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Abstract

Background: Osteoporosis has become an important public health issue. Most of the population, particularly
elderly people, are at some degree of risk of osteoporosis-related fractures. Accurate identification and surveillance of
patient populations with fractures has a significant impact on reduction of cost of care by preventing future fractures
and its corresponding complications.

Methods: In this study, we developed a rule-based natural language processing (NLP) algorithm for identification of
twenty skeletal site-specific fractures from radiology reports. The rule-based NLP algorithm was based on regular
expressions developed using MedTagger, an NLP tool of the Apache Unstructured Information Management
Architecture (UIMA) pipeline to facilitate information extraction from clinical narratives. Radiology notes were
retrieved from the Mayo Clinic electronic health records data warehouse. We developed rules for identifying each
fracture type according to physicians’ knowledge and experience, and refined these rules via verification with
physicians. This study was approved by the institutional review board (IRB) for human subject research.

Results: We validated the NLP algorithm using the radiology reports of a community-based cohort at Mayo Clinic
with the gold standard constructed by medical experts. The micro-averaged results of sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and F1-score of the proposed NLP algorithm are 0.930, 1.0, 1.0,
0.941, 0.961, respectively. The F1-score is 1.0 for 8 fractures, and above 0.9 for a total of 17 out of 20 fractures (85%).

Conclusions: The results verified the effectiveness of the proposed rule-based NLP algorithm in automatic
identification of osteoporosis-related skeletal site-specific fractures from radiology reports. The NLP algorithm could
be utilized to accurately identify the patients with fractures and those who are also at high risk of future fractures due
to osteoporosis. Appropriate care interventions to those patients, not only the most at-risk patients but also those
with emerging risk, would significantly reduce future fractures.
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Introduction
Osteoporosis is an important public health issue, owing
to the fact that a substantial proportion of the aging
population will experience fractures associated with low
bone mass [1]. According to World Health Organization
(WHO), an estimated 10 million Americans over 50 years
old already have osteoporosis [2], while over 33 million
more have “osteopenia”, which is a reduction in bone
density that can precede osteoporosis. The total num-
ber with low bone mass could reach 61 million by 2020
[3]. Likewise, the estimated 2 million osteoporosis-related
fractures in 2005 could exceed 3 million by 2025, with an
associated increase in costs from $16.9 billion to $25.3
billion annually [4]. It also has been shown that most of
the population, besides elderly people, are at some degree
of risk of osteoporosis-related fractures [5]. Accurate
identification of fractures will help identify the patients
with high risk of future fractures. Applying appropriate
interventions to those patients would significantly reduce
future fracture, and reduce the cost of care [5].

Significant amounts of information for identification of
fractures are only available in a narrative format. Manu-
ally extracting such information from clinical narratives
is time consuming and expensive. Fortunately, prevalence
of Electronic Health Records (EHRs) makes automated
fracture identification more feasible than before. EHR has
provided new means to extract information through anal-
ysis of clinical diagnostic narratives. Radiology reports
are one particularly rich source of clinical diagnostic
information. Researchers have utilized Natural Language
Processing (NLP) techniques to extract information from
these reports [6]. NLP algorithms have been developed
for automatic information extraction for a variety of dis-
eases [7, 8], including appendicitis [9], pneumonia [10],
thromboembolic diseases [11], and various potentially
malignant lesions [12]. Most of these applications exploit
manually designed rules based on medical experts’ knowl-
edge and experience, which has been called rule-based
NLP algorithms.

A few rule-based NLP algorithms have been proposed
for the identification of fractures from radiology reports in
the literature. Yadav et al. [13] developed a hybrid system
of NLP and machine learning for automated classification
of orbital fracture from emergency department computed
tomography (CT) reports. Wagholikar et al. [14] used
NLP rules to classify limb abnormalities from radiology
reports using a clinician informed gazetteer methodol-
ogy. VanWormer et al. [15] developed a keyword search
system to identify patients who were injured because of
tree stand falls during hunting seasons. Do et al. [16] used
NLP in an application that extracts both the presence of
fractures and their anatomic location. Grundmeier et al.
[17] implemented and validated NLP tools to identify long
bone fractures for pediatric emergency medicine quality

improvement. However, few of these studies have well-
defined skeletal site-specific fractures, and report specific
rules for each of skeletal site-specific fractures from radi-
ology reports.

In this study, we developed a rule-based NLP algo-
rithm for identification of twenty skeletal site-specific
fractures from radiology reports. We applied and tested
the algorithm on a cohort at Mayo Clinic within a
well-defined community, Rochester Epidemiology Project
(REP) [18–20], with the gold standard constructed by
medical experts.

Method
Study setting
The study was conducted at Mayo Clinic, Rochester MN.
A fracture cohort of 1349 Mayo Clinic patients who were
18 years of age or older and experienced fractures in
2009–2011 was utilized in our study [21, 22]. In addition,
we selected a control cohort of 2000 Mayo Clinic patients
who lived in Olmsted County any time from 2008–2012,
were 18 years of age or older in 2008, and had no evidence
of having a fracture through their entire known follow-
up in 2008–2017. Nurses with multiple years of experi-
ence abstracting fractures reviewed each subject’s entire
patient record and created the gold standard. This study
was approved by the institutional review board (IRB) for
human subject research.

We utilized twenty skeletal site-specific fractures that
have been used by the Osteoporosis Research Program at
Mayo Clinic for over 30 years [21, 22]. These skeletal sites
included ankle, clavicle, distal forearm, face, feet and toes,
hand and figures, patella, pelvis, proximal femur, proxi-
mal humerus, ribs, scapula, shaft and distal femur, shaft
and distal humerus, shaft and proximal radius/ulna, skull,
sternum, tibia and fibula, vertebral body, and other spine.
Since a single subject may have experienced multiple frac-
tures, our study included a total of 2356 fractures in 1349
subjects.

Radiology notes, including general radiography reports
(such as X-ray reports), computed tomography reports,
magnetic resonance imaging reports, nuclear medicine
radiology reports, mammography reports, ultrasonog-
raphy reports, neuroradiology reports, were retrieved
from the Mayo Clinic EHR warehouse for all the
subjects.

For each fracture type, we randomly utilized 70% of
the subjects in the fracture cohort as training data to
develop the rule-based NLP algorithm, and the remain-
ing 30% of the subjects in the fracture cohort with the
identical number of subjects randomly sampled from the
control cohort as testing data to evaluate the algorithm.
The exact number of the study subjects in the train-
ing and testing data for each fracture type is listed in
Table 1.
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Table 1 Fractures and the corresponding number of patients in
the training and testing data

Fractures # Patients in
Training

# Patients in
Testing

Total

Ankle 90 76 166

Clavicle 32 26 58

Distal Forearm 102 86 188

Face 60 52 112

Feet and Toes 185 158 343

Hand and Fingers 140 120 260

Other Spine 28 24 52

Patella 10 8 18

Pelvis 62 52 114

Proximal Femur 74 62 136

Proximal Humerus 48 40 88

Ribs 104 90 194

Scapula 9 8 17

Shaft and Distal Femur 13 10 23

Shaft and Distal Humerus 13 12 25

Shaft and Proximal
Radius/Ulna

41 36 77

Skull 4 4 8

Sternum 5 4 9

Tibia and Fibula 37 32 69

Vertebral Body 215 184 399

The rule-based NLP algorithm
Figure 1 shows the overall design of the study. The rule-
based NLP algorithm was developed using Medtagger, an
NLP tool developed based on the Apache Unstructured
Information Management Architecture (UIMA) pipeline
[23], to facilitate information extraction from clinical
narratives. Based on the training data, we developed rules
for identifying each fracture type according to physicians’
knowledge and experience, and refined these rules via
verification with physicians. These rules were also sup-
plemented with historical rules developed by the Osteo-
porosis Research Program to aid the nurse abstractors in
fracture identification.

The regular expressions in our NLP algorithm for each
fracture are listed in Table 2 and the fracture modifiers are
listed in Table 3. MedTagger uses the rules within detected
sentences to identify a specific fracture type. The rules
are “\b(%reFractureModifier).*(%reFractureCategory)\b”
or “\b(%reFractureCategory). *(%reFractureModifier)\b”
where reFractureCategory represents regular expressions
for the specific fracture category in Table 2 and reFrac-
tureModifier modifiers in Table 3. During the interactive
refinement of NLP algorithm with physicians, we also
added a few exclusion rules to reduce the number of false

positives in the training data. For example, if keywords,
such as “rule out” or “r/o”, and “negative” occurred in the
sentence, we excluded the extracted fractures. Finally the
rule-based NLP algorithm was evaluated on the held-out
testing data.

Evaluation
We calculated the overall agreement between the pro-
posed NLP algorithm and the gold standard. Five metrics,
namely sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV) and F1-score,
were used to measure the performance of the NLP system
for each fracture, and micro-averaged values of these met-
rics were used to evaluate the overall performance. The
definitions of these metrics are as follows:

Sensitivity = TP
TP + FN

, Specificity = TN
TN + FP

,

PPV = TP
TP + FP

, NPV = TN
TN + FN

,

F1-score = 2PPV · Sensitivity
PPV + Sensitivity

,

Sensitivitymicro =
∑

i TPi∑
i TPi + FNi

,

Specificitymicro =
∑

i TNi∑
i TNi + FPi

,

PPVmicro =
∑

i TPi∑
i TPi + FPi

,

NPVmicro =
∑

i TNi∑
i TNi + FNi

,

F1-scoremicro = 2PPVmicro · Sensitivitymicro
PPVmicro + Sensitivitymicro

,

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively,
and i = 1, 2, . . . , 20 is the ith fracture type.

Results
Table 4 shows the experimental results of the NLP algorithm.
Overall the NLP algorithm has a high micro-average F1-score
of 0.961, which validates the effectiveness of the proposed
NLP algorithm for identifying the twenty skeletal site-
specific fractures from the radiology reports. The micro-
average PPV and specificity are 1.0 and 1.0, respectively,
which shows that the NLP algorithm has high precision
in identifying positives and negatives. The micro-average
sensitivity is 0.930, which implies that the rules in the NLP
algorithm are sufficient in identifying fractures. 8 fracture
types (40%) have obtained F1-scores of 1.0 while a total
of 17 fracture types (85%) F1-scores of above 0.9 (includ-
ing 1.0). The lowest F1-score is to extract vertebral body
fractures (F1-score=0.806).

Here we provide a few examples of false positives and
false negatives during training, and analyze why the NLP
algorithm failed in these cases. The NLP algorithm was
unable to identify ankle fracture for Patient A since the
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Fig. 1 Study Design

indication term “debride” that rarely appeared in the train-
ing data was not considered in the rules. The same situa-
tion happened for Patient B who had face fracture but the
NLP algorithm failed to identify due to the missing key-
word “lamina papyracea” in the rules. Some false positives
and false negatives fundamental problems in NLP, such
as sentence boundary detection and negation detection.
For example, the algorithm failed to detect the sentence
starting from “superior” in Patient C’s clinical note. The
algorithm failed to detect the negation for Patient D.
Thus, we added rules for boundary detection and terms
for negation that were specific to our clinical note corpus.

Patient A: Exam: Fluoro Assistance less < 1hr Indi-
cations: left ankle debride ORIGINAL REPORT ? DATE
Mobile image intensifier used. Electronically signed by:
PHYNAME. DATE.

Patient B: CT examination of the head and maxillo-
facial bones performed without IV contrast demonstrates
a mildly displaced fracture of the superior right lamina
papyracea.

Patient C: No inflammatory changes to suggest cholecys-
titis superior endplate compression fractures of T11 and
T12 vertebral body

Patient D: The bone scan was negative for an acute
fracture at that area, although an acute fracture in the
vertebral body of L1 was noted.

Some terms are clinically ambiguous. For example, the
term “phalanx” is ambiguous since it could refer to either
a finger or a toe. Based on the training data, we added
modifiers “proximal/distal/middle” to “phalanx” for hand
and fingers fractures. A better solution might be using the
metadata of radiology notes to pre-identify whether the
X-ray is for hand or foot.

Some false negatives are due to the co-reference in the
report. For example, Patient E was not identified due to
that the term “findings” is co-referenced to the hand frac-
tures. Some false negatives are due to the ambiguity or
incorrect negation detection. For example, Patient F had
vertebral body fracture based on the meaning of sentence
but was incorrectly classified as negated.

Patient E: Cortical irregularity of the dorsal aspect of
the distal tuft of the left thumb. Findings likely represent a
small fracture.

Patient F: It does not appear the L1 compression fracture
is the cause of her pain.

Discussion
We have developed a rule-based NLP algorithm for the
identification of twenty skeletal site-specific fractures
from radiology reports. We have validated its effectiveness
using the radiology reports of a community-based cohort
at Mayo Clinic. The NLP algorithm could be utilized to
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Table 2 Regular Expressions in the rule-based NLP algorithm for the identification of fractures

Fractures Regular Expressions

Ankle (inversion)?ankle |tillaux|bimalleolar |distal.*(fibular|tibial) |dupuytren’s |(lateral|medial|posterior) malleolus
|Pott’s |trimalleolar

Clavicle (shaft|acromial end) of clavicle |interligamentous |collar bone |clavic(le|al) |clav |

Distal Forearm barton’s |colles’ |(distal|metaphyseal).*(wrist|radius|radial|ulna|ulnar|forearm) |smith’s |styloid process |head
of ulna(r)? |ulna(r)? head |wrist

Face (inferior )?maxilla(ry)? |nasal |(upper|lower)?jaw |orbit(al)? |malar bone |palate |mandible |zygoma(tic)?
|mandibular( ramus)? |facial |naso-orbital

Feet and Toes (meta)?tarsal |astragalus |instep |calcaneus |os calcis |navicular |cuboid |cuneiform |talonavicular ossicle |heel
|talus |phalan(x|ges?) |toe

Hand and Fingers hand |fingers? |(meta)?carpals? |mc |(hand |finger) phalanges |(proximal|distal|middle).*phalanx |capitate
|hamate |lunate |scaphoid |navicular |trapezi(um|id) |pisiform |triquetrum |metacarpus |bennett’s |thumb
|sesamoid |boxer’s |bar room

Other Spine Fractures vertebra(e|l) |cervical vertebrae |posterior elements of vertebrae |coccyx |spinous process |neural arch
|transverse process |spine |pedicle |C(1|2|3|4|5|6)

Patella knee ?(cap|pan) |patella(r)?

Pelvis acetabulum |acetabular |pelvic rim |ilium |pubis |pubic |innominate |rami |ischium |ischial |sacrum |sacral
|obturator ring |pelvi(c|s)

Proximal Femur (femoral |femur)(head|neck) |(trans)?cervical |(sub)?capital |intracapsular |trans( |-)?epiphyseal |base of neck
|basilar femoral neck |cervicotrochanteric |(greater|lesser) trochanter |(inter|per|intra)trochanteric

Proximal Humerus (anatomical|surgical)? (head|neck|head(-|/)neck|neck(-|/)head) |(humerus|humeral) (|shoulder |proximal end)
|extra ?capsular |(humerus|humeral).*(head|neck|head(-|/)neck|neck(-|/)head) |head of (humerus|humeral)
|(greater|lesser)? tuberosity |proximal humerus |humerus proximal

Ribs rib(s)? |(rib|thoracic) cage

Scapula acromion|coracoid( process)? |scapula |glenoid( cavity|fossa)? |shoulder blade

Shaft and Distal Femur diaphyseal fracture of femur |subtrochanteric |(lateral|medial) condylar |supracondylar |(shaft|lower end) of
femur |mid femur

Shaft and Distal Humerus elbow |condylar |shaft of (humerus|humeral) |(distal|end of|shaft).*(humerus|humeral) |supracondylar |epi-
condyle

Shaft and Proximal Radius/Ulna proximal.*(forearm|radius|radial|ulna(r)?) |coronoid process |metaphyseal of (the )?proxi-
mal.*(forearm|radius|radial|ulna(r)?) |(radius|ulna) diaphyseal |Monteggia(’s)? |Dupuytren(’s)?
|(neck|head|head(-|/)neck|neck(-|/)head) of.*(radius|radial) |(radius|radial) (neck|head|head(-|/)neck|neck(-
|/)head) |Galeazzi(’s)? |shaft (of)? (ulna(r)? |radius)|radial shalf |ulna(r)? shaft |metadiaphyseal |olecranon(
process)?

Skull (base|vault) of the skull |vault |(ethmoid|sphenoid) (sinus|base) |sphenoid |occipital |vertex skull |calvaria(l)?
|calvarium

Sternum breast( )?bone |sternum |manubrium |xyphoid

Tibia and Fibula (proximal )?fibula |intercondylar eminence shaft |(lateral|tibia |fibula) condyle |lateral tibial plateau |((medial
)?tibia |tibial) shaft |tuberosity

Vertebral Body ballooning (of inter ?spaces?)? |biconcave |burst |axis |cod-fish |endplate |loss of height ||(t|l)-?spine |lumbar
|thoracic |collapse |l(1|2|3|4|5) |t(1|2|3|4|5|6|7|8|9|10|11)

accurately identify the patients with fractures and those
who are also at high risk of future fractures due to osteo-
porosis. Appropriate care interventions to those patients,
not only the most at-risk patients but also those with
emerging risk, would significantly reduce future fracture.
This would particularly help transition the current form of
fee-for-service care to value-based care since it might be
difficult to make impactful interventions for the real high-

risk category of patients while more significant to focus
on the emerging-risk category in an attempt to keep them
from becoming high risk [24].

Recently, machine learning techniques have shown
promise for automated outcome classification, particu-
larly when large volumes of data are available [8]. Since
the rules in the NLP algorithm need to be laboriously
fine-designed through interactive verifications between

Table 3 Fracture modifiers

(micro-?)?fracture(s|d)? |separation |fxs? |broken |cracked |displace(d)? |fragment
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Table 4 Experimental results of the NLP algorithm for each
fracture type

Fractures Sensitivity Specificity PPV NPV F1-score

Ankle 0.974 1.000 1.000 0.974 0.987

Clavicle 1.000 1.000 1.000 1.000 1.000

Distal Forearm 1.000 1.000 1.000 1.000 1.000

Face 0.760 1.000 1.000 0.806 0.864

Feet and Toes 0.960 1.000 1.000 0.962 0.980

Hand and Fingers 0.918 1.000 1.000 0.924 0.957

Other Spine
Fractures

0.875 1.000 1.000 0.889 0.933

Patella 1.000 1.000 1.000 1.000 1.000

Pelvis 0.952 1.000 1.000 0.955 0.976

Proximal Femur 1.000 1.000 1.000 1.000 1.000

Proximal
Humerus

1.000 1.000 1.000 1.000 1.000

Ribs 0.933 1.000 1.000 0.938 0.966

Scapula 1.000 1.000 1.000 1.000 1.000

Shaft and Distal
Femur

0.800 1.000 1.000 0.833 0.889

Shaft and Distal
Humerus

0.857 1.000 1.000 0.875 0.923

Shaft and
Proximal
Radius/Ulna

0.952 1.000 1.000 0.955 0.976

Skull 1.000 1.000 1.000 1.000 1.000

Sternum 1.000 1.000 1.000 1.000 1.000

Tibia and Fibula 0.944 1.000 1.000 0.947 0.971

Vertebral Body 0.675 1.000 1.000 0.755 0.806

Micro-Average 0.930 1.000 1.000 0.941 0.961

rule designers and physicians, machine learning provides
a solution that significantly reduces or eliminates the
workload of designing rules. One of our ongoing works
is to apply machine learning classifiers and advanced
deep learning methods to tackle the fracture classifica-
tion task [8, 25]. However, the rule-based NLP algorithm
is straightforward to interpret for physicians and easy to
be modified through interactive refinement with physi-
cians’ feedbacks. As shown by [6], only one-third of the
vendors relied entirely on machine learning, and the sys-
tems developed by large vendors, such as IBM, SAP, and
Microsoft, are completely rule-based. An additional ben-
efit we observed was that the NLP algorithm augmented
the guideline for manually annotating fractures as many
keywords from the algorithm had been added in the
guideline. For example, “clav fx” has been added to the
guideline of abstracting clavicle fracture; “inferior max-
illary”, “zygomatic”, “facial” and “naso-orbital” have been
added for face fracture; “C1”-“C6” have been added for

other spine fractures; and “acetabular”, “sacral”, “ischial”,
“pubic” have been added for pelvis fracture.

This study has two limitations. First, we only verified
the effectiveness of NLP algorithm on radiology reports.
It would be interesting to evaluate the NLP algorithm on
other free-text EHR resources, such as clinical notes. Sec-
ond, we only tested the NLP algorithm in one institution.
It is also interesting to study the portability of the NLP
algorithm across institutions with disparate sublanguages [26].

Conclusions
In this study, we developed a rule-based NLP algorithm
for identification of twenty skeletal site-specific frac-
tures from radiology reports. The keywords and regular
expressions in the comprehensive NLP algorithm could
be reused in different fracture identification applications.
Our empirical experiments validated the effectiveness
of the NLP algorithm using the radiology reports of a
community-based cohort at Mayo Clinic. The micro-
averaged results of the NLP algorithm for the twenty
fractures are 0.930, 1.0, 1.0, 0.941, 0.961 in terms of sen-
sitivity, specificity, PPV, NPV, and F1-score, respectively.
8 fracture types (40%) have obtained F1-scores of 1.0
while a total of 17 fracture types (85%) F1-scores of above
0.9. The results verified the effectiveness of the proposed
rule-based NLP algorithm in automatic identification of
fractures from radiology reports.
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