–150 Planned
dose / carbs
counting

Planned
dose / carbs
counting

Planned
dose / carbs
counting

150–200 + 1 + 1 + 1

200–250 + 2 + 2 + 2

250–300 + 3 + 3 + 3

> 300 + 4 + 4 + 4

El-Sappagh et al. BMC Medical Informatics and Decision Making           (2019) 19:97 Page 22 of 36



of grams for every meal. Using this approach, we replace
the planned dose in Table 3 by the dosage calculated in
real time using ICR and the meal’s carb grams. Second,
according to the TDD, a patient’s the ICR is calculated
using the 500 rule, as shown in Eq. 17.

ICR ¼ 500
TDD

ð17Þ

ICR is the number of carb grams that will be covered by
one unit of bolus insulin. As a special case for children, if
TDD< 10 U, then we use the 300 rule (i.e. ICR = 300/TDD).
For example, Rule 22 determines the ICR for a child
with TDD< 10 U.

Third, we put them all together to provide patients
with real-time advice. Real-time advice can be “increase
or decrease this meal bolus insulin dose by n units,” “eat
m extra grams of carbs,” etc. FASTO tries to balance the
basal insulin dosage with meal carbs and exercises.
FASTO has all the needed semantics to implement this
knowledge. We build a set of robust SWRL rules to
make the most suitable decisions. Real-time monitoring
has two branches of mealtime bolus insulin correction
and pattern management of basal and bolus insulin dose
adjustments.
For a specific meal, if FASTO only received the

current BG sensor observation of (CBG) in mg/dl, and
another observation for the needed-to-eat meal carbs
(MC) in grams, then FASTO uses these two values and
calculates the meal’s bolus insulin dosage as follows.
Please note that the patient is not planning to do any
exercises. For simplicity, we discuss the required calcu-
lations with an example. If patient X has TDD = 50 U, and
is planning to take a meal with MC = 60 g of carbs,
CBG = 210 mg/dl, and pre-meal BG (PBG) goal is
120 mg/dl. According to Eq. 16 and Eq. 17, ICR =
500/50 = 10 carbs/U, and ISF = 1800/50 = 36 mg/dl/U.

1. Calculate the difference in BG as DBG =CBG – PBG.
If the current BG is the same as the target BG, there
will be no effect from this BG observation. Regarding
patient X, DBG = 210 − 120 = 90 mg/dl.

2. Based on ISF, calculate the insulin units needed to
correct BG level by using N1 = DBG/ISF. Regarding
patient X, N1 = 90/36 = 2.5 U.

3. Based on ICR, calculate the insulin units needed
to cover MC carbs by using N2 =MC/ICR.
Regarding patient X, N2 = 60/10 = 6 U.

4. Calculate the meal bolus insulin dose using BD
= N1 + N2. Regarding patient X, BD = 2.5 + 6.0
= 8.5 U.

5. If BD is positive, then the patient needs to take BD
units of insulin. If BD is zero, then this bolus
dosage must be skipped. If BD is negative, then the
patient must take some more carbs to increase the
BG level. Regarding patient X, the bolus dosage
needed to balance BG for this meal is 8.5 U.

All of the above calculations are done by Rule 23.

FASTO could receive three observations for CBG, meal
carbs for MC, and exercise. In this case, the patient is ex-
pected to exercise within 3 hours after taking the meal. If
CBG > 250 mg/dl, CBG < 80 mg/dl, or the patient has
diabetic ketoacidosis, then the patient is forbidden from
exercising. Exercise is represented by its standard comp-
code [62] and its duration in hours (h). The compcode
associates an activity with its intensity and MET. We
combine MET, patient weight (kg), and duration (h) to get
the burned calories (BC) for this activity (see Eq. 18).

BC ¼ MET � weight kgð Þ � duration hð Þ ð18Þ
The BC value is used to calculate the carb grams to be

increased (BC/4). As the patient is already at the meal-
time, the BC value is used to determine the need-to-re-
duce insulin units (BC/4)/ICR. As a result, the bolus BD
is calculated as shown in Eq. 19. For space restrictions,
we will not give examples of SWRL rules.

BD ¼ N1þN2� BC=4ð Þ=ICRð Þ ð19Þ
If exercising is not within 3 hours of a meal, FASTO will

receive the CBG and exercise only. The decision depends
on the patient’s current condition, i.e. underweight, over-
weight, or obese. If the patient is underweight or at
normal weight, then equivalent carb grams (BC/4) is
needed, and its insulin units, (BC/4)/ICR, is added to N1.
If he/she is overweight or obese, then the equivalent
insulin units are only subtracted from N1.
Basal insulin changes according to the pattern manage-

ment process. It is more suitable to apply some machine-
learning algorithms to the cloud-based EHR data to
discover these patterns. However, we can do it using
FASTO semantics. To discover patterns in the BG or
weight measurements, we must use data from at least three
consecutive days, and the compared values must be for the
same time of day. The dosage changes must be be-
tween 10% to 20% of the planned dosage. Table 4 illustrates
3 days of measurements for the BG of a patient with a goal
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BG of 70–140mg/dl. These measurements show that all
values are within the goal range except the before-breakfast
values. As a result, bedtime basal insulin dose must be in-
creased by at least 10%. Please note that the before dinner
BG on May 6 was outside of the goal’s range, but we cannot
make any decision based on this single value.
The algorithm used to manage the discovered pat-

terns is as follows. High/low before-lunch BG means
increase/decrease the before-breakfast bolus dose. High/
low before-dinner BG means increase/decrease the
before-lunch bolus dose. High/low before-bedtime BG
means increase/decrease the before-dinner bolus dose.
High/low before-breakfast BG means increase/decrease
the bedtime-basal dose.

Cloud-based EHR database
The patient historical data from distributed EHRs and
real-time observations from a WBAN are collected, in-
tegrated into, managed, and queried from a cloud-based
EHR database in standardized form based on HL7 FHIR.
It is convenient to use a NoSQL database like the
MongoDB document database because a JSON docu-
ment is equal to a database document, and less mapping
is required. However, RDBs are more popular and more
stable, and most of the current EHR databases are in
RDB format. In addition, HL7 provides a standard RDB
implementation (i.e. FHIRBase: http://fhirbase.github.io)
for FHIR resources. Therefore, it is inevitable to use a
relational database to store data objects that are required,
in order for all system modules to interoperate. We imple-
mented and customized an RDB based on FHIR schema.
Different from FHIRBase, this database is designed based
on mapping FHIR resource to RDB table and resource
elements to attributes, relations, or other tables. An FHIR
resource can be mapped to multiple tables to generate a
normalized RDB. The database was designed according to
the previously selected resources and their designed
profiles, as shown in Table 1. Many FHIR elements (e.g.
imaging elements) have been ignored from the selected
resources to concentrate on our main target. Figure 8
shows a fragment of the designed relational data model.
Attribute data types are modeled in a high-level way to
preserve the simplicity of the diagram. To populate this
RDB, a cloud-based FHIR server sends RESTful requests
to backend systems and to mobile devices to collect

patient data, both of which reply by the required FHIR
JSON resources. These JSON documents are mapped to
their equivalent RDB elements in a straightforward way.
Next, the database records are used to create FASTO’s
ABOX individuals and assertions. In addition, this data-
base stores the patient management history from the
FASTO ontology, including patients’ previous TPs. The
conversion among sensor raw data, EHR database records,
and ontology instances is managed by the standard HL7
FHIR data model and standard terminologies (e.g. SCT,
LOINC, etc.).

Backend EHR systems module
To support interoperability and the seamless integration
of collected data from sensors and EHR backend data-
bases, we provide a common interface between sensors,
aggregators (mobile phones), CDSSs, cloud-based storage
environments, and backend hospital EHR systems. This
interface is based on FHIR adapters, which transform
among FHIR resources and internal data structures of all
system modules. As shown in Fig. 9, RESTful FHIR
servers need to be implemented in the cloud module and
EHR systems. These servers are based on the DSTU3. The
servers are responsible for mapping between local data-
bases and RESTful queries. In addition, they transform
sensor and EHR data to FHIR resources, which can be
transmitted as HL7 JSON messages between system com-
ponents. The collected messages are mapped to cloud-
based EHR database records, which are used to instantiate
the FASTO ontology. All transformation processes are
implemented via FHIR transform engine (http://www.
openmapsw.com/products/FTE.htm). This engine does not
make a hard structure-to-structure mapping, but maps
both database structure and FHIR resources into one
common logical model, i.e. the FHIR resource class
model. The FHIR transform engine and FHIR servers are
integrated based on the standard HL7 application-pro-
gramming interface (HAPI: http://hapifhir.io) v 3.4.0. All
Java implementations that support the proposed
FHIR-based framework can be found in the FHIR official
site (http://hapifhir.io/index.html).
To collect a patient’s historical profile, the cloud-based

FHIR server sends HTTP-based RESTful search requests
to the distributed hospital EHR systems to collect the
patient history based on the patient’s medical ID. Each
backend system has an implemented FHIR server, which
translates the search string of the request into its
internal search command (e.g. a SQL SELECT query),
and runs this query. Query results are converted to
FHIR’s JSON resources and are sent as HTTP response
messages to the cloud. The cloud system translates the
message into an INSERT SQL statement to manage the
patient’s historical data. The structural and semantic
mapping between FHIR resources and RDBs is handled

Table 4 Three consecutive days of BG measurements

BG Before
breakfast

Before
lunch

Before
dinner

Before
bedtimeDate

May 5 320 104 96 86

May 6 296 123 300 136

May 7 341 197 92 111
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by an object relational mapping (ORM) API. Oracle’s
Java persistence API (JPA) standard with Hibernate is
more suitable for implementing these mappings. This
implementation is expected to handle interoperability
challenges in an efficient and sufficient way. The data
models of PHRs and backend EHRs are transparent to the
CDSS, thanks to the FHIR servers implemented in
these modules. This design supports extensibility of
an EHR ecosystem without affecting the currently
running modules. In our proposed system, we map
FHIR resource instance elements to RDB tables and
attributes, and RDB tables and attributes to FASTO
instances and properties.

Results
FASTO reuses the conceptual model provided by the
BFO foundational ontology. As a result, it inherits all the
modeling properties and expressivity characteristics of
the upper-level model. The expressivity of FASTO falls
under the SHOIN (D) description logic. The FASTO
ontology was designed with extensibility in mind. Each
phase of the development process is evaluated separately
to measure its accuracy and completeness. The ontology
can be adapted to other domains, and it can be extended
by adding new knowledge for T1D management. The
ontology evaluation comprises two stages: evaluation of
intrinsic properties (i.e. a technical evaluation) and

Fig. 8 Cloud EHR database based on FHIR resources. This is a part of the created database from FHIR standard resource. This database is stored
on the cloud to collect all of the patient profile data in a standard way
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evaluation of its actual use (i.e. an application eva-
luation). In this section, we evaluate the FASTO seman-
tic model by these stages.

Ontology verification and metrics
The ontology is implemented using Protégé 5.1 (https://
protege.stanford.edu/) and rule-based reasoners (e.g. Pellet).
The technical evaluation is verification and validation of the
ontology, which assesses the consistency, correctness, and
completeness of the ontology knowledge. A review of
ontology metrics reveals a variety of metrics aiming to as-
sess and qualify an ontology [63]. An ontology evaluation
has many different qualitative and quantitative criteria,
which help to uncover errors in implementation and
inefficiencies in the modeling. However, no evaluation
techniques, alone or in combination, can guarantee
high-quality ontologies. Every evaluation methodology
partially addresses specific issues.
An ontology-level evaluation by Pellet and HermiT

reasoners reported valid ontology consistency and onto-
logy taxonomy. Every rule in the list of SWRL rules was
also validated, and the list as a whole is homogeneous and
has no conflicts or redundancies. As a result, we assert
that the proposed FASTO ontology functions in a proper
way. To verify the FASTO ontology, we selected three
evaluation methods: (a) an automated ontology evaluation
tool named OntOlogy Pitfall Scanner (OOPS!) [64], (b)
Protégé metrics, and (c) a manual evaluation. OOPS! is a
web application that helps to detect some of the most
common ontology development pitfalls such as cycles
between classes in the hierarchy. The results of this
evaluation suggested how the ontology could be manually
modified to improve its quality. We evaluated FASTO by

submitting it to OOPS!, which asserted that the ontology
is free of any pitfalls. We used Protégé to collect the
following fundamental metrics based on FASTO ge-
neral structure:

� generic ontology metrics including the number of
classes, properties, annotations, and instances;

� concept or class axioms, including subclass,
equivalent, and disjoint axioms;

� object property axioms, including domain and range
of properties. In addition, complex axioms regarding
the equivalence, inverse, disjointness, functional,
transitivity, symmetry, and reflexivity of properties
have been collected;

� data property axioms, including domains and ranges
properties. Further, similar to object properties,
many complex axioms have been collected;

� instance axioms, including class assertions, same
individual axioms, and different individual
axioms; and

� annotation axioms, including domain and range
annotations and annotation assertions.

Table 5 lists the FASTO ontology non-zero metrics, as
provided by the “ontology metrics” view in Protégé. Our
ontology is quite rich in classes, properties, axioms, and
SWRL rules. This version of FASTO incorporates 9577
classes, 658 object properties, 164 data properties, and
460 individuals. In addition, 140 SWRL rules are added
to implement the semantic logic of real-time monitoring
and TPs. FASTO is publicly available, and can be freely
downloaded from BioPortal (https://bioportal.bioontol-
ogy.org/ontologies/FASTO).

Fig. 9 Data transformation process in the proposed framework. These are the whole connections in the system among patient, backend
hospitals, and the cloud based CDSS. The connections are based on FHIR standard adapters
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Manual evaluation by domain experts in medical prac-
tice and ontology engineering revealed a rational domain
knowledge representation of FASTO. The major results
are as follows. Correctness: our medical expert and
ontology engineers asserted that the usage of classes,
properties, axioms, and rules captures and accurately
represents essential knowledge of real T1D treatment
CDSS. This CPG based knowledge complies with the
expertise of physicians. Completeness: FASTO is 100%
complete regarding the coverage of medical knowledge.
It is capable of representing all concepts, relationships,
and rules constituting the patient profile, TPs, and
real-time monitoring knowledge. In addition, it generates
complete and medically acceptable TPs.
Extensibility: Based on the conceptual foundation of

FHIR and the SSN, the FASTO generic ontology can be
instantiated to represent complete diabetes cases. Fur-
thermore, ontology modularization based on BFO offers
monotonic extensibility to modify FASTO without vio-
lating the validity of the original ontology. Conciseness:
The review process confirmed that FASTO does not
include irrelevant or redundant knowledge. Organizational

fitness: The ontology considered standards in every covered
topic. It depends on the SSN to represent sensor data; it is
based on FHIR to represent medical data and data types; it
encodes medical data by standard terminologies; it utilizes
standard CPGs to extract medical knowledge; and it is
based on the BFO top-level ontology. Therefore, it supports
the seamless integration of CDSS engines as transparent
components in existing EHR ecosystems. It enables know-
ledge sharing and reuse without considerable reconfigu-
ration of existing EHR systems.

Comparison with existing ontologies
FASTO was developed to serve as a knowledge base for
MH CDSSs. It is the most complete ontology for T1D
management. To the best of our knowledge, there is no
publicly available medical ontology for a mobile health
CDSS that covers the medical domain and handles inter-
operability. The resulting medical knowledge is medi-
cally intuitive, and semantic interoperability is handled
from all dimensions using standards (i.e. data models,
terminologies, sensor data, upper-level ontologies, and
communications). This ontology is more flexible and
open, supporting extensions with new semantics. Table 6
provides a comparison between FASTO and six diabetes
treatment ontologies based on 23 interrelated metrics.
We checked if the ontology author has handled every
metric or not. We used Yes/No to encode handled/
not-handled metric, respectively.
As shown in the table, all of the compared ontologies

have limited coverage and handle the problem from only
narrow viewpoints. FASTO is the most complete of the
seven compared ontologies. All other ontologies have
serious limitations regarding MH applicability, and
interoperability with EHR distributed systems and sen-
sor data. Regarding the ontology coverage metric,
FASTO is the most complete ontology in the literature
for T1D mobile monitoring. The proposed ontology
covers all of these limitations and provides a mature
solution that can be applied in an accurate way in existing
medical environments.

Coverage level evaluation
In this section, we present several SPARQL queries to
demonstrate the usefulness and richness of FASTO. We
evaluated its coverage by using a set of competency
questions represented as SPARQL queries. These queries
were evaluated by Protégé. FASTO is the richest onto-
logy for T1D. It can represent any patient condition and
is able to collect all types of data from either sensors or
hospital databases. In addition, all knowledge related to
interoperability between CDSS, WBANs, and EHR
systems is modeled in a complete and standard way.
Due to space restrictions, Table 7 shows a very short list
of 17 competency questions and their corresponding

Table 5 FASTO ontology metrics by Protégé

Metric Count

Classes 9577

Axioms 60,045

Logical axioms 13,637

Equivalent classes 7

Functional object properties 9

Inverse object properties 21

Data properties 164

Data property assertions 228

Object property assertions 341

Class assertions 457

Annotation properties 127

Number of SWRL rules 140

Individuals 460

Annotation assertion 35,335

SubClassOf 10,024

Object properties 658

Object property domain 627

Object property range 628

SubObjectPropertyOf 649

Data property domains 130

Data property range 155

SubDataPropertyOf 159

DisjointClasses axiom 49

Description logic expressivity SHOIN (D)
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SPARQL semantic queries. No publicly available ontol-
ogies discuss chronic-disease TPs, mobile and real time
patient monitoring, and semantic interoperability the
way FASTO does. In addition, because it is based on the
modularization concept, FASTO is more rich, flexible,
and open in order to handle new semantics.

Complete scenario
This section discusses one scenario inferring a patient’s
TP and providing real-time monitoring, as shown in
Fig. 10. In addition, this evaluation measures whether
the ontology blends well with the rest of the system
components, and if it interoperates with them seam-
lessly. A specific patient case is created by class instan-
tiation, property assertions, and SWRL inferences based
on the patient’s history received from EHRs and his/her
current status received from sensors data.

Sensor data collection
Each sensor in the patient’s WBAN has its own
reading frequency. For example, readings from the
BG sensor are taken at least four times (before bedtime and
three meals) per day, and the weight sensor takes one
reading per day. The general format of the senor messages
is<… ∣message ID∣ sensor ID∣ time stamp∣ value∣ … >.
These messages are mapped to FHIR resources and
collected in the PHR database as resource instances.
For example, a new reading from the BG sensor is
mapped to an observation resource format. These
instances are periodically combined as FHIR bundle
resource and sent in JSON format to the cloud. Please
note, sensor data are converted to standard FHIR
resources; in addition, the contents of the resources
are coded using standard terminology, e.g. LOINC,
and standard UoM, e.g. kg.

Table 6 A comparison between DMTO and some existing diabetes treatment ontologies

Dimension FASTO DMTO
[10]

DKOs [67] Chen et al. [68] Chalortham
et al. [69]

Zhang et al.
[70]

OntoDiabetic
[71]

Purpose Treatment Treatment Treatment Treatment Treatment Treatment Treatment

Type of diabetes T1D T2D NA T2D T2D T2D NA

Available for reuse Yes Yes No No No No No

Based on a unified top-level ontology Yes Yes No No No No No

Encoded using standardized terminology Yes Yes No No No Yes No

Based on OWL 2 and SWRL Yes Yes Yes Yes Yes Yes Yes

Can be utilized in MH environments Yes No No No No No No

Based on an interoperability standard Yes No No No No No No

Decisions based on the whole patient profile Yes Yes Yes Only 6 tests
entered by user

No Yes Yes

Supports interoperability with EHR
distributed systems

Yes No No No No No No

Supports real-time patient monitoring
based on WBANs

Yes No No No No No No

Supports data communication by
standards as RESTful API

Yes No No No No No No

Handles interoperability with sensor data Yes No No No No No No

Based on standard knowledge (i.e.
collected from CPGs)

Yes Yes No Yes No Yes Yes

Uses a systematic method for creation Yes Yes No No Yes No No

Delivers complete TPs with drugs, lifestyle,
and education

Yes Yes No No No Yes No

Models diabetes drugs Yes Yes No Yes No No Yes

Models drugs affecting glucose level Yes Yes No No No No No

Models drug properties Yes Yes No Yes No No No

Models T1D comorbidities Yes Yes Yes No No No Yes

Reuses existing ontologies Yes Yes No No Yes No Yes

Ontology coverage Table 5 [10] NA 18 drugs
+6 rules

NA NA NA

Models temporal semantics Yes Yes No Yes No No No
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Table 7 Ontology evaluation using competency questions

Competency question SPARQL query Competency question SPARQL query

Q1. Find all patients who achieved
their TP goals.

SELECT DISTINCT? p WHERE {
?p rdf:type fasto:patient;
fasto:hasPatientProfile? prof.
?prof fasto:hasCarePlan? plan.
?plan fasto:isCurrent “true”^^xsd:Boolean;
fasto:hasGoalAchieved
“true”^^xsd:Boolean.
}

Q2. Who are the patients suffering
from a specific disease with
SNOMED CT code of X.

SELECT DISTINCT? p WHERE {
?p rdf:type fasto:patient;
fasto:hasPatientProfile? prof.
?prof fasto:hasComplication?
cond.
?cond fhir:Condition.code? code.
?code fhir:Coding? coding.
?coding fhir:Coding.code X;
fhir:Coding.system “SNOMEDCT”.
}

Q3. What is the current pre-meal BG
target for a patient with identifier X.

SELECT? code,? system,? value WHERE {
?p rdf:type fasto:patient;
fhir:Resource.ID? id.
?id fhir:Identifier.value X.
?p fasto:hasPatientProfile? prof.
?prof fasto:hasCarePlan? plan.
?plan fasto:isCurrent “true”^^xsd:Boolean;
fhir:DailyPerMealGlucoseLevel? goal.
?goal fhir:Goal.target? target.
?target
fhir:Goal.target.detailQuantity? quant.
?quant fhir:Quantity.code? code;
fhir: Quantity.value? value;
fhir: Quantity.system? system.
}

Q4. What is the current exercise
plan for patient with identifier X.

SELECT DISTINCT? exe WHERE {
?p rdf:type fasto:patient;
fhir:Resource.ID? id.
?id fhir:Identifier.value X.
?p fasto:hasPatientProfile? prof.
?prof fasto:hasCarePlan? plan.
?plan fasto:isCurrent
“true”^^xsd:Boolean;
fhir:CarePlan.activity? act.
?act
fhir:CarePlan.activity.reference?
exe.
?exe rdf:type fasto:exercisePlan.
}

Q5. Find all patients that are
prevented from doing exercise with
the compendium code of X.

SELECT DISTINCT? p WHERE {
?p rdf:type fasto:patient;
fasto:hasPatientProfile? prof.
?prof fasto:hasComplication? cond.
?cond fhir:Condition.disease? d.
?d fasto:diseaseContradictWithExercise?
exe.
?exe fasto:hasCompendiumCode X.
}

Q6. What is the insulin regimen
defined for patient with identifier X.

SELECT? ir WHERE {
?p rdf:type fasto:patient;
fhir:Resource.ID? id.
?id fhir:Identifier.value X.
?p fasto:hasPatientProfile? prof.
?prof fasto:hasCarePlan? plan.
?plan fasto:isCurrent
“true”^^xsd:Boolean;
fasto:hasInsulinRegimen? ir.
}

Q7. What are the current education
materials assigned to the patient X.

SELECT? rec,? topic,? course WHERE {
?p rdf:type fasto:patient;
fhir:Resource.ID? id.
?id fhir:Identifier.value X.
?p fasto:hasEducationRecord? rec.
?rec fasto:hasLearningCourse? course;
fasto:hasLearningTopic? topic.
}

Q8. Find intensive insulin regimens,
which are based on the long
acting insulin with SNOMED CT
code of X.
FASTO supports any standard
coding terminology such as
SNOMED CT, LOINC, RxNorm, ICD,
etc. These standards support
interoperability and improve the
semantic meaning of medical terms.

SELECT? ir WHERE {
?ir rdf:type fasto:insulinRegimen;
fasto:hasBasalInsulin? ba.
?ba fhir:Medication.code? code;
?code fhir:Coding? coding.
?coding fhir:Coding.code X.
}

Q9. Find patients that are contradict
with 414,518,007|insulin detemir.
A patient is prevented from taking
insulin detemir in two cases: first, if
he/she is currently taking a drug
that contradicts with detemir, and
second, if he/she has some
diseases that is contradicting with
detemir.

SELECT DISTINCT? p WHERE {
?p rdf:type fasto:patient;
fasto:hasPatientProfile? prof.
?prof fasto:hasPatientMedication?
medstat.
?medstat fhir:MedicationReference? med.
?med fasto:drugContradictWithDrug?
med2.
?med2 fhir:Medication.code? s;
fhir:Coding? coding.
?coding fhir:Coding.code
“126,212,009”^^xsd:string;
fhir:Coding.system “SNOMEDCT”.
}
UNION
{
?p rdf:type fasto:patient;
fasto:hasPatientProfile? prof.
?prof fasto:hasComplication? cond.
?cond fhir:Condition.disease? d.
?d fasto:diseaseContradictWithDrug?

Q10. List all patient taking rapid
acting insulin with SNOMED CT
code of X.

SELECT DISTINCT? p WHERE {
?p rdf:type fasto:patient;
fasto:hasPatientProfile? prof.
?prof fasto:hasCarePlan? plan.
?plan fasto:isCurrent
“true”^^xsd:Boolean;
fasto:hasInsulinRegimen? ir.
?ir fasto:hasBolusInsulin? ins.
?ins fasto:Medication.code? code;
?code fhir:Coding? coding;
?coding fhir:Coding.code X.
Fhir:Coding.system “SNOMEDCT”.
}

Q11. Find child patients who have
gotten in hypoglycemia before.

SELECT DISTINCT? p WHERE {
?p rdf:type fasto:patient;
fhir:Person.age? a.
FILTER (?a < 10).
?p
fasto:hasHistoryOfHypoglycemia?
h.
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Data collection from EHR systems
The FHIR server in the cloud sends HTTP GET requests
to the distributed EHR systems to collect the patient
history as JSON-based resources. For example, the request
“GET http://fhirtest.com/Condition?patient=168937” col-
lects conditions of the patient with ID = 168,937 from the
fhirtest.com server. These requests are received by FHIR
servers in every hospital, which are responsible for pre-
paring these resources from EHR systems. As a result,
hospital systems are transparent to the CDSS.
EHR-based FHIR servers use the FHIR transform

engine to map persistent EHR data to FHIR resources. All
needed data for a CDSS (current drugs, diseases, allergies,
symptoms, etc.) are requested from heterogeneous EHR

systems. In Fig. 10, patient complications are collected
as standard FHIR condition resources from two hospi-
tals. For example, patient p has “diabetic coma” in Hos-
pital 1 and “hyperosmolar coma” in Hospital n. The
collected resources are coded with standard terminolo-
gies, e.g. 26,298,008|diabetic coma with ketoacidosis in
SNOMED CT.

Cloud-based CDSS
The patient profile is collected in the cloud and stored
in the standard RDB (see Fig. 8). Mapping of collected
FHIR resources to the RDB is a straightforward process
because we used the same resource formats to design
the database. In addition, RDB data are used to instantiate

Table 7 Ontology evaluation using competency questions (Continued)

Competency question SPARQL query Competency question SPARQL query

med2.
?med2 fhir:Medication.code? s;
fhir:Coding? coding.
?coding fhir:Coding.code
“126,212,009”^^xsd:string;
fhir:Coding.system “SNOMEDCT”.
}

FILTER (?h > 0).
}

Q12. List all patient currently on
fixed insulin regimen and suffered
from hyperglycemia condition
before.

SELECT DISTINCT? p WHERE {
?p rdf:type fasto:patient;
fasto:hasPatientProfile? prof.
fasto:hasHistoryOfHyperglycemia? i.
FILTER (?i > 0)
?prof fasto:hasCarePlan? plan.
?plan fasto:isCurrent “true”^^xsd:Boolean;
fasto:hasInsulinRegimen? ir.
?ir rdf:type fasto:fixedRegimen;
}

Q13. List all patient who have a
history of “increasing before
bedtime insulin.”
This pattern is inferred using the
temporal abstraction of previous
sensor data of before bedtime
insulin. This abstraction is based on
at least the previous 3 consecutive
days.

SELECT DISTINCT? p WHERE {
?p rdf:type fasto:patient;
fasto:hasPatientProfile? prof.
?prof fasto:GlucoseBefBT
“increasing”^^xsd:string
}

Q14. List all patient having the
symptom of shortness of breath.
Symptoms are encoded in SNOMED
CT standard terminology.

SELECT DISTINCT? p WHERE {
?p rdf:type fasto:patient;
fasto:hasPatientProfile? prof.
?prof fasto:hasSymptom? sym.
?sym fhir:Condition.code? cd.
?cd fhir:Coding? cding;
?cding fhir:Coding.code
“267,036,007”^^xsd:string.
Fhir:Coding.display
“dyspnea”^^xsd:string.
}

Q15. What are the characteristics of
WBAN of patient with identifier X.

SELECT? wban,? sub,? lot,? date,?
man,? mod WHERE {
?p rdf:type fasto:patient;
fhir:Resource.ID? id.
?id fhir:Identifier.value X.
?p fasto:hasWBAN? wban;
?wban ssn:hasSubSystem? sub;
?sub fhir:Device.lotNumber? lot;
fhir:Device.manufactureDate?
date;
fhir:Device.manufacturer? man;
fhir:Device.model? mod.
}

Q16. List the current sensor
observations for patient X and
their values.

SELECT? obs? code? quan WHERE {
?p rdf:type fasto:patient;
fhir:Resource.ID? id.
?id fhir:Identifier.value X.
?p fasto:hasPatientProfile? prof.
?prof fasto:hasObservationValue? obs.
?obs rdf:type sensedObservationValue;
fhir:Observation.code? code;
fhir:Observation.valueQuantity? quan;
}

Q17. Find adult patients that are
currently on 126,212,009|insulin
glargine.

SELECT DISTINCT? p WHERE {
?p rdf:type fasto:patient;
fhir:Person.age? a;
fasto:hasPatientProfile? prof.
?prof fasto:hasPatientMedication?
med.
?med
fhir:MedicationCodeableConcept?
s.
?s fhir:Coding? coding.
?coding fhir:Coding.code
“126,212,009”^^xsd:string;
fhir:Coding.system “SNOMEDCT”;
Fhir:Coding.display “insulin
glargine”^^xsd:string.
FILTER (?a > 19 &&? a < 55)
}
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FASTO. To automate this process, we depend on the
D2RQ Platform (http://d2rq.org). D2RQ and its D2RQ
mapping language, a declarative language to map RDB
schema to an OWL ontology, are used to export the
patient profiles from RDB to RDF format. The RDB tables,
relations, records, and constraints are mapped to FASTO
classes, object properties, data properties, and axioms,
respectively. Figure 11 shows an example of two class-
mapping rules for the patient table to the patient class
and the condition table to the condition class, and one
property mapping of the hasCondition relationship to the

hasCondition object property. Every mapping creates a
new triple with a unique URL. These triples are asserted
in FASTO ontology as instances or properties. For
example, every observation is mapped to an SSN
observationValue class, and every device is mapped to
the sensingDevice class, etc.
FASTO represents all sensor data based on SSN seman-

tics, standard terminologies as LOINC, and standard UoM.
Furthermore, we represent all conditions, adverse events,
symptoms, demographics, and drugs based on FHIR
resources and standard terminologies, e.g. SNOMED CT.

Fig. 10 Complete scenario for the inference process of patient TPs and real time monitoring. This scenario starts and ends at the patient.
According to the patient real time monitoring, these data are sent to the cloud based CDSS, which check the whole profile of the patient
collected in a standard way from distributed EHR systems. After that, the CDSS proposes a personalized treatment plan
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We added many other axioms to infer additional know-
ledge. For example, some axioms are used to infer contra-
dictions between drugs, food, and diseases.
OWL 2 semantics enhance the inference capabilities

of FASTO. For example, it can easily infer that the col-
lected diseases in Fig. 10 from hospitals 1 and 2 can be
interpreted as one complication. Now, the 140 SWRL
rules are used to instantiate TPs for patients according
to their profiles (see Fig. 7). These plans are instances of
the carePlan class, which was designed based on the
carePlan resource. The resulting carePlan objects
and their associated goal objects are mapped to FHIR
resources and sent to the patient mobile device, as
shown in Fig. 10.

Discussion
We propose an ontology-based mobile health CDSS for
type 1 diabetes monitoring and treatment. The study pro-
vides a patient-centric comprehensive architecture based
on a set of standards to handle interoperability challenges.
There is a critical need for standard-: [1] data models for
patient data representation, [2] approaches for CDSS
knowledge formalization, [3] methods for data and know-
ledge sharing between distributed systems, [4] sources of
medical knowledge, and [5] formats for sensor data

representation. Ontology semantics and medical standards
provide intelligent solutions to these needs.
Our previous studies demonstrated the benefits of

using an ontology to build CDSSs [9, 10, 65, 66]. The
formal and explicit semantics facilitate knowledge re-
presentation, sharing, and reuse. The instantiated onto-
logy model together with a set of semantic web rule
language (SWRL) rules constitute the CDSS knowledge
base, which can be interpreted by inference engines such as
Pellet. However, without consistent and globally accepted
standard data models, the generated ontologies are in-
compatible with each other in structure and semantics,
making it difficult for their integration, reuse, and mainte-
nance. To handle the structure-consistency challenge,
standard data models such as openEHR, HL7 v2 messages,
and HL7 V3 reference information model (RIM), can be
utilized to build standard ontologies [18]. Recently, HL7
proposed FHIR as an open standard, which concentrates
on semantic interoperability [45–47, 49]. To the best of our
knowledge, no studies used FHIR to build standard onto-
logies, especially for diabetes [15]. In addition, building
ontologies based on a unified upper-level ontology (e.g.
BFO, general formal ontology [GFO], and descriptive onto-
logy for linguistic and cognitive engineering [DOLCE])
improves the interoperability and understandability of the

Fig. 11 D2RQ examples for connecting to RDB and mapping a table, class, and property. This is a set of mappings among RDB tables, FASTO
concepts, and FASTO properties. This mapping is based on D2RQ APIs
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resulting ontologies [9]. We employ BFO 2.0 to build our
type 2 diabetes treatment ontology (DMTO) [10], but we
did not use any standard data models. No studies in the
literature integrate BFO and FHIR to build a MH CDSS,
especially for diabetes [15]. To handle the semantic
consistency challenge, the FHIR data model should be
mapped to an OWL 2 ontology, and all of the ontology
terminologies need to be bound with standard terminolo-
gies (e.g. systematized nomenclature of medicine – clinical
terms [SNOMED CT], logical observation identifiers names
and codes [LOINC], RxNorm, or the international classifi-
cation of diseases [ICD]). Some of these terminologies have
semantic problems, which can be solved by using more ac-
curate description logic ontologies. We used OWL 2 ontol-
ogy formalization to enhance SNOMED CT semantics [65];
however, this type of integration has not been discussed in
the literature. CDSS medical knowledge can be collected
from the results of machine learning algorithms, medical
experts, and CPGs. Efficiency of machine learning algo-
rithms is based on the quality of the input medical data,
which is always low. In addition, it is difficult to collect
heuristic knowledge from domain experts. Moreover, the
significant gap between evidence-based medicine and clin-
ical practice can result in lower quality and increased costs
for medical care. As a result, building CDSS knowledge
based on the most recent and standard CPGs is the best
choice. Finally, ontologies should be used to improve the
semantic representation of sensor data. The semantic en-
richment of sensor data is called the semantic sensor web.
The resulting ontology enhances the smooth integration of
sensor data with historical EHR data. Furthermore, utilizing
a standard sensor ontology such as the W3C’s SSN extends
the interoperability between CDSSs and EHR ecosystems
[57]. To the best of our knowledge, utilizing SSN with
formalized EHR to build MH CDSS systems has not been
discussed in the literature [15]. All of the previous chal-
lenges have been handled in the proposed study. We have
concentrated mainly on the development of the core of
component of CDSS system, namely its knowledge base.
The resulting knowledge base is the FASTO ontology,
which can be easily integrated with inference engine as
Pellet reasoner. The most interesting part of the proposed
system is the compatibility and interoperability of its mo-
dules, which facilitate the development of a transparent and
pluggable CDSS system. At the same time, the proposed
ontology can suggest a medically acceptable and complete
care plans for diabetes patients.
To the best of our knowledge, this is the first complete

MH infrastructure that handles the interoperability issue
based on the available standards of SSN, BFO, SNOMED
CT, FHIR, CPGs, etc. In addition, FASTO is the first
public repository systematically documenting type 1 dia-
betes management. It creates individualized and cus-
tomized treatment plans. These plans have many parts

including insulin, lifestyle, and education that are
created based on real time vital signs and historical EHR
data (i.e., lab tests, complications, currently or previously
taken drugs, symptoms, family history, etc.)
The proposed MH CDSS discussed in details the

knowledge base development process and proposed
comprehensive solutions for most of the implementation
decisions. However, it still has some limitations. First,
although FASTO is the most comprehensive type 1 DM
treatment ontology, it did not handle some important
treatment situations including emergencies. The limited
availability of detailed medical knowledge in the litera-
ture is the main reason of this limitation. We studied
most of the existing treatment CPGs and pathways;
however, they did not provide a clear, comprehensive,
and implementable knowledge about diabetes emergen-
cies. FASTO has been implemented in a modular form.
It is easy to extend and maintain its knowledge. As a re-
sult, it will stay open for any new or altered knowledge
about diabetes medications. Second, FASTO models diet
plans based on the grams of carbohydrates. This is
according to the most recent CPGs; however, proteins
and fats must have a clear role in diet plans. There is
less knowledge about how to formulate the role of
proteins and fats in meal planning. In addition, future
enhancements are needed to tailor diet plans with fami-
liar and preferred foods and with acceptable measure-
ment units, such as cup, piece, etc. Third, FASTO
provides treatment plans for type 1 diabetes only; how-
ever, a major step in managing diabetes is to manage its
complications. Fourth, in the future, we will build the
complete FASTO-based MH CDSS as an embedded
component in an EHR system. This step will help us to
put FASTO in a real environment; as a result, it will be
easy to evaluate the performance of the proposed system
and the quality of the proposed TPs.

Conclusion
In this paper, we proposed a distributed, semantically in-
telligent, cloud-based, and interoperable MH CDSS
framework. It can be used to provide monitoring of T1D
patients. In addition, it can provide customized TPs
according to the patient’s complete history and current
vital signs. The proposed CDSS is based on the novel
FASTO, which is a comprehensive OWL 2 ontology
created by using Protégé 5.1 for T1D patients. The current
version of FASTO includes 9577 classes, 658 object pro-
perties, 164 data properties, 460 individuals, and 140
SWRL rules. This is the first ontology that can provide
complete and medically acceptable TPs based on historical
EHRs and real time sensor readings. FASTO can be used
to monitor BG in real time based on vital signs collected
from WBANs. According to these real-time readings,
FASTO suggests accurate adjustments in insulin dosages,
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eating patterns, and exercise plans. In addition, FASTO
provides patients with tailored and long-term TPs with
four main parts: insulin regimen, diet plan, exercise
plan, and educational courses. The ontology has been
tested, and it is publicly available through the BioPortal
at https://bioportal.bioontology.org/ontologies/FASTO. We
discussed the detailed process for creating this ontology,
which provides semantic interoperability among CDSS
knowledge, WBAN platforms, and distributed EHR sys-
tems. FASTO integrates a collection of standards to build
a complete patient profile before making treatment deci-
sions. FASTO is based on the BFO 2.0 top-level ontology,
SSN ontology, HL7 FHIR standard, medical terminology,
and T1D treatment CPGs. FASTO was designed in a
modular manner, which makes it extensible and reusable
in other domains.
One of the most important evaluation techniques of an

ontology is by using applications. In the future, we will
build a complete mobile health application for T1D moni-
toring. FASTO and an ontology reasoner will play the role
of a CDSS. To handle the uncertain nature of medical
data, we will extend our classic ontology into fuzzy onto-
logy. We expect that fuzzy ontology will make the resul-
ting system more acceptable and accurate. Finally, we will
employ recent deep learning techniques, such as recurrent
neural network, to help in pattern detection and manage-
ment of patient sensor data. Pattern management helps to
adjust a meal’s insulin, exercise’s insulin and carbs, and
bedtime insulin. Finally, we will extend FASTO to deal
with emergencies, such as hypoglycemia and hypergly-
cemia situations.

Additional file

Additional file 1: The complete list of SWRL rules for type 1 diabetes
mellitus treatment. This is a list of 140 SWRL rules that implement the
semantics of the proposed CDSS. (DOCX 26 kb)
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