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Abstract

domestic violence data.

Background: A shareable repository of clinical notes is critical for advancing natural language processing (NLP)
research, and therefore a goal of many NLP researchers is to create a shareable repository of clinical notes, that has
breadth (from multiple institutions) as well as depth (as much individual data as possible).

Methods: We aimed to assess the degree to which individuals would be willing to contribute their health data to
such a repository. A compact e-survey probed willingness to share demographic and clinical data categories.
Participants were faculty, staff, and students in two geographically diverse major medical centers (Utah and New
York). Such a sample could be expected to respond like a typical potential participant from the general public who
is given complete and fully informed consent about the pros and cons of participating in a research study.

Results: 2140 respondents completed the surveys. 56% of respondents were “somewhat/definitely willing” to share
clinical data with identifiers, while 89% of respondents were “somewhat (17%) /definitely willing (72%)" to share
without identifiers. Results were consistent across gender, age, and education, but there were some differences by
geographical region. Individuals were most reluctant (50-74%) sharing mental health, substance abuse, and

Conclusions: We conclude that a substantial fraction of potential patient participants, once educated about risks
and benefits, would be willing to donate de-identified clinical data to a shared research repository. A slight majority
even would be willing to share absent de-identification, suggesting that perceptions about data misuse are not a
major concern. Such a repository of clinical notes should be invaluable for clinical NLP research and advancement.

J

Background

Parsing is a NLP task to assign syntactic structures to
sentences according to grammar. Depending on the
formation of syntactic structures, currently parsers could
be categorized into two major types: the constituency
parsers which are dependent on constituency grammars
to distinguish between terminal (word) and non-terminal
(e.g., phrase) nodes [1]; and the dependency parsers which
generates simplified parse trees of only terminal nodes
without considering the interior constituents [2]. More-
over, the shallow semantic relations between pairs of
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terminal nodes are labeled as dependency relations by the
parsers. Since the constituency parse trees could also be
converted into dependency parse trees, dependency
parsers are gaining increasing attention. Many down-
stream NLP tasks, such as relation extraction [3-5] and
machine translation [6], are highly relied on the depend-
encies between syntactic components. Therefore, depend-
ency parsers are widely applided in multiple NLP
applications including in the medical domain.

Generally, dependency parsing can be categorized into
two approaches: transition-based and graph-based [2].
Transition-based parsers [7, 8] takes a sequence of
actions to produce a parse tree. At each stage of the
parsing process, a action is chosen based on the ranking

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-019-0783-2&domain=pdf
mailto:hua.xu@uth.tmc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Zhang et al. BVIC Medical Informatics and Decision Making 2019, 19(Suppl 3):77

scores of all possible actions. In contrast, graph-based
parsers [9] consider parsing as a structure prediction
problem and choose the correct tree based on the rank-
ing scores of all possible trees. The development of
syntactic parsing approaches has gone through several
stages. Early symbolic parsing mainly used manually
created deterministic grammars. Promoted by available
annotated corpora such as the English Penn Treebank
generated from Wall Street Journals, machine learning
based approaches have been widely used in syntactic
parsing [9-11]. Various machine learning approaches
have been developed to generate the optimal parse tree
based on the distributional statistics learned from the
annotated Treebanks [12]. Commonly used syntactic
parsing systems with good performance include the sys-
tems developed by Collins [13], Stanford parser [14],
and Charniak et al. [15], etc.

However, there are several challenges faced by the
conventional machine learning based approaches for
syntactic parsing. First, current parsers usually use a
large number of features including both lexicalized, con-
text and combination features. This makes them suffer
from the data sparsity problem, without sufficient anno-
tated data to estimate accurate feature weights statisti-
cally. Moreover, conventional parsing systems are mainly
built from manually designed feature templates, which is
time consuming and highly dependent on domain
expertise and experiences, meanwhile with limited
coverage of linguistic patterns. Such approaches are not
generalizable to new datasets from different domains
[16].

Related work

One potential solution to address the above challenges is
the applications of deep learning based, or multi-layer
neural networks based approaches. Recently, there are
increasing research efforts on deep learning based
dependency parsing, especially by using the LSTM (long
short term memory) RNN (recurrent neural networks)
[17]. This line of works is based on two assumptions:
first, the low dimensional embeddings (distributional
representation) features could alleviate the data sparsity
problem; furthermore, the LSTM structure of each fea-
ture has the potential to represent their arbitrary feature
combinations implicitly, reducing the explicit implemen-
tation of an explosive set of feature combinations [16].
Current works attempt to tailor the deep learning frame-
works to dependency parsing from two aspects: (1) fea-
ture design: instead of using the previous templates of
sparse, binary features, dense core features (i.e., words,
part-of-speech taggings-POS and dependency labels) are
encoded, concatenated and fed into non-linear classifiers
such as multiple-layer perceptron [16-20]. (2) novel
neural network architecture for feature encoding:
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Considering the design of neural network architectures
is coupled with the feature set representation of parsers,
stack-LSTMs [21] are used to describe the configura-
tions (stack and buffer) of transition-based parsers, and
hierarchical-LSTMs [22, 23] are used to encode the hier-
archy of parse trees. Accordingly, the elements in the
LSTMs are compositional representations of nodes in
the parse trees. Le and Zuidema (2014) [22] and Zhu et
al. (2015) [24] also employ rerankers, the input to the
rerankers are encoded compositional representations
capturing the structures around the node.

Currently, clinical NLP systems have been applied ac-
tively on narrative notes in EHR to extract important in-
formation facilitating various clinical and translational
applications [5, 25]. Deep learning based methods have
been applied to clinical NLP tasks such as concept rec-
ognition and relation extraction and obtained better per-
formance in comparison to traditional machine learning
methods [26]. Despite that syntactic parsers play a crit-
ical role in the NLP pipelines, existing dependency
parsers with high-performance on the open text such as
the Stanford Parser are usually directly applied in these
system [27, 28]. Although some previous studies
extended the traditional Stanford Parser using medical
lexicons to tune it for clinical text [29], few efforts have
been spent on investigating deep learning based depend-
ency parsers for the clinical domain.

In our previous work, we systematically evaluated
three state-of-the-art constituency parsers of the open
domain including the Stanford parser and the Charniank
parser and the berkly parser, and found that re-training
the parsers using Treebanks annotated from clinical text
improved the performance greatly [30]. Given the advan-
tage of deep learning approaches for dependency parsers
shown in general English text [16, 18, 19, 21-23], it’s
timely to explore the performance of existing deep learn-
ing based dependency parsers, to set-up state-of-the-art
performance and inform novel parsing approaches for
clinical text.

Objective

This study aims to investigate the performance of four
open-sourced deep learning based dependency parsers
on clinical text. Both transition-based parsers and
graph-based parsers are evaluated, including Stanford
parser [16], Bist-parser [20], dependency-tf parser [23]
and jptdp parser [31]. The purposes of this study were
three-fold: (1) to evaluate the default performance of
existing state-of-the-art deep learning based dependency
parsers on clinical text; (2) to examine the effect of clin-
ical Treebanks for re-training general English parsers;
and (3) to investigate the influence of pre-trained word
embeddings from different large-scale unlabeled corpora
on the performance of parsers on clinical text. The
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parsers are trained on the Penn Treebank in the original
default settings. Moreover, a Treebank of progress notes
[32] and the MiPACQ Treebank [33] are also used to
retrain the parsers. In particular, the English Gigaword
corpus of general text and MIMICIII, a corpus of clinical
text, are used to train the word embedding models,
respectively. To the best of our knowledge, this is the
first comprehensive study that has investigated deep
learning based dependency parsing of clinical text using
multiple state-of-the-art dependency parsers and Tree-
banks from both the general English domain and the
clinical domain.

Methods

The clinical treebank

In this study, we used two clinical Treebanks: 1) the
MiPACQ Treebank described in Albright et al. [33] 2)
the Progress Notes Treebank built in Fan et al. [32] After
removing fragments and short sentences with less than
5 tokens, we used 10,661 sentences in the MiPACQ
Treebank and 1025 sentences in the progress notes
Treebank for experiments.

Dependency-based syntactic representation

A dependency-based syntactic tree represents a list of
relations between head words and their modifier words
[2]. Given a sentence with k words (wy,. .., wy), a depend-
ency tree can be represented k relation triplets in the
form of (h, m, [), where & and m stand for the indexs of
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a head word and a modifier word (O<h<kand 1<m<
k), respectively. & and m represent two nodes in the tree
and their pair forms an edge with label /, which is the
index of a dependency relation in a set of L predefined
dependency relations. An example of dependency tree of
the sentence “She has lung cancer.” is illustrated in
Fig. 1(a).

Deep-learning based dependency parsers

Stanford parser

Chen and Manning (2014) [16] builds a greedy
transition-based parser based on neural network archi-
tectures. For this, the arc-standard system is employed.
This transition system consists of a set of configurations
c¢=(s, b, A), where s stands for a stack, b stands for a
buffer and A stands for a set of dependency arcs. Given
a sentence wy, . . ., Wy, the parsing process initiates a
starting configuration, with s = [ROOT], b =[wy, . . ., wgl,
A = @. Given an intermedia configuration, where s; is
the ith top element on the stack and b; is the ith element
on the buffer, the system will choose from three types of
transitions: LEFT-ARC(]) by adding an arc s;- > s, with
label / and remove s, from the stack; RIGHT-ARC(/) by
adding an arc s,- >s; with label / and remove s; from
the stack; SHIFT where b; if moved from the buffer to
the stack. In each iteration, an optimal transition is auto-
matically choosen, based on features extracted from the
current configuration. The parsing process will undergo
multiple iterations until a parse tree is formed. The

lung

NOUN

(a)

v v

cancer

NOUN

Transition Stack Buffer A
[ROOT] [She has lung cancer.] | @
SHIFT [ROOT She] [has lung cancer .]
SHIFT [ROOT She has] [lung cancer .]
LEFT-ARC(nsubj) | [ROOT has] [lung cancer .] AUnsubj(has, She)
SHIFT [ROOT has lung] [cancer .]
SHIFT [ROOT has lung cancer] | [.]
LEFT-ARC(amod) | [ROOT has cancer] [.] AUamod(cancer,lung )
RIGHT-ARC(root) | [ROOT] [ AUroot(ROOT,has)

(b)

Fig. 1 An example of a dependency parse tree and the transitions-based parsing process




Zhang et al. BVIC Medical Informatics and Decision Making 2019, 19(Suppl 3):77

process of transition-based parsing is illustrated in Fig.
1(b).

As illustrated in Fig. 2, a neural network with one hid-
den layer is used to classify the transition for each config-
uration. Dense low-dimensional features, or embeddings
of a rich set of elements are used as features of the input
layer. For example, eighteen elements of words (x) from
the stack and buffer are used as features: (1) the top three
words, the first and second leftmost/rightmost children
and the leftmost of leftmost/rightmost of rightmost chil-
dren of the top two words on the stack, and (2) the top
three words on the buffer. Similarly, eighteen elements of
POS tags (x%) and twelve elements of arc labels (') are
used as features of the input layer, which encode the infor-
mation of the current stack, buffer and arcs. The vectors
are then concatenated and fed into a nonlinear classifier
based on MLP. The function /= (w"x" + w'x’ + w'a’ + b)®
in the hidden layer is expected to capture arbitrary feature
combinations. Softmax probabilities is calculated based on
a cross-entropy loss function in the output layer for transi-
tion classification.

Bist-parser

The neural network architecture used for the bist-parser
[20] is similar with the Stanford parser. Different from
the Stanford parser which uses concatenated embed-
dings of a rich set of elements (words, POS tagging and
arc labels) as features, only the top 3 words (S,, S; and
So) on the stack and the first word on the buffer (b,) are
used and their feature vectors are concatenated to form
the minimal feature function in the bist-parser. The fea-
ture vector of each word is a concatenation of embed-
dings of the word and its POS tag. Besides, a hinge loss

Transition type

T

Softmax layer
0 0 0
Hidden layer
1 r 1
Bi-LSTM [« » Bi-LSTM [« » Bi-LSTM

f £ ki
‘P L
t ; t

Configuration
Word POS tags Label
w ’
W Embedding P Embedding ' | Embedding

Fig. 2 An example of the neural network architecture for the
transitions-based parsing process
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function is defined based on each parsing configuration
C

max<0, 1- max MLP(@(c))[t,] + max MLP(@(C))[tp])
t,cG t,€A\G
Where A and G stand for the sets of possible transi-
tions and correct transitions at the current configuration
c.

Dependency-tf parser

Kiperwasser and Goldberg (2016b) [23] propose a tree
encoding that naturally supports trees with arbitrary
branching factors, making them particularly suitable for
dependency trees. Tree encoder uses RNN as the build-
ing block: RNN is used to model the left and right se-
quences of modifiers, which are constructed recursively
to form trees. Representation of parsing trees is con-
structed to in a greedy, bottom-up way based on the
Easy First Transition System by Goldberg and Elhadad
(2010) [34].

JPDTP parser

This work constructs a novel neural architecture [31] for
joint POS tagging and dependency parsing (jPDTP).
The parser uses biLSTM (bidirectional LSTM) [17] to
learn shared latent features representing word tokens in
input sentences. These shared features are then further
used for POS tag prediction, which are also fed to a
MLP with a hidden layer to decode dependency arcs and
another MLP to predict relation types for labeling pre-
dicted arcs. Specifically, in order to improve the per-
formance of POS tagging, a character-based embedding
sequence of each word is generated and connected with
the word embedding of each word w;. In addition, the
indexing position of each word in a sentence is also used
as a feature. Latent features based on shared biLSTM
are used to represent POS tags, and cross-entropy target
loss is used to predict POS tags. Dependency trees are
formalized as directed graphs. The arc-factored parsing
approach learns arc scores in graphs. The decoding algo-
rithm will find the maximum spanning tree from these
arc scores-the parse tree with the highest score in the
graph:

score(s) = argmax Z " m)eyscorem(h, m)

where Y (s) is the set of all possible dependency trees for
the input sentence s, and score,,.(h, m) measures the arc
score between the head word and the modifier word in
s. The arc is scored by using MLP with a single node
output layer (MLParc) on the BiLSTM feature vectors:

scoregyc(hym) = MLP 4. (Vo)
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where v, and v,, are biLSTM-based shared feature vec-
tors representing the h, and my, words in s, respect-
ively. Then, the model calculates the margin based hinge
loss by using loss-augmented reasoning to maximize the
margin between the unlabeled gold parse tree and the
highest scoring incorrect tree. Dependency types are
predicted in a similar way. Another MLP is used on the
biLSTM feature vector to predict the relationship type
of the head-modifier arc.

The parsing experiments
Three experiments were conducted for each parser as
described below:

a) Use default settings to evaluate parser performance:
In this experiment, we directly applied four parsers
to handle all POS tagged sentences in the treebanks.
All parsers were used in default settings that have
been trained on Penn Treebank. The parse trees
generated by each parser were then compared with
the gold standard Treebank and the performance of
each parser was reported (see the Evaluation
section).

b) Retraining parsers using word embeddings of open
text and clinical Treebanks: In order to assess
whether retraining of clinical corpora can improve
the performance of parsers, we conducted a 10-fold
cross-validation evaluation for each parser. Cross-
validation includes dividing the clinical corpus into
10 parts, training parsers on 9 parts, and testing the
remaining parts each time. We repeated the same
program 10 times, once for each part, and then
merged the results of 10 parts to report the per-
formance. The default word embeddings pre-
trained from the AFP portion of the English Giga-
word corpus were used for each parser. [35]

¢) Re-train parsers on the clinical Treebank using
word embeddings of clinical text: To further
evaluate the effects of using word embeddings
features generated from clinical text, we employed
the word embeddings pre-trained from the MIMI-
CIII corpus [36] and conducted 10-fold cross valid-
ation evaluation for each parser.

Evaluation
As mentioned earlier, for each parser, we conducted the
above three experiments using 10-fold cross validation.
For each test sentence, the parse tree generated by the
parser was compared with the corresponding gold stand-
ard in the Treebank.

For each sentence, the following metrics commonly re-
ported for dependency parsers are used:

Unlabeled attachment score (UAS) = (The number of
arcs assigned correctly)/(The number of assigned arcs);
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Labeled attachment score (LAS) = (The number of pre-
dicted dependencies where the arc and the label are
assigned correctly)/(The number of predicted depen
dencies);

Label accuracy score (LS) = (The number of depend-
ency labels assigned correctly)/(The number of predicted
dependency labels).

Results

Table 1 illustrates the experimental results on the
MiPACQ Treebank. The Bist-parser achieved the opti-
mal performance by using the default Penn TreeBank
and word embeddings of Gigaword for training; while
the jPTDP parser obtained the lowest performance of
77.59% UAS, 83.60% LA and 71.58% LAS. Re-training
on the clinical Treebank improved the performance for
all the four parsers. Applying word embeddings gener-
ated from Gigaword produced slightly better perform-
ance than word embeddings of MIMICIII for stanford
parser and Bist-parser. Overall, the Bist-parser obtained
the optimal performance of 90.72% UAS, 95.18% LS and
89.25% LAS, retrained on the MiPACQ TreeBank using
word embeddings from Gigaword. In contrast, the lar-
gest improvement was obtained by using clinical data
for the Jptdp parser. Retraining the parser increased the
performance sharply (88.50% UAS, 92.36% LS and
85.53% LAS). Using the word embeddings from MIMI-
CIII further improved the performance over Gigaword
(88.95%UAS, 92.69% LS, 86.10% LAS).

Table 2 illustrated the dependency parsing results ob-
tained using the progress notes. The overall trend of the
performance in different settings is similar with that of
MiPACQ. However, the performance of the progress
notes is much lower than the performance of MiPACQ.
The highest performance was produced by using the
Stanford parser, retrained on the progress notes (84.01%
UAS, 90.16% LS, 80.72% LAS).

Discussion

Dependency parsers are commonly used as one essential
module in the pipelines of important clinical NLP tasks
such as named entity recognition and relation extraction.
A dependency parser of high-quality is critical to the final
output of the clinical NLP system and related applications
in the medical domain. Given that deep learning based
syntactic parsers achieve the state-of-the-art performance
on open text, it is timely for this study to compare and
evaluate deep learning based dependency parsers on clin-
ical text.

Our results showed that, compared with open text, the
original parser achieves lower performance in clinical
text. For example, on the MIPACQ corpus, Bist-parser
showed significant decreases in both UAS and LAS
(UAS: 93.2 to 81.08%, LAS: 91.2 to 78.20%). After
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Table 1 Performance of deep learning based dependency parsers on the MiPACQ corpus (%)

Parser Corpus Word embeddings UAS LS LAS
Stanford parser Penn TreeBank Gigaword 80.62 89.09 7759
MiPACQ Gigaword 90.49 94.95 89.00
MiPACQ MIMICIII 90.30 94.84 88.75
Bist-parser Penn TreeBank Gigaword 81.08 89.35 7820
MiPACQ Gigaword 90.72 95.18 89.25
MiIPACQ MIMICIII 90.62 95.16 89.16
Dependency-tf Penn TreeBank Gigaword 79.14
MiPACQ Gigaword 88.65
MiIPACQ MIMICII 88.80
JPTDP-parser Penn TreeBank Gigaword 7947 85.76 74.62
MiPACQ Gigaword 88.50 92.36 85.53
MiIPACQ MIMICHII 88.94 92.69 86.10

Highest performance in terms of each evaluation criterion is highlighted in boldface

retraining on clinical Treebanks, all parsers achieved
better performance. This indicates that retraining on
clinical TreeBanks is necessary for the development of
high-performance dependency parsers for clinical texts.
In addition, it proves that it is essential to build custom-
ized Treebanks for clinical texts.

To validate the advantage and necessity of using deep
learning based approaches for dependency parsers, we fur-
ther compared the published performance of dependency
parsers built using conventional machine learning
methods. Albright et al. [33] applied the Clear dependency
parser to MiPACQ, which is a transition-based parser
built using the Support Vector Machine (SVM). The re-
ported performance of the parser trained on the Penn
TreeBank is a 78.34% UAS and a 74.37% LAS [33], in con-
trast to a 80.62% UAS and a 77.59% LAS using the deep
learning based Stanford parser trained on the same Tree-
Bank. In addition, the reported performance of the parser

trained on MiPACQ is a 85.72% UAS and a 83.63% LAS
[33], in contrast to a 90.30% UAS and a 88.75% LAS using
the deep learning based Stanford parser also trained on
MiPACQ. The original dataset setting in the work of Al-
bright et al. [33] was 85% for training, 5% for development
and 10% for test, whereas we used 10-fold cv in this study.
Despite the different experiment configurations, sharp im-
provements (2.32% ~ 5.12%) can be observed when using
deep learning approaches for dependency parsers, espe-
cially when retrained using the MiPACQ data and word
embeddings of MIMICIIL

It is noteworthy that the use of word embeddings of
Gigaword and MIMICIIII has yielded comparable per-
formance. In fact, word embeddings of Gigaword were
used in two parsers that achieved the best performance,
Bist-parser (88.95% UAS, 92.69% LS, 86.10% LAS) on
MiPACQ and Stanford parser (84.01% UAS, 89/97)% LS,
80.72% LAS) on progress records. Despite that Gigaword

Table 2 Performance of deep learning based dependency parsers on the progress notes (%)

Parser Corpus Word embeddings UAS LS LAS
Stanford parser Penn TreeBank Gigaword 75.76 84.23 7121
ProgressNotes Gigaword 84.01 90.00 80.72
ProgressNotes MIMICH 84.01 90.16 80.66
Bist-parser Penn TreeBank Gigaword 75.01 84.73 71.05
ProgressNotes Gigaword 82.26 89.69 7894
ProgressNotes MIMICII 81.78 89.31 7842
Dependency-tf Penn TreeBank Gigaword 78.02
ProgressNotes Gigaword 76.72
ProgressNotes MIMICH 77.09
JPTDP-parser Penn TreeBank Gigaword 7551 7347 60.24
ProgressNotes Gigaword 77.59 83.60 7158
ProgressNotes MIMICIHI 79.35 85.10 7361

Highest performance in terms of each evaluation criterion is highlighted in boldface
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is a corpus of open text, and MIMICIII is a corpus of
clinical text. One potential reason is that the clinical text
is a mixture of linguistic elements of general English and
elements unique to the medical domain. Although both
Gigaword and MIMICIII have domain gaps with
MiPACQ and the progress notes, they still contribute to
the task with generalizable syntactic and semantic char-
acteristics learned in an unsupervised manner.

Among the four dependency parsers, Stanford parser
and Bist parser are transition-based parsers, using the core
features of each configuration to classify transition types.
Dependency-tf parser is also a transition-based parser,
which is characterized by encoding subgraphs of parsing
trees recursively. JPTDP-parser is a graph-based parser
that directly targets the best parsing tree. Interestingly, the
Stanford parser and the Bist-parser obtained better per-
formance than the other two parsers using graph-based
features. This follows the same trend for transition-based
and graph-based parsers when evaluated on the open text.
[20] Besides, compared with graph-based parsers,
transition-based parsers showed greater generalizability
on different Treebanks. As an illustration, the Stanford
parser got a 77.59 LAS using the default setting and a
88.75 LAS when retrained on MiPACQ. In contrast, the
jPTDP-parser got a 71.58 LAS using the default setting
and a 86.10 LAS when retrained on MiPACQ.

Our study has several limitations. Firstly, the focus of this
study is mainly an initial evaluation of state-of-the-art deep
learning based dependency parsers on clinical text. The
coverage of current deep learning based dependency
parsers is not comprehensive. Additional dependency
parsers such as the SyntaxNet from Google [37] will be im-
plemented and evaluated. Besides, only MiPACQ of colon
cancer notes and progress notes from the i2b2 2010 chal-
lenge were used in the current study. The clinical Tree-
Banks will be enriched with other types of clinical notes
such as discharge summaries and pathology notes by man-
ual curation in our future work. Moreover, our previous
study demonstrated that leveraging the dataset of the open
domain such as the Penn TreeBank could improve the
parser performance on clinical text. [30] Besides, the use of
word embeddings of open text such as Gigaword produced
performance comparable to that of using word embeddings
of clinical notes as initial features of a dependent parser.

Therefore, we will investigate the combination of
TreeBanks and word embeddings of external domains
with clinical resources for any potential improvement to
the deep learning based dependency parsers, in order to
make full use of available resources and alleviate the
heavy burden of clinical TreeBank curation.

Conclusion
We conducted a formal evaluation to study the use of four
state-of-the-art deep learning-based dependency parsers
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in the medical field. Our results showed that Bist-parser
achieved the best performance when applied directly to
clinical texts. In addition, retraining on the annotated clin-
ical treebank significantly improves the performance of all
parsers, indicating the need to create a large clinical tree-
banks. Moreover, experimental results demonstrated that
word embeddings generated from open text could pro-
duce similar performance as word embeddings generated
from clinical notes when used as the initial features of the
parser. Therefore, more sophisticated use of corpora and
word embeddings from external domains is worth study-
ing for clinical parsing improvement.
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