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Abstract

Background: The Health Information Technology for Economic and Clinical Health Act (HITECH) has greatly
accelerated the adoption of electronic health records (EHRs) with the promise of better clinical decisions and
patients’ outcomes. One of the core criteria for “Meaningful Use” of EHRs is to have a problem list that shows the
most important health problems faced by a patient. The implementation of problem lists in EHRs has a potential to
help practitioners to provide customized care to patients. However, it remains an open question on how to
leverage problem lists in different practice settings to provide tailored care, of which the bottleneck lies in the
associations between problem list and practice setting.

Methods: In this study, using sampled clinical documents associated with a cohort of patients who received their
primary care at Mayo Clinic, we investigated the associations between problem list and practice setting through natural
language processing (NLP) and topic modeling techniques. Specifically, after practice settings and problem lists were
normalized, statistical χ2 test, term frequency-inverse document frequency (TF-IDF) and enrichment analysis were used to
choose representative concepts for each setting. Then Latent Dirichlet Allocations (LDA) were used to train topic models
and predict potential practice settings using similarity metrics based on the problem concepts representative of practice
settings. Evaluation was conducted through 5-fold cross validation and Recall@k, Precision@k and F1@k were calculated.

Results: Our method can generate prioritized and meaningful problem lists corresponding to specific practice settings.
For practice setting prediction, recall increases from 0.719 (k = 2) to 0.931 (k = 10), precision increases from 0.882 (k = 2)
to 0.931 (k = 10) and F1 increases from 0.790 (k = 2) to 0.931 (k = 10).

Conclusion: To our best knowledge, our study is the first attempting to discover the association between the problem
lists and hospital practice settings. In the future, we plan to investigate how to provide more tailored care by utilizing the
association between problem list and practice setting revealed in this study.
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Background
Since its enactment in 2009, the Health Information Tech-
nology for Economic and Clinical Health Act (HITECH)
has greatly accelerated the adoption of electronic health
records (EHRs) with the promise of better clinical decisions
and patients’ outcomes. According to the Centers for
Medicare & Medicaid Services (CMS), “meaningful use” of
EHRs refers to the use of EHRs to achieve significant

improvements in care. One of the core criteria for “Mean-
ingful Use” of EHRs is to have a codified up to date prob-
lem list that lists the most important health problems faced
by a patient [1–4]. The problem list was first introduced by
Weed in 1968 in his promotion for a Problem-Oriented
Medical Record (POMR) [5]. Since then it has been widely
used and become a key component in patient records. In
the Health Level Seven International’s Electronic Health
Record System Functional Model (EHR-S FM), a problem
list “may include, but is not limited to chronic conditions,
diagnoses, or symptoms, functional limitations, visit or
stay-specific conditions, diagnoses, or symptoms” [6].
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Ideally, physicians could benefit from an accurate
problem list to track a patient’s status and progress, to
maintain continuity of patient care and to organize clin-
ical reasoning and documentation [7]. Accurate problem
lists could also be used for the improvement of the qual-
ity of care, the realization of clinical decision support,
and the facilitation of research and quality measurement
[8]. The problem list can serve a variety of uses in di-
verse healthcare settings by providing a succinct view of
a patient’s health status and therefore should be used
and maintained to meet different needs. For example, a
primary care physician concerns chronic and acute con-
ditions while a specialty provider may focus only on a
subset of problems relevant to that area of medicine. An
emergency provider may address only the critical acute
presenting problems. Other clinicians may use the prob-
lem list for tracking conditions that should be addressed
for specific care delivery goals. Extensive studies have
been conducted to assess the usefulness of problem lists,
for example, through the exploration of the use pattern
of problem lists [9], the detection of problem list gaps in
recording patients’ problems [10, 11], the creation and
maintenance of a problem list using natural language

processing [12–14], and the use of problem list for decision
making support [15]. However, due to the inconsistent use
across providers as well as the lack of the consensus of
what should be documented in the problem lists [16],
problem lists are frequently inaccurate and out-of-date
[15]. It remains an open question how to leverage the
problem list to provide tailored care at different practice
settings (e.g., primary care, cardiology, or emergency) and
for different care providers (e.g., clinicians, nurses, or social
workers), of which the bottleneck lies in the associations
between problem list and practice setting.
In this study, we aim to investigate the associations

between the problem list and practice settings using the
longitudinal EHR data from Mayo Clinic by mapping prob-
lems and practice settings to standard representations and
assessing the associations between them using topic mod-
eling [17] and clustered imaging map (CIM) [18].

Methods
Figure 1 illustrates the overall workflow in this study.
Our method used natural language processing (NLP) to
normalize problem list and manually aggregated prac-
tice settings (step 1–3), where “Cardiovascular” is the

Fig. 1 The overall workflow of the proposed method
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practice setting of the problems like “coronary artery
disease”. Representative concepts were then filtered
using χ2, term frequency-inverse document frequency
(TF-IDF) and enrichment analysis based on the Seman-
tic Medline (step 4–5). Subsequently Latent Dirichlet
Allocations (LDA) [19] were used to train topic models
and predict potential practice settings using similarity
metrics based on the problem list (step 6–10). Finally
5-fold cross validation was utilized for evaluation, while
cluster image map [20] revealing setting similarity from
all randomly chosen data was used for visualization.

Data sources
The collection of clinical documents used in our analysis
consists of clinical notes for a cohort of patients receiv-
ing their primary care at Mayo Clinic, spanning a period
of 15 years (1998–2013), and covering both inpatient
and outpatient settings. Problems in those documents
are generally itemized entries as either phrases (e.g., “Al-
lergic rhinitis/vasomotor rhinitis”) or short sentences
(e.g, “Her asthma appeared to be very mild”). After
normalization of settings and problem list, we randomly
selected 1000 notes (documents) for each of 64 settings
as the input for filtering, in total 64,250 notes was used
as input for the step 4 to choose representative concepts.
Then 60,345 notes were kept for training topic model in
step 6. We then randomly selected 200 notes from each
setting as testing data, in total 13,498 notes was used as
input for step 9 to test the predicted settings.
The latest version of Semantic Medline Database

(SemMedDB) has more than 84.6 million semantic associa-
tions from 25,582,462 Medline citations up to Dec 312,015
from 1865, based on the natural language processing tool
SemRep and Unified Medical Language System (UMLS)
[21]. Among eight tables, the most comprehensive PREDI-
CATION_AGGREGATE (PA) table contains all available
information from the SemMedDB, including subject
concepts, object concepts, sentence ID, PubMed IDs
(PMIDs), and so on. Article level co-occurrences among
subject-object concepts, i.e., 1,164,352 total co-occurrences
of concepts from all practice settings were used in enrich-
ment analysis for statistically significant concepts associ-
ated with each setting extracted from clinical notes in the
SemMedDB.

Normalization of settings
As a large volume of clinical documents has been gener-
ated in the context of EHRs, the HL7/LOINC Document
Ontology (DO) was developed to support a range of use
cases (e.g., retrieval, organization, display, and exchange)
[22]. It contains a hierarchical structure comprising five
axes: Kind of Document (KOD), Type of Service (TOS),
Setting, Subject Matter Domain (SMD) and Role. Each
axis contains a set of values. Some studies explored the

applicability of DO in document representation and map-
ping [23, 24], and use of LOINC codes for document ex-
change in the clinical scenario [25, 26]. Other studies have
focused on the improvement of axes of SMD [27], TOS
[28], and Setting [29], mainly through increasing the
coverage of each axis to make it more comprehensively
representative. For example, Rajamani et al. proposed ex-
tended values for Settings of Care from 20 to 274, that fall
into 14 main classes, such as Inpatient, Outpatient, Public
Health, Community, and Mobile [29]. Currently the set-
tings in Mayo clinic notes are relatively refined. First, loca-
tions are usually used for differentiating settings of the
same practice (e.g., Family Medicine BA, Family Medicine
KA, where BA and KA indicated locations). Second, more
detailed classifications have been generated under specific
specialties (e.g., “Ped Neonatology-I” and “Psych Ped
SMH”, (SMH is a location of Mayo Clinic)). In this way,
names of settings could provide plentiful information on
subjects, specialties and locations. Such refinement
could facilitate targeted treatment. However, it results
in a large number of settings, e.g., during the study
period, there are more than 1000 settings in clinical
notes. This brings hurdles for the meaningful use of
problem lists in different settings.
In this paper, we studied the settings associated with

more than 4500 clinical notes based on proposed ex-
tended values for Settings of Care [29] for setting aggrega-
tion. Two steps were taken to aggregate various settings
into more general ones. First, for practice settings with the
same practice and various locations, we kept the subject
and removed locations. For example, “Family Medicine
BA” and “Family Medicine KA” were merged into “Family
Medicine”. Second, for those settings with similar special-
ties, we aggregated them into the general settings. For ex-
ample, “Ped Neonatology-I” and “Psych Ped SMH” were
aggregated into “Pediatrics”. In total, 64 settings were
aggregated corresponding to 266 practice settings.

Normalization of problem list
With a good coverage of frequently used terms in problem
lists [30], the CORE Problem List Subset has been created
to align with the meaningful use requirement and better im-
plement Systematized Nomenclature of Medicine Clinical
Terms (SNOMED CT) in electronic health records (EHR)
[30]. In a previous study [31], we assessed the coverage of
SNOMED CT for codifying problem lists in narrative format
by extracting itemized entries from clinical notes and
normalize them to the Unified Medical Language System
(UMLS) [32] concepts. In this study, we applied the same
methodology but kept UMLS concepts that can be mapped
to the CORE Problem List Subset codes (the August 2015
version of The CORE Problem List Subset of SNOMED CT
was used). Only diagnosis related sections were kept for fur-
ther study, e.g., “History of Present Illness” and “Diagnosis”.
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Filtering representative concepts for each setting
In order to choose representative concepts among ran-
domly selected notes for each setting, first statistical χ2

test was conducted, then TF-IDF and enrichment ana-
lysis for co-occurring concepts in each setting performed
based on Semantic Medline. The purpose of χ2 test is to
find concepts having significant association with practice
settings. TF-IDF helps to remove concepts that appear
in most practice settings and can’t demonstrate their
unique value for specific practice setting. In enrichment
analysis, we used an external data source, Semantic Med-
line to verify if the concepts in each setting after χ2 and
TF-IDF filtering were overrepresented in the large-scale
Semantic Medline. More details will be discussed in the
following paragraphs.
After NLP and setting aggregation, each document

had a corresponding setting and contains a list of nor-
malized Concept Unique Identifiers (CUIs) for problems.
In our pilot experiment, we randomly selected 1000
notes (documents) for each of 64 settings for 5 times.
We found that out of total 4573 normalized problems,
around 3630 are covered by randomly selected notes, ac-
count for 79.4%. We can infer from these results that
1000 notes (documents) could represent the correspond-
ing practice setting.
Therefore randomly selected 64,250 training docu-

ments were used as input for calculation of χ2, deriving
χ2 values for 240,110 concept and practice setting pairs.
After choosing those cocept and pracice setting pairs
with χ2 > 6.64 (P < 0.01), 17,180 were kept. TF-IDF for
these pairs was calculated using the Eq. 1.

TFIDF ¼ Fc; s
log 1þN=ncð Þ ð1Þ

where Fc,s denotes the frequency of the concept c in the
setting s, N the total number of settings, and nc the num-
ber of settings containing the concept. Fourteen thousand,
one hundred and sixty concept and practice setting pairs
with TF-IDF greater than 1 were kept for further enrich-
ment analysis.
Enrichment analysis, primarily based on Gene Ontol-

ogy, has been used for summarizing and profiling a gene
set [33]. Recently, a few studies explored different
sources, i.e., the Medical Subject Headings for enrich-
ment analysis [34, 35]. As one of repositories for seman-
tic predications processed from the Medline, Semantic
Medline has been employed for the discovery of rela-
tionships among biological entities [36]. In this study,
we proposed to leverage the abundant entities and se-
mantic associations in the Semantic Medline for concept
co-occurring enrichment analysis to verify if the con-
cepts in each setting after χ2 and TF-IDF filtering were
overrepresented in the large-scale Semantic Medline.

Specifically we calculated the enrichment fold of
concept-setting pairs. Enrichment fold means to what
extent is the rate that co-occurring concepts from each
setting actually appear in the Semantic Medline more
than the average rate of all possible concept pairs in the
Semantic Medline. Higher enrichment fold indicates
higher possibility that the co-occurring concepts from each
setting occur in the Semantic Medline more frequently
than the average co-occurring rate in the Semantic Med-
line. Enrichment analysis for co-occurring concepts was
performed in the SemMedDB using the Eqs. 2 and 3 to
ultimately obtain the Enrichment Fold (Eq. 4).

ProbExpSet ¼ TotalSemOcc
TotalPairNum

ð2Þ

where TotalPairNum refers to the total number of pos-
sible concept pairs (e.g., (C0011849, C0015967)), among
the concept collection from all randomly selected notes,
TotalSemOcc refers to the total co-occurrence in the
SemMedDM of all concept pairs from the concept collec-
tion. ProbExpSet calculates the average co-occurrence in
the SemMedDB of all concept pairs from the concept col-
lection, i.e., the expected probability for co-occurrence of
concepts from each setting.

ProbObsSet ¼ TotalSemOccSet
TotalPairNumSet

ð3Þ

where TotalPairNumSet refers to the total number of
possible concept pairs in each setting, TotalSemOccSet
refers to the total co-occurrence in the SemMedDB of
all concept pairs from this setting. ProbObsSet calculates
the average co-occurrence in the SemMedDB of all con-
cept pairs from each setting, i.e., the observed probabil-
ity for co-occurrence of concepts from each setting.

EnrichFold ¼ ProbObsSet
ProbExpSet

ð4Þ

The representative concepts for each setting was filtered
with a threshold of enrichment fold over one.

Topic modeling
In order to investigate the associations between problem
list and practice setting, probabilistic topic modeling could
serve as an effective method. Topic modeling has been
useful to discover high-level knowledge and a broad range
of themes from large collections of text documents. In
biomedical domain, it has been applied in various aspects,
such as discovering relevant clinical concepts and rela-
tions between patients [37], mining treatment patterns in
Traditional Chinese Medicine (TCM) clinical cases [38],
revealing clinical risk stratification from a large volume of
electronic health records [39], clustering long-term bio-
medical time series such as electrocardiography (ECG)
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and electroencephalography (EEG) signals [40]. As a type
of topic modeling, Latent Dirichlet Allocations (LDA) [19]
has gained popularity in diverse fields since it holds great
promise as a means of gleaning actionable insight from
the text or image datasets. Howes et al. applied unsuper-
vised LDA to analyze clinical dialogues as a higher-level
measure of content [41]. Wang et al. developed BioLDA
for the application in complex biological relationships in
recent PubMed articles [42]. Flaherty et al. rank gene-drug
relationships in biomedical literatures based on the LDA
[43]. Chen et al. extended LDA by including background
distribution to study microbial samples [44]. All these
studies amplified the usability of topic modeling and LDA
in biomedical field.
In this study, R package “topicmodels” [45] was used to

build topic models for both setting similarity calculation
and prediction purposes. Instead of using existing evalu-
ation metrics [46–49], we chose the optimal number of
topics in our data using log likelihood [50–52]. We calcu-
lated the log likelihood values with the number of topics
varied from 5 to 150 by 5, and then investigated the per-
formance by comparing the log likelihood value, of which
the highest indicates the optimal number of topics.
Additional file 1 shows the result of log likelihood
method for choosing the optimal number of topics.
Then we fit an LDA model with the optimal number

of topics using Gibbs sampling with a burn-in of 1000 it-
erations. To obtain the posteriors in the LDA analysis,
we used collapsed Gibbs sampling because of relatively
large number of topics in our study [53]. After we ob-
tained the posteriors, we calculated the log-likelihood of
the whole collection of problem settings by integrating
all the latent variables.
To obtain setting similarity, the topic modeling was built

first using all randomly sampled data, i.e., 1000 notes with
chosen representative concepts per each setting, then set-
ting topic probability of training sets was calculated based
on the term topic probability derived from the topic
models, specifically term topic probability associated with
specific setting identified through representative concepts
(terms) was extracted to calculate the average topic prob-
ability related to each setting. Pearson correlation coef-
ficients among settings were calculated based on topic
probabilities in settings using R3.2.1. Clustered Image
Maps was then generated for visualization. Clustered
Image Maps (i.e., heat maps) represent “high-dimen-
sional” data sets by clustering of the axes to bring simi-
lar things together to create patterns of color [18]. To
assess relationships between settings and problems, we
generated clustered image maps [20] by: i) forming a
matrix of the Pearson correlation coefficient among
settings from all randomly sampled data, ii) clustering
rows and columns of the resulting matrix, and iii)
quantile-color coding of the resulting matrix.

To predict settings, all randomly sampled data was di-
vided into 5 parts. Each part in turn was used to evaluate
the settings derived by analysis of the other four parts, in
the usual n-fold cross-validation manner. Setting predic-
tion was conducted as follows:

� Setting topic probability of training sets was
calculated based on the term topic probability for
each setting derived from the topic models.

� Test data were predicted using the posterior
function of the topic model derived from
corresponding training data to obtain the setting
topic probability using predicted term topic
probability.

� Based on the setting topic probability, similarity was
calculated among settings from training data and
every one setting from testing data iteratively, so as
to get the ranking order of the predicted settings
based on Pearson correlation coefficient.

Evaluation
Predicted settings for each tested setting were ranked
according to their similarity. In order to evaluate the
predicted performance, precision@k and recall@k (k = 2,
4, 6, 8, 10) were used for evaluation (Eqs. 5 and 6). For
example, TP@k was calculated as the number of correctly
predicted settings from top 1 to top k. FP@k was the
unique number of correctly predicted settings from top 1
and top k reducing TP@k, FN@k was the total gold stand-
ard setting number (64) reducing TP@k. Based on the
precision@k and recall@k, F1@k has also been derived
(Eq. 7). We conducted a 5-fold cross validation, mean
values were taken as the final evaluation results.

Precision@k ¼ TP@k
TP@kþ FP@k

ð5Þ

Recall@k ¼ TP@k
TP@kþ FN@k

ð6Þ

F1@k ¼ 2�TP@k
2�TP@kþ FP@kþ FN@k

ð7Þ

Results
There were 3.3 million notes containing problems in an
itemized format with a total of 18.9 million phrases or
short sentences that are mapped to 4701 unique prob-
lem concepts. There were a total of 1265 settings out of
which 266 were aggregated into 64 settings, consisting
of 2.4 million notes (73% of normalized notes), and 113
thousand patients with 4573 normalized problems.
Results showed that enrichment folds are between 2.1

and 19.2 after TF-IDF and χ2 screening. As mentioned
before, the threshold of enrichment fold more than 1 was
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used to filter representative concepts for each setting.
These results indicated all concept pairs in each setting
from randomly selected notes are significantly co-occurring
in the Semantic Medline. We then used these concepts as
the representative concepts for each practice setting.
Figure 2 is a word cloud figure developed using the open

source software Kumo [54]. It showed the representative
concepts from randomly selected four settings where larger
font size means higher frequency. These concepts revealed
the major themes of corresponding settings. For example,
Addiction setting is featured by e.g., alcohol and nicotine,

Cardiovascular setting by e.g., coronary and artery, Derma-
tology setting by e.g., skin and rash, while Urology setting
by, e.g., urinary and bladder. Additional file 2 showed the
frequency of top 10 concepts for each setting.
Figure 3 showed the clustered image map [18] where a

positive correlation (red color) indicates that problems in
one setting or group of settings are similar to those in an-
other setting or another group and a negative correlation
(blue color) indicates that problems in one setting or
group are different from those in another setting or group.
From Fig. 3, we can see that some settings are highly

Fig. 2 Concepts in various practice settings. a. Addiction setting. b. Cardiovascular setting. c. Dermatology setting. d. Urology setting. Font and
color are assigned randomly, and font size is proportional to their significance, i.e., larger font means higher frequency of the term
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Fig. 3 Clustered image map (CIM) of settings based on Pearson correlation coefficients(X-axis and Y-axis both are settings). Red color indicates
positive correlation among settings, and blue color indicates negative correlation among settings. Figure 3a, b and c are three enlarged clusters.

Wang et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 3):69 Page 19 of 114



similar, for example, Cardiology setting is similar to the
Cardiovascular, Diabetes and Endocrinology settings
(Fig. 3a). Allergy is similar to Gynecology, Emergency
and Urology settings (Fig. 3b). Addiction is similar to
Pychology and Social service settings (Fig. 3c).
Recall@k, Precision@k and F1@k were shown in

Table 1. As k increases, the performance increases grad-
ually. The reason that recall, precision and F1 are the
same values when K equals 8 and 10 is FP equals FN
when K increase to 8 and 10.

Discussion
During aggregating settings in Mayo Clinics, we have en-
countered the complexity in organization of the setting
concept as stated in the study [29]. Due to the refined fea-
ture of practice settings at Mayo Clinic and for the purpose
of simpler analysis, we have not totally aligned the ex-
tended setting values in Document Ontology (DO). First,
we kept the settings that are similar but not exactly same,
for example, Cardiology and Cardiovascular as separated
settings. In contrast, in the proposed extensions to the DO
[29] all settings are distinct. Second, we only used the ex-
tended setting values in DO in parallel, and have not stud-
ied settings in the hierarchy scenario [29]. For example,
Emergency Setting is in parallel to Dermatology Setting in
our study. While in the proposed extensions to the DO,
Emergency Department is in parallel to Outpatient Setting
that includes sub-level Clinic (Non-Acute) Settings, which
embody the Dermatology Setting. Our mapping strategy
kept features of clinical practices, and it could be used for
future document hierarchy management.
In the clinical scenario, it is not easy for physicians from

a specific setting to see the big picture with respect to
problems most related to the setting. With the association
between the problem list and practice setting revealed in
our study, a prioritized and meaningful problem list above
the irrelevant details could be generated, so as to help
practitioners identify the most related problems from a
succinct view. Our findings can predict practice setting
based on problem list and providing a foundation for fu-
ture document management. Furthermore, such findings
also provide the premise for our next step toward auto-
matic reformulation of problem lists as patients move
from one practice setting to another, which would be a
huge benefit. For example, when a patient is pursing
help from the urology practice setting, his/her problems

as the representative concepts associated with this set-
ting, such as “bladder stones”, or “prostatitis” could be
generated and presented to the physicians. When the
patient moves to other practice settings such as cardio-
vascular practice setting, physicians can easily find the
most relevant problems, such as “atypical chest pain” or
“coronary vasospasm”.
From the practice setting level, highly associated set-

tings which are unknown before can be revealed by
using the similarity of problem lists. As shown in Fig. 3,
Allergy is associated with Gynecology, Emergency and
Urology settings. This finding will have implication in
terms of health care for patients.
The reasons that we adopted LDA in our study instead

of other methods include: 1) LDA is a unique bi-clustering
approach with mixture models [55], considering both
document-level and term level similarity. Other clustering
methods such as k-means, can only cluster targets based
on one similarity measurement. 2) LDA is also a robust
generative Bayesian modeling approach, which specific-
ally fits the big data analysis. The robustness is partially
because LDA adopts conjugate distribution, such as
Dirichlet and multinomial to build models. These fea-
tures are unique in LDA which are not seen in many
other unsupervised methods.

Conclusion
To our best knowledge, our study is the first attempting to
discover the association between the problem list and hos-
pital practice settings. The contributions of our method are
multiple. First, the NLP techniques normalizing problems
from various settings enabled LDA analysis. With our neg-
ation function in NLP method, this analysis would be more
accurate, compared with other studies [56]. Second, Se-
mantic Medline was used for enrichment analysis of
concept pairs to help identify representative concepts
for each setting before feeding into LDA model. Third,
setting similarity was visualized providing the general view
among various settings. Forth, our method realized good
prediction for practice settings using the similarity of
topics derived from unsupervised LDA model, with the
advantage of potential semantic associations among
problems in settings. In the future, we plan to investi-
gate how to provide more tailored care by utilizing the
association between problem list and practice setting
revealed in this study.

Additional files

Additional file 1: Log likelihood values vs. Number of Topics. Note: The
optimal number of topics is chosen when the maximum log-likelihoods are
observed. This result includes a table showing the result of log likelihood
method for choosing the optimal number of topics. (DOCX 100 kb)

Table 1 Recall@k, Precision@k and F1@k (k = 2, 4, 6, 8, 10) for
Pearson correlation coefficient

@2 @4 @6 @8 @10

Recall 0.719 0.844 0.913 0.916 0.931

Precision 0.882 0.910 0.910 0.916 0.931

F1 0.790 0.875 0.911 0.916 0.931
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Additional file 2: Frequency of concepts in randomly selected practice
settings. This file includes a figure showing frequency information of top
10 concepts in each practice setting. (DOCX 13 kb)
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