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Abstract

Background: The amount of patient-related information within clinical information systems accumulates over time,
especially in cases where patients suffer from chronic diseases with many hospitalizations and consultations. The
diagnosis or problem list is an important feature of the electronic health record, which provides a dynamic account
of a patient’s current illness and past history. In the case of an Austrian hospital network, problem list entries are
limited to fifty characters and are potentially linked to ICD-10. The requirement of producing ICD codes at each
hospital stay, together with the length limitation of list items leads to highly redundant problem lists, which
conflicts with the physicians’ need of getting a good overview of a patient in short time.
This paper investigates a method, by which problem list items can be semantically grouped, in order to allow for
fast navigation through patient-related topic spaces.

Methods: We applied a minimal language-dependent preprocessing strategy and mapped problem list entries as
tf-idf weighted character 3-grams into a numerical vector space. Based on this representation we used the
unweighted pair group method with arithmetic mean (UPGMA) clustering algorithm with cosine distances and
inferred an optimal boundary in order to form semantically consistent topic spaces, taking into consideration
different levels of dimensionality reduction via latent semantic analysis (LSA).

Results: With the proposed clustering approach, evaluated via an intra- and inter-patient scenario in combination
with a natural language pipeline, we achieved an average compression rate of 80% of the initial list items forming
consistent semantic topic spaces with an F-measure greater than 0.80 in both cases. The average number of
identified topics in the intra-patient case (μIntra = 78.4) was slightly lower than in the inter-patient case (μInter = 83.4).
LSA-based feature space reduction had no significant positive performance impact in our investigations.

Conclusions: The investigation presented here is centered on a data-driven solution to the known problem of
information overload, which causes ineffective human-computer interactions at clinicians’ work places. This problem
is addressed by navigable disease topic spaces where related items are grouped and the topics can be more easily
accessed.
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Background
Through lifelong and nationwide Electronic Health
Record (EHR) systems, larger and larger amounts of
patient information will be available at clinicians’
workplaces. Flooding the user which highly granular and
partly redundant information is especially relevant when
patients have chronic diseases, multiple diagnoses and
numerous in- and outpatient treatment episodes.
This circumstance hampers a quick overview of the

most important facts, possibly with a negative influence
on the quality of medical decisions. For a long time,
problem lists or diagnosis lists in medical records have
been key information sources, because they contain a
palatable selection of the most relevant information
items, filtered and summarized by physicians.
In the setting in which this study is embedded, i.e. in a

large Austrian hospital network, the clinical information
system displays problem list entries up to 50 characters
only. Furthermore, problem lists are, first of all, diagno-
sis lists, and each coded diagnosis at each hospital stay
produces a new problem list entry. Due to the length
limitation of list items, most official ICD labels are
overwritten by the users, often drastically abbreviated
and enriched by additional information like time or
other contexts of a diagnosis.
To improve the access of physicians to problem list

entries, especially by reducing redundancy is the main
objective of a so-called patient-centered QuickView
mode we have developed and deployed via a
web-based front-end from of the clinical information
system i.s.h.med. Whereas the ultimate goal of
QuickView is a navigable, user-centered overview of a
patient’s diseases, medications, procedures and labora-
tory results, we here limit ourselves to a problem list
like diagnosis lists, most of which coded by ICD-10.
Such lists easily amount to a length of hundreds of
items for elderly or multi-morbid patients. We intend
to provide a topic-based grouping, which can be
exploited in a navigational and information
visualization based way within QuickView.
Analyzing EHR content with supervised and unsuper-

vised machine learning methods has become a widely
used approach to gain insights into clinical information
like diagnoses [1] or medications [2–5], and at the same
time it is also a matter of investigation in different aca-
demic challenges [6].
Information extraction from unstructured EHR data

like clinical narratives is a general challenging task, due
to language specific idiosyncrasies like short forms
(abbreviations [7, 8], acronyms [9, 10]), spelling and typ-
ing mistakes, syntactic incompleteness, specialist jargon,
negations [11] or non-standardized numeric expression,
just to mention some [12, 13]. The automatic assign-
ment of ICD diagnosis codes received special attention

in various research projects due to its importance for
therapy planning, billing and medical decision support.
Koopman et al. [14] used support vector machines

(SVMs) with term and concept based features to
automatically detect cancer diagnoses and classify them
according to ICD–10. An F-measure of 0.70 was
reported for detecting the type of cancer. Koopman et
al. [15] also automatically classified death certificates
with respect to influenza, diabetes, pneumonia and HIV.
A supervised approach with SVMs was used for ICD-10
coding, resulting in an F-measure of 0.80. Ning et al.
[16] tested a Chinese ICD-10 coding approach on med-
ical narratives. Based on a word-to-word similarity
metric, they structured the ICD-10 codes hierarchically
and assigned codes to unlabeled documents with an
F-measure of 0.91. Chen et al. [17] enhanced the longest
common subsequence algorithm for ICD-10 mapping to
Chinese clinical narratives, yielding an F-measure of 0.81
for this task. Boytcheva [18] achieved an F-measure of
0.84 using a multi-class SVM with a max-win voting
strategy in combination with a text preprocessing mod-
ule for ICD-10 coding of Bulgarian clinical narratives.
However, features used in a supervised framework are

often connected to language-specific patterns, even
though more recent deep learning methods reduce the
need for use case specific feature engineering e.g. for
clinical narrative de-identification [19, 20].
In the following sections we will present and evaluate

a minimal language-dependent approach of semantic
grouping of problem list entries, without the need of hu-
man feature engineering. We refrain from a purely su-
pervised approach, but will use a post-ICD-10 coding
methodology with the side effect that documents where
no code could have been assigned are nevertheless
grouped together in semantically meaningful clusters.

Methods and materials
Intra-patient data-set
For intra-patient inspection, we used data from five
de-identified nephrology patients, each of them having
between 250 and 861 50-character long problem list
statements written in German, covering time intervals
from 12 to 22 years. A special feature of these
code-description pairs is the fact that physicians can
overwrite the contents of a 50-character long text field
originally filled with standardized text generated by an
ICD-10 coding plug-in. The list view therefore consists
of different standardized and personalized diagnosis
entries, the latter often being enriched with additional
context like time references, procedures, or medications.
Additionally, ICD-10 codes with no textual description
as well as entries without ICD-10 codes occur. This
makes these lists, originally devised as ICD-based
diagnosis lists, resemble problem lists, a feature rooted in

Kreuzthaler et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 3):72 Page 108 of 114



Anglo-Saxon medical traditions, but uncommon in
German-speaking clinical communities.

Inter-patient data set
We used the sampling theorem with Chernoff bounds
[21, 22] in order to estimate a statistical representative
sample size for nephrology patients for the inter-patient
inspection:

n≥
3
ε2

In
2
δ

ð1Þ

With an accuracy of ε = 0.05 and a confidence of 1 − δ =
0.95, 4430 non-identical ICD-10 coded de-identified
50-character long text snippets were chosen as a represen-
tative linguistic sample size (4430 ≥ n = 4427). The advan-
tage of using the sampling theorem is its independence of
the overall initial pool size for estimating a number of
samples. By applying this theorem, we claim that a repre-
sentative syntactical pattern of the sampled corpus, in our
case the non-identical short ICD-10 code descriptions,
with a probability of 95%, is within +\- 5% of the overall
observations. With this approach for sub sample size
estimation we addressed a significant amount of linguistic
variations in a clinical domain, for inter-patient
post-ICD-10 encoding. Finally, we merged the five
de-identified patients from the intra-patient pool with the
4430 ICD-10 samples.

Problem description
A patient P1..i has a set of diagnosis list items I1..k..l where
Ik = (ICD − 10k, dk) defines the 50-character long descrip-
tion dk which we refer to as a document in the following
analysis. One fraction Icoded = I1..k is coded and the other
one Iuncoded = Ik + 1..l is without codes, with just the text
snippets dk + 1..l existing. Since an immediate overview of
all list items I1..l to a patient Pi is not possible with lon-
ger lists, our solution attempts to semantically group
them into n sets C1..n, so that the content navigation
through all list items I1..l via C1..n is supported.
For semantically grouping related list items I1..l, we

make use of the fact that list items Icoded with the same
3-digit ICD-10 code are similar in content. Existing
codes to a document form a manual ground truth of
judgment for semantic similarity. On the other hand,
content similarity of a subgroup of list items Ii..j out
of I1..l is given by string similarity between two list
items (I1, I2), which can be expressed via a function
fsim(I1, I2) = sim = fsim(d1, d2). Therefore sim is an indi-
cator for content similarity.
In cases where list items have the same ICD-10 code,

we clustered them forming CICD − 10 =C1..i ICD-10
content groups. Therefore we tried to post-assign
ICD-10 codes to the uncoded list items Iuncoded while
those list items which got no post-ICD-10 code assigned

could at least be grouped as being similar in content, via
a certain level of sim forming Csim =Ci + 1..n cluster. We
therefore evaluated the correct post-ICD-10 assignment
of list items in CICD − 10 and the correct clustering of
content groups Csim where no code could be assigned
based on string similarity.
We aimed to achieve this in one go by using a

hierarchical clustering approach wherever ICD-10 codes
are assigned to non-coded list items and at the same
time infer the optimal sim boundary for string-based list
item grouping with a minimal language-dependent
preprocessing strategy. We apply the methodology in an
intra-patient and an inter-patient scenario. For inter-pa-
tient post-ICD-10 assignment we assumed that the num-
ber of assigned ICD-10 codes was significantly higher
compared to the intra-patient scenario, due to the fact
that codes can be assigned via learning from examples of
other patients.

Evaluation methodology
We use the metrics Precision = #TPs / (#TPs + #FPs), Recall
= #TPs / (#TPs + #FNs) and F-measure = 2 · Precision · Re-
call / (Precision+Recall) [23], in order to evaluate the accur-
acy of our topic groups C1..n, for the intra-patient and for
the inter-patient approach, respectively. True Positive (TP):
A topic gets correctly assigned. False Positive (FP): A topic
gets incorrectly assigned. False Negative (FN): A topic should
have been assigned. True Negative (TN): A topic was cor-
rectly not assigned. A topic can be specified via a specific
3-digit ICD-10 code or a certain content cluster in case it is
not possible to assign a post-ICD-code description.

Data preprocessing
The 50-character text segments were normalized using
the following Lucene [24]-based NLP processing chain: a
StandardTokenizer for tokenizing the very short narra-
tives; a StandardFilter applying a base orthographic
normalization; a LowerCaseFilter to eliminate all upper
case occurrences; a StopWordFilter erasing a list of
defined tokens and a SnowballFilter (“German2”) for
stemming (Fig. 1). Finally a specific set of characters
were removed from the normalized token stream via
a specific regular expression ([\d\.\,\_\:]+). We com-
pensated the especially German language specific
phenomenon of word compounds, e.g. certain
domain-specific affixes like “-itis” for inflammation or
“-ektomie” for surgical removal, not by a specific
word decompounding engine but by a character
n-gram filter, choosing an initial window size of n = 3.
The side effect of character n-gram modeling is that
typing errors, commonly found in clinical narratives
have less impact on token dissimilarity in the VSM
(Vector Space Model).
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Vector space model
We mapped the EHR problem list items into a vector
space using the VSM [25, 26] which models a set of
documents D = d1, d2, dj,… , dn as bag of words where a
document dj defines a point in the m-dimensional vector
space, forming an m-dimensional feature vector. The
dimensionality m of the feature space in our case is
defined via t1, t2, ti,… , tm unique character 3-gram types
of the preprocessed document collection D and the
VSM is therefore described via a m×n matrix X. We ap-
plied the term frequency – inverse document frequency
tf-idf weighting scheme on X and used the cosine simi-
larity between two documents di and dj to obtain the se-
mantic similarity sim between two list items Ii and Ij.

Latent semantic analysis
We examined Latent Semantic Analysis (LSA) and dif-
ferent degrees of dimension reduction of the semantic
space for its impact on our topic model approach. The
mathematical core function of LSA [27, 28] is a Singular
Value Decomposition (SVD) of the term-document
matrix X = TSDT accessing the orthonormal matrices T
and DT with the eigenvectors of XXT and XTX. T defines
the term matrix and DT the document matrix. The roots
of the eigenvalues of XXT and XTX are embedded in S.
The degree of dimensionality reduction can be con-
trolled by eliminating the lowest eigenvalues and their
eigenvectors to a new dimension k resulting in a dimen-
sionality reduced space Tk respectively DT

k. The ortho-
normal semantic spaces Tk, D

T
k can be seen as one kind

of distributional semantics and are exploited in various

information retrieval and information extraction
scenarios.

Clustering methodology
For content-based grouping into n sets C1..n we applied
a clustering approach. First, for all patient-specific docu-
ments d1..l (50-character long phrases) including the
already ICD-10 coded documents we applied a hierarch-
ical agglomerative cluster method implemented in the R
package fastcluster [29]. In brief, agglomerative cluster-
ing works as follows: All documents are initially assigned
to their own cluster and then iteratively merged, based
on a specific distance metric until there is just a single
cluster. To decide whether two cluster collapse into a
single one we used the Unweighted Pair Group Method
with Arithmetic Mean (UPGMA) variant. It computes
the distances between two cluster C1 and C2 based on
the pairwise average distances between their assigned
documents d:

1
C1j j C2j j

X
di∈c1

X
d j∈c2

1− f sim di;d j
� �� � ð2Þ

We hypothesize that string similarity of textual
problem list entries (i.e. the documents) correlate with
their ICD-10 code assignments, therefore we expect that
UPGMA in combination with the chosen cosine similar-
ity distance metric delivers good results. We applied dif-
ferent cut heights to the resulting dendrogram and
inferred the cut-off (cut-height of the dendrogram) that
most accurately reproduced the already coded ICD-10

Fig. 1 Overview of the main data flow and preprocessing steps until the selected clustering approach has been applied at the end of the overall
processing chain
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clustering scheme (Icoded). A big advantage of the
UPGMA clustering is that we can directly relate the
resulting clusters to the cosine distances between the
documents whereas other algorithms like k-means for
example require a pre-defined parameter k for the
number of clusters. Accuracy was estimated by the
F-measure for the intra- as well as the inter-patient
scenario.
In fact, one could also infer an appropriate cut-off

based on more conservative approaches like the
Elbow [30] or Silhouette [31] method to enable a
purely unsupervised setting. However, in our frame-
work these methods would separate clusters exclu-
sively based on string similarity, which may not
capture the true n-gram variances within the semantic
clusters and as consequence will likely produce a high
false negative rate.

ICD−10c Iuncodedð Þ ¼ ICD−10c max f sim dl;dkð Þf g; Icodedð Þ ð3Þ

Equation 3 gives a formal explanation of how the post
coding of ICD-10 codes was executed. Unlabeled docu-
ments (dl ∈ Iuncoded) were coded if and only if they ap-
peared in a same cluster C (dl, dk ∈C) together with at
least one ICD-10 coded document (dk ∈ Icoded). In cases
where documents with different ICD-10 codes were
clustered in the same group, we assigned the label of the

document with the smallest cosine distance
transforming the diagnosis into a coded list item.

Results and discussion
We used a hierarchical clustering approach to semantic-
ally cluster EHR problem lists, where semantic similarity
was specified by ICD-10 codes and string similarity. The
main challenge of this approach is to find the optimal
cut-off height of the resulting dendrogram to ensure op-
timal post-ICD-10 coding and reasonable string cluster-
ing at the same time. With the hypothesis that ICD-10
coding correlates with string similarity we were able to
exploit the already coded 50-character as a reference for
this optimization problem.
Specifically, we inferred a cut-off such as the coded

50-character long diagnosis texts with the same 3-digit
ICD-10 code fall into the same grouping based on string
similarity. This is achieved by iteratively applying differ-
ent cut-off heights and finally choose the one with the
maximum F-measure. For this study we report an
averaged intra-patient F-measure of 0.70 at a cut-off
height 0.90 for patients P1..5 and an F-measure of 0.47 at
a cut-off height 0.97 for the inter-patient approach.
From these first results we could conclude that our
assumption exclusively holds for a subset of diagnosis
lists reflecting an ICD-10 cluster (intra-patient).
Re-sampling a fully representative character 3-gram dis-
tribution (inter-patient) of the ICD-10 specific diagnosis
texts strongly discard this assumption due to the high

Fig. 2 Averaged step-wise intra-patient and inter-patient dimension reduction of the semantic document space
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variances observed within the ICD-10 groups. However,
while the obtained cut-off purely performs in detecting
true negatives it does remarkable well in post-assigning
ICD-10-codes.
In an additional investigation, as depicted in Fig. 2, we

inspected the influence of transforming the character
3-gram term-document matrix X into its semantic or-
thogonal document space DT

k and varied the dimension
reduction at k different levels. We observed a maximum
F-measure of 0.58 using 40% of the most relevant
dimensions for the intra-patient case and an F-measure
of F = 0.42 with the 10% of the most relevant dimensions
for the inter-patient case. Thus, mapping the problem
into a reduced linear transformed semantic space via
LSA not yet improved the performance of our approach.
Table 1 highlights the results for the intra-patient

post-ICD-10 coding at the top and the string clustering
results at the bottom. On average 68% of the non-coded
list items were post assigned with an F-measure of 0.77.
The remaining 32%,where no ICD-10 code could have
been assigned, formed consistent topic clusters with an
F-measure of 0.85. We therefore report an overall list
item grouping for the intra-patient inspection with an
F-measure of 0.81.
From Table 2 we see that for the inter-patient setting

almost all non-coded list items get a post-assigned
ICD-10 code with an overall F-measure of 0.87. This
result is quite remarkable compared to the literature
review and considering the not optimal cut-off we in-
ferred for the inter-patient inspection accomplished by a
lower precision compared to the intra-patient results in
Table 1. However, the expected recall gain had an overall
positive performance impact judged by the F-measure.
The post-ICD-10 coding rate is indeed that high that

the portion of list items without code has no relevant
impact on the overall topic groups C1..n, to support the
navigation through all list items I1..l via C1..n. We

therefore report an overall list item grouping for the
inter-patient inspection with an F-measure of 0.87
mainly dominated by ICD-10 codes.
Tables 3 and 4 show that the number of identified

topics on average in the intra-patient case (μIntra = 78.4)
was lower than in the inter-patient case (μInter = 83.4) as
well as initial list items views like in the case of Patient 3
with more than 850 entries can be semantically grouped
to less than 100 entry points. This is equivalent to a
semantic compression rate of up to 89% of the original
list item size.
Despite the good results of our approach two major

challenges need to be addressed: i) Some textual expres-
sions should be coded with more than one ICD-10 code.
For instance, in the case of “Akutes Nierenversagen mit
Hyperkaliämie” (acute kidney failure with hyperkalae-
mia) N17 (acute renal failure) should be assigned to
“Akutes Nierenversagen” (acute kidney failure) and E87
(other disorders of fluid, electrolyte and acid-base
balance) for “Hyperkaliämie” (hyperkalaemia). So far we
have inferred exactly one code per 50-character list
entry. ii) Some codes were found to be plainly wrong at
the moment we post-assign the codes at the quality level
of clinical routine documentation.

Conclusions
In this paper we have motivated a hierarchical
cluster-based approach with a minimal language-dependent
preprocessing strategy for grouping clinical problem lists
into distinct semantically similar clusters in order to sup-
port patient-based disease topic navigation. This functional-
ity is planned to be implemented within a QuickView
software accessible in a hospital environment.
Our methodology not only post-assigns ICD-10

codes but also builds semantically similar clusters

Table 1 Intra-patient post-ICD-10 coding and string clustering
results

Patient Coded Precision Recall F-measure

P1 0.67 0.93 0.74 0.83

P2 0.60 0.90 0.61 0.73

P3 0.68 0.73 0.69 0.71

P4 0.87 0.91 0.87 0.89

P5 0.59 0.80 0.63 0.70

Patient Clustered Precision Recall F-measure

P1 0.33 0.78 1.00 0.88

P2 0.40 0.91 0.78 0.84

P3 0.32 0.84 0.81 0.82

P4 0.13 1.00 1.00 1.00

P5 0.41 0.59 0.93 0.72

Table 2 Inter-patient post-ICD-10 coding

Patient Coded Precision Recall F-measure

P1 1.00 0.76 1.00 0.86

P2 0.99 0.85 0.99 0.91

P3 0.99 0.75 1.00 0.86

P4 1.00 0.78 1.00 0.88

P5 0.99 0.70 1.00 0.82

Table 3 Number of the identified intra-patient topics out of the
initial disease list items

Patient List items Unique list items Topics Compression rate

P1 302 184 60 0.80

P2 250 174 70 0.72

P3 861 441 95 0.89

P4 531 295 77 0.85

P5 378 262 90 0.76
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based on string similarity. Applying this method at an
intra-patient level implies that possible post-ICD
mappings are missing due to the limited
patient-focused scope (high false negative rate), never-
theless achieving a useful clustering of list-items
where no code could be assigned. For this reason, we
extended the scope to an inter-patient examination of
the same methodology and motivated a sufficient
sample size in order to fetch a common linguistic fin-
gerprint. With an acceptable negative impact on pre-
cision we were able to boost recall so that the overall
topic modeling of the disease space was reduced to
post-ICD-10 codes only. However, the inter-patient
cut-off height of the resulting dendrogram is at a very low
level, with the result that the inter-cluster variance is not
at its optimal state anymore with regard to string similar-
ity. As a consequence, a substantial amount of list items
gets ICD-10 code assigned by accident.
In a further investigation we plan to refrain from an

F-measure driven optimized single cut-off strategy, and
want to pursue a strategy where the ICD-10 cluster-specific
variances on our proposed normalized character 3-gram
features can be studied more reliably. In this case also a
more detailed inspection of the level of character n-gram
decomposition could be done. We hypothesize that, while
estimating the optimal number of disease clusters based on
a between-within variance inspection, already encoded
ICD-10 examples can just act as proxies for correct
post-ICD encoding and therefore may compensate for the
precision loss at a high recall level. One avenue would be a
more conservative method like Elbow and Silhouette to
infer the best cut-off purely based on string similarity and
dynamically encode potentially false negatives in a
post-processing step where each ICD-10 cluster is treated
independently based on their feature pattern space respect-
ively character n-gram distribution.
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