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Background: Efficient planning of hospital bed usage is a necessary condition to minimize the hospital costs. In
the presented work we deal with the problem of occupancy forecasting in the scale of several months, with a

Methods: We construct a model based on a set of recursive neural networks, which performs an occupancy
prediction using historical admission and release data combined with external factors such as public and school
holidays. The model requires no personal information on patients or staff. It is optimized for a 60 days forecast

Results: An average mean absolute percentage error (MAPE) of 6.24% was computed on 8 validation sets.

Conclusions: The proposed machine learning model has shown to be competitive to standard time-series
forecasting models and can be recommended for incorporation in medium-size hospitals automatized scheduling

Keywords: Hospital bed occupancy, Time series forecasting, Recurrent neural networks, NARX

Background

The main reason for hospital occupancy forecasting is the
widely understood need for optimization of resources in a
more and more competitive medical field [1, 2]. The bet-
ter predictions we can make, the more efficiently we can
plan ahead, and as a result, resource use is optimized and,
better care can be provided to the patients [3-5].

Hospital bed occupancy forecasting is a topic with multiple
scales and perspectives. For example, a problem of optimiz-
ing national plans regarding hospital infrastructure means
large spatial scale combined with large temporal scale. At a
medium scale, hospital staffing and vacations needs to be
planned weeks or months in advance to allow a continuous
operation with respect to seasonal fluctuations of patients.
Alternatively, we can also pose questions about a particular
department of a local hospital in an hourly time perspective,
for example, to optimize short-term planning in emergency
or intensive care units (ICU). Depending on the specific

* Correspondence: ekutafina@mi.rwth-aachen.de

1Department of Medical Informatics, Uniklinik RWTH Aachen, Pauwelsstrasse
30, 52057 Aachen, Germany

2AGH University of Science and Technology, Faculty of Applied Mathematics,
al. Mickiewicza 30, 30-059 Krakow, Poland

Full list of author information is available at the end of the article

K BMC

situation and the problem formulation, the choice of
methods can vary significantly.

Recent literature has been primarily focused on build-
ing mathematical forecasting models for ICUs, as the
risks of workflow interruptions are particularly high and
the time scale is very small, possibly of the order of mi-
nutes [6—9]. On the other hand, the large scale of eco-
nomic costs encourages hospital occupancy forecasting
for medium to long-term planning, that is, in the order
of weeks, months or years [10—14].

In this manuscript, we take a look on the medium time
scale forecasting of bed occupancy (order of months) for
medium scale hospitals (250-500 beds). The data reso-
lution taken into account is 1 day and time periodicity
(weekly, seasonally, yearly fluctuations) is assumed to play
a key role in the model. Forecasting of occupancy and
thereby resource utilization in a medium time scale allows
for better allocation of personnel, especially during public
or school holidays, or other periods of interest.

There is relatively little information about existing solu-
tions to similarly formulated problems. In Mackay et al.
one may find a broad overview of existing models of hos-
pital forecasting from very simple to more modern and
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complex [15]. Many of these models are using estimates of
the length of stay (LOS) [16, 17]. Here however, we are pre-
senting more direct time series - based approach, which re-
quires only historic admission and releases data and no
personal patient information.

One of the first applications of time series methods to
the hospital bed occupancy problem was a work by
Farmer et al. [10], who suggested a stochastic approach
and used autoregressive integrated moving average
(ARIMA) modelling with Box-Jenkins methodology [18].
This class of models has a long history of business appli-
cations, such as stock market simulations [19], and a solid
mathematical background [20].

In the recent decades, data-driven approaches and
machine learning proved their efficiency for forecast-
ing tasks [21-23]. However, only limited progress was
made in applying these methods to hospital bed occu-
pancy forecasting. Length of stay (LOS) [16, 24-27],
discharge [28] and readmission [29] forecasting
models based on machine learning have been devel-
oped. Joy and Jones [30] proposed a combination of
ARIMA with artificial neural networks (ANN) to
model time series bed occupancy data. However, the
ANN part is responsible only for residual estimations.

To our best knowledge, by the time of submitting this
paper, no scientific work describing machine learning
framework as a main forecasting model for time series
data on bed occupancy is currently available.

The primary goal of this paper is to develop a computa-
tional model, which uses historic data on daily admissions
and releases, combined with external, publicly available
supporting data to return a forecast for an upcoming
period. We explore the advantages of recurrent neural
networks and show that they can be successfully used for
medium term hospital bed occupancy forecasting.

Methods

The aim of this work is the forecasting of hospital
bed occupancy. Therefore, a predictive model based
on recurrent neural networks has been developed.
The focus of optimization was set on the scheduling
of medical personnel within seasonal demand fluctu-
ations. In the use case upon which the model is
based, a number of clinics share their bed pool in
units of 30 beds. Units can be closed or opened
based on current occupancy. Each unit requires indi-
vidual personnel. Therefore, in practice, the ultimate
target for forecasting is a correct estimation of the
number of units needed at any point in time.

The requirement imposed by hospital management
representatives was a sound prediction of bed occu-
pancy for 60days starting on the first day of the
main holiday season months: May, June, July and
August.
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Dataset

Our work is based on the hospital records of a medium
size German hospital (approx. 400 beds) in the period
from October 14th 2002 to December 31st 2015 (4827
days). Each record consists of a patient identifier, time of
admission and discharge, and the name of the clinic the
patient was admitted to. No personal information on the
patients or staff was provided. A total number of
353,520 records were available. A list of clinics sharing
their bed pool is provided separately.

Curation, preprocessing and supporting data

Data preparation is performed in 5 steps: (1) curation by
removal of missing values, (2) curation by removal of
non-necessary data, (3) data transformation, (4) addition
of supporting data, and (5) separation of training, testing
and evaluation data.

Data curation

In step 1 (removal of missing values), entries with miss-
ing data are deleted from the records (i.e., missing date
or patient number). These entries correspond to about
2% of the overall data, so the removal will not essentially
affect the model. Next, removal of non-necessary data
(step 2), the data from clinics not taking part in the bed
pool is removed (i.e., ICUs or specialty clinics not in the
shared bed pool). These entries correspond to about
50% of the overall data.

Data transformation

Step 3 is needed, since the original data does not dir-
ectly contain information on the bed occupancy, that
is, the number of beds occupied per day. Instead, it
contains admission and discharge times for individual
patients. In order to construct a time series of daily
occupancy, the number of occupied beds in the first
day is required. As this number is not available, we
assume it to be zero. To compensate for the error,
we remove the first 168 entries of the time series data
(or, equivalently, remove the data in the period before
April 1st 2003, or 168 days). Since we only take full
records into account, each patient included in the
construction of the time series has an admission and
discharge date assigned. Therefore, the patients ad-
mitted before 14 October 2002 are not included in
the time series but their number becomes neglectable
by the chosen date of 1 April 2003 (Fig. 1). The final
result of this step is a univariate time series of bed
occupancy corresponding to the period 1 April 2003
to 31 December 2015 in the form of a vector with
the length of 4657 days.
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Fig. 1 Plot of bed occupancy through the time period covered by the dataset. Only shared beds are shown. The buildup of the occupancy is

seen in the first days (pink background) and a stable occupancy is reached by April 2003. Additionally, a restructuring of available beds in the
clinics in 2005 can be observed by a drop in occupied beds (red bar/line). Yellow background corresponds to the training and testing data and
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Supporting data

Next, addition of supporting data (step 4) was per-
formed. After an analysis with the hospital managers,
the following supporting data vectors were added to the
model, as they are likely to influence the bed occupancy:

e Day of the week. The day of the week is encoded
as numbers from 1 to 7 corresponding to the days
from Monday to Sunday. This variable facilitates the
modeling of the weekly periodicity.

e Day of the year. A day of the year is encoded as
numbers from 1 to 365/366 corresponding to the
period from January 1st to December 31st. The
variable reflects the time of year.

e Public holidays. The binary vector indicates
whether a given date is a public holiday (binary
“yes”) or not (binary “no”). Since the hospital is
located on the border of three German federal states
and some of the holidays in Germany are state-
specific, we added one vector for each state.

e School holidays. The school holidays are encoded
in the same way as the public holidays with three
different vectors for the three states.

The holiday data was extracted from the website of
the Standing Conference of the Ministers of Educa-
tion and Cultural Affairs (Kultusministerkonferenz),
the organization publishing the school holidays in
Germany [31].

The supporting data (day of the week, day of the year,
national and school holidays, prospective and retrospect-
ive information) is formatted to form multivariate time
series, aligned with the bed occupancy univariate time
series. It is arranged in a matrix with 9 rows and 4657
columns, corresponding to the days in the period from
April 1st 2003 to December 31st 2015 (Fig. 2).

The final data set to build the model consists of bed
occupancy and supporting data describing external con-
ditions. Please note that the supporting data can be
assessed for future time intervals during forecasting,
while the bed occupancy data can be only known for the
past.

Separation of training, testing and evaluation data

The cleaned data is divided into two parts. The first part
(training and testing data) covers the period from April
1st 2003 until December 31st 2013. This part is used for
tuning the model parameters. The second part (1 January
2014 to 31 December 2015) is used exclusively for model
validation (evaluation data) and is used only once for val-
idation of the prediction quality on unseen/new data.

The training and testing data are split into separate
folds for training and testing sets. Each of the months
May to August for the years 2009 until 2013 are used
for a test-prediction during parameter optimization (20
test cases total) and for each test case, the period of 1 to
5 years prior to this time point is used as training data.
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NARX model

While still rarely referred to in the healthcare manage-
ment forecasting context, machine learning methods
such as Artificial Neural Networks, Decision Trees, or
Support Vector Machines were successfully used in en-
gineering and business applications (see [21] for an
overview).

Moreover, multiple publications provide comparisons
between stochastic models (autoregressive-moving-aver-
age (ARMA), autoregressive integrated moving average
(ARIMA), seasonal ARIMA (SARIMA), generalized
autoregressive conditional heteroscedasticity (GARCH)
and a special type of a recurrent Artificial Neural Net-
work: nonlinear autoregressive model with exogenous
terms (NARX) [32].

While it is difficult to make generalizations, compari-
sons based on specific data, such as chaotic laser time
series [33], wind speed [34] or refrigeration compressors
production [35] tend to agree that NARX are superior to
stochastic methods, particularly for multi-step forecast-
ing [33].

The NARX model assumes that the value of the pre-
diction variable (bed occupancy in our case, denoted by
y) at time ¢ is dependent on the local historical values of
this variable (last d, measurements) as well as on the
local values of the external variable (in our -case,
8-dimensional variable of supporting values, denoted by
u on a time interval covering the last d,, measurements:

y(¢) :f(y(t—l),y(t—Z)7 ...,y(t—d},),u(t—l),u(t—Z), ...,u(t—d,,)).

(1)

The length of the “memory” parameters d, and d,, in-
fluences the complexity of the model and the computing
time. For simplification we assume, that d,, =d,, =d. We
will further refer to the parameter d as “delay”. The

value of this local history parameter is chosen during
parameter optimization.

Equation (1) describes the essence of the model, which
we propose here. Apart from the parameter delay d de-
scribed above, a number of parameters are needed to spe-
cify the function f. Here, function f represents a neural
network with 4L hidden layers and a fixed number of AN
nodes per layer (for simplification). During forecasting,
the described neural network becomes a recurrent system,
since the output data for y(t) is used as an input for the
next steps, thus the name recurrent neural network.

NARX training and testing

In order to structure the modelling process, we define a
four-step training and testing procedure, which is subse-
quently used to iteratively optimize the model’s parame-
ters and to make a forecast about the future hospital bed
occupancy. The overall evaluation of the performance is
done afterwards using the evaluation data.

The NARX model uses a so-called open loop during
training and a closed loop during testing. This means
that during training all information is taken from the
feature vector, while during testing, part of the data is
fed back from the network to itself (Fig. 3).

As an example, if a history of 1 year and a delay of 2 is
used to predict 60 days starting May 1st 2008, the fol-
lowing data would be used. Training data would be the
data of the 365 days prior to May 1st 2008, which is May
2nd 2007 (due to leap year) to April 30th 2008. For the
prediction of the first day (May 1st 2008), the bed occu-
pancy data of April 29 and April 30 2008 are used as in-
put for the NARX. For the second day (May 2nd 2008),
the first prediction (May 1st 2008) and the occupancy at
the last day of April is used as input. In the next step,
only the newly predicted occupancies are used (closed
loop).



Kutafina et al. BMIC Medical Informatics and Decision Making (2019) 19:39 Page 5 of 10
P
14.10.2002 1.04.2003 1.01.2014 31.12.2015
Training Data Evaluation Data
e 60 day
Data used for training (1 year) e eaet
1.5.2007 30.4.2008 |tg
Stepn Step 1 W2 1)t
Step n+1 Step 2 2 t
Input  Output
Step n '
Step n+1 t
Open Loop Training Phase Closed Loop Prediction Phase
Fig. 3 Open loop training and closed loop prediction of NARX on an example sequence of bed occupation data with delay d = 2. Prediction and
training is handled identically for training and evaluation data. Supporting data is not shown for simplicity, as it is always taken from pre-
calculated time series (top bar) and never from prediction

Step 1: Fix model parameters
Choose the first day of the 60-days long period for a
forecast.

In the time series data, it corresponds to a certain nat-
ural number ¢, and ty-d must belong to the period in-
cluded in the dataset. The following parameters need to
be fixed for the following training process:

o delay d=d, =d, (see eq. (1)): delay of the model. It
describes how many days in the past are assumed to
influence the day #.

e history k: length of history chosen for the training
procedure. In other words, we take a k-year subset
of the data into account (e.g., the last year), instead
of all previous data.

e /L - number of hidden layers.

e /N - number of nodes in each hidden layer.

Step 2. Training of the model

To train the NARX model, the data for the individual
training cycle needs to be selected (see Fig. 3). The set of
data points is prepared as follows: to each date ¢; € [ty-k,
tp—1] corresponds the input vector (y(t-d),..y(t-1),
u(ti-d),...u(t;)) and the output y(t;). Please note that since
to—1 must belong to the dataset and is the last point of
the training data, the values y are known for each item
in the training data. The neural network is trained using
the backpropagation algorithm.

Step 3. Forecast/testing of the model

The previously trained NARX model is used to forecast a
60 days long time period (%, £y + 60) (see Fig. 3). This part
must be performed recurrently, since, independently of
the choice of f,, we assume that the future values
(Y(to),.-y(tp + 60)) are unknown. On the other hand, the
supporting data u is available at any time step, including
future time steps. In the first step of the forecasting we
take the input vector (y(tp-d),..y(to—1), u(ty-d),...u(ts)) and
receive an output y(ty), which is used to form the next in-
put vector. After repeating the procedure 60 times, we ob-
tain the 60-step forecast (y(¢y),.... Y(to + 60—1)).

Step 4. Ensure robustness

The backpropagation algorithm for network training
used in our work is based on the initial randomization
of the NARX model parameters and iteratively opti-
mized during training. Therefore, the predictions can
potentially vary substantially. In order to prevent this
phenomenon, the randomization seed could be fixed,
which would make the results fully reproducible. On the
other hand, particular seeds can also produce a very
large error.

In order to stabilize the prediction without losing the
advantage of the randomization we decided to repeat the
steps 2 and 3 multiple times (here 50) and average the
results. This linearly increases the computation time, but
makes the results more reliable.



Kutafina et al. BMIC Medical Informatics and Decision Making

Errors
There are various types of ways to evaluate the quality of the
prediction. Typically, an error of the forecast is defined as a
certain statistic of error vector e; =|y(t)-y (t)|, tie
[toto +60—-1], where y denotes an actual value of the
bed occupancy variable and y - the predicted value.

In this work, the following metrics were chosen:

1. MAX = max(| ¢ ,i=1..60). Maximum error carries
the information about the worst prediction within
the 60 days forecasting period.

2. MAE = mean(| ¢ , i = 1..60). Mean absolute error
gives an overall picture about the quality of the
prediction.

3. MAPE=100 = mean(| e;/y;| , i = 1..60). Mean absolute
percentage error value shows the averaged error
expressed as percentage. Often used in similar
problems [11] and thus facilitating the
comparison,

4. RMSE = /1/n3"% 2 . Root-mean-square error.
Similarly to MAPE, facilitating the comparison.

5. GE = max(floor(y/30 + 1)—floor(y/30 + 1)),i = 1..
60). This is a problem-specific error. As it was men-
tioned before, hospital clinics are sharing beds in
groups of 30. It is important that during the fore-
casted period, the number of actually needed
groups is as close as possible to the predicted num-
ber. Moreover, large differences on just 1 day can be
considered as a failure of the forecast even if the predic-
tion is good on average. GE can take natural values, one
and zero. This captures the maximum difference be-
tween actually needed and predicted units, both too
many and too few. Any positive numbers indicates that
either one or more units were empty or too few beds
were available on at least 1 day during the forecasting
period.

Further on we prioritize MAE error for the optimization
procedures. The reason is that MAE reflects the overall pic-
ture (unlike MAX, which can be drastically influenced by 1
day fluctuations) and is less prone to small changes than GE
(problem of the threshold-based functions where one bed
can make a large difference).

In comparison to MAPE and RMSE, MAE has a more
intuitive interpretation, while similar in most other char-
acteristics. Later, we will see that despite minor differ-
ences, all four types of errors show a consistent picture.

Parameter optimization

In the current model we have the following four degrees of
freedom: k, hL, hN, d (see Step 1 and 4 above for the de-
scription). While establishing the global optimum in the full
parametric space would have very high computational costs,
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local optima could be found reasonably fast. In order to do
so we will make use of the following optimization procedure.

1. Optimize training data length k and number of
hidden nodes hN.

a. We assume the following values of other
parameters: hL = land d = 2,. For every pair of
parameters hN€{1,5,10,15,...,40} and k&
{365,730,1095,1460,1825} (1-5 years) the basic
forecasting procedure is applied to the dates 1
{May, June, July, August} 2009-2013.

b. Five described above types of errors are
computed for a given date, value of k and hN.

c. For fixed pair (k, hN) the errors are averaged
along the dates.

d. Optimal pair (k_0, hN_0) is chosen based on
the minimal value of mean average error
(MAE).

2. Optimize number of hidden layers hL.

For (k_0, hN_0) we similarly check the results for

different numbers of layers (hL) and fix the optimal

value hL_0.
3. Optimize delay d, the local history used for
prediction.

For (k_0, hN_0, hL_0) optimization of the last

parameter d is made.

This process is repeated and the prior resulting config-
uration of the parameters is used as initial parameters for
the next iteration until the parameters stabilize and do not
change within one iteration anymore. As a result, a local
optimum of the parameter settings has been found.

Model evaluation

For the previously chosen optimal parameter set, the basic
forecasting procedure is applied to the summer seasons of
the years 2014-2015. We perform 60-days long prediction
for 1st of May, June, July, and August, and compute the five
types of errors. Finally, the full yearly prediction starting on 1
January will be performed for the years 2009—2015 to show
the model transferability to the different conditions, such as
rapid changes related to the major holidays.

Software

MATLAB R2017a (The Mathworks, Natick, MA, USA)
was used to perform the computations. The NARX was
implemented using the Neural Network Toolbox.

Results

Optimization of the parameters

Best results for a 60 days long prediction period starting on
the first days of the summer season months May to August
2009-2013 could be achieved using a training data length of
1 year (k=365), a delay of 2 days (d=2) and two hidden
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layers with two nodes each (Table 1). An MAE of 12.1 beds
was calculated. No significant differences were observed be-
tween MAE on individual days of the week. Notably, longer
history of training data could not achieve a better result
(Table 1). A prediction period of 1 year (365 days) resulted
in an average MAE of 15.65 (+2.65) (Table 2). When ap-
plying the optimal parameters to the summer season
months of the evaluation data, an average MAE of 12.51
(+2.54) was achieved (Table 3).

Since the results showed, that only 1 year of history
performs best, a natural question is raised: what if we
just forecast the same number of beds, which was
needed last year on the “same” day? Therefore, a naive
approach was implemented that predicts the same
amount of beds as 1year ago. Since the weekday is an
important indicator of occupancy (Fig. 4), the bed occu-
pancy from 364 days ago was used instead of 365 days.
Thus, the day of the week remains the same. An average
MAE of 164 (+2.9) was achieved by the naive model,
outperforming the NARX only in one of eight predic-
tions (Fig. 5).

To compare our work with the work of Kim et al. [11],
the MAPE for a 1 and 30 day prediction period were cal-
culated. For the one-day prediction, all days in the sum-
mer period of May to August 2014-2015 were
individually predicted. For the 30-day prediction, the
first 30 days of each of the summer months May to Au-
gust 2014-2015 were predicted. The MAPE was 4.01%
(+3.16) and 5.55% (+1.21) for 1 and 30day prediction
period respectively.

Discussion

It is common to predict bed occupancy with respect to
the length of stay (LOS) of a single patient. This is based
on various information such as age, gender, medical his-
tory or medical tests results [26]. In contrast, hospital
bed occupation prediction based on time series as per-
formed in this work does not require any personal infor-
mation of individual patients, hospital staffing or
performed procedures. Thus, it can be considered priv-
acy preserving. Yet, a direct comparison between our ap-
proach and prior work is not easily possibly.
Additionally, no evaluation database is publicly available;
therefore the following comparisons can only be an

Table 1 Overview of training results with different history

lengths

History length MAPE (%) MAE MAX GE RMSE
1 year 5.48 12.10 36.72 1.35 14.99
2 years 5.80 12.66 37.74 1.40 15.67
3years 5.87 12.81 37.66 140 15.77
4 years 5.80 12.73 38.23 1.35 15.75
5years 6.18 13.52 39.18 1.50 16,59
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Table 2 Yearly prediction 2009-2015 (starting January 1st, 365
days prediction)

Year MAPE (%) MAE MAX GE RMSE
2009 6.03 14.29 8245 3 18.65
2010 576 12.83 62.79 2 1713
2011 768 16.25 57.04 2 20.58
2012 6.71 1493 61.20 2 18.95
2013 9.22 2043 95.30 4 2517
2014 8.75 17.50 68.12 2 2151
2015 642 1334 66.56 3 16.73
Average 7.22 15.65 70.50 3 19.82
Standard deviation 1.35 265 13.78 1 292

indication of performance. For a definitive evaluation, all
methods should be tested on the same dataset.

Kim et al. [11] compare historical averaging to several time
series methods (ARIMA, SARIMA and GARCH). The work
reports 6 and 8.8% MAPE on correspondingly 1 day and 30
days forecasts. The average MAPE on our testing set is 4.01,
5.55 and 548% on 1day, 30days and 60 days forecast re-
spectively. This suggests that NARX-based model outper-
forms the traditional time series approach. Jones et al. [36]
report approximately 15 beds RMSE over a prediction period
of 32 days, with the average of total bed occupancy around
440 beds. Our approach achieved an RMSE of 14.99 and
13.51 on approx. 220 beds in a 60 and 30day prediction
period respectively. In comparison to the previous methods,
our solution is in line with the current state of the art or out-
performing it on our specific dataset.

One of the most important advantages of the model is its
robustness on several levels. First, the model is trained, opti-
mized and validated based upon a relatively large dataset.
Second, the search of the optimum is done in systematic
way and parameters in proximity to the found optimum ap-
pear to have a relatively small gradient. Another indicator for
stability is the difference between the errors on the training

Table 3 Results for summer seasons 2014-2015 with
determined parameters

Date MAPE (%) MAE MAX GE RMSE
I May 2014 7.08 13.80 32.99 2 16.52
1 June 2014 6.11 12.16 34.24 1 14.99
1 July 2014 4.64 883 2943 1 10.84
I August 2014 554 11.10 34.31 1 13.71
1 May 2015 6.27 13.87 33.19 1 16.82
1 June 2015 849 17.40 36.70 1 19.67
1 July 2015 587 11.34 3041 1 13.53
1 August 2015 592 11.58 2848 1 1337
Mean 6.24 12.51 3247 1 1493
Standard deviation 1.14 254 279 0 271
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and validation sets. Here, the difference is small (5.48% vs
6.24% MAPE and 12.10 vs 12.51 MAE on training and valid-
ation respectively), which indicates that the model was not
overfitting to the training data. One reason is the computa-
tion and averaging of multiple models (N =50) at each step
and the small model size.

Introducing multiple errors ensures better control on
the optimization. The mean absolute error (MAE) was
chosen for the optimization purposes, as it reflects the
model quality over the whole forecasted period. How-
ever, MAPE, MAX and RMSE are following the MAE in
most cases. The last type of the error, GE, is less intui-
tive as it does not directly depend on the daily differ-
ences between the prediction and the forecast. The

difference can be just one bed, and yet the number of
bed groups needed be different. Nevertheless, we report
this error because of its importance to the hospital
planning.

In general, the results of the evaluation are acceptable
and motivate to use the proposed model as a part of the
hospital planning system.

Finally, despite the fact that the optimization was per-
formed for 60 days of the summer season, the model
works well for whole year forecasting as well.

Perhaps the most surprising result of this paper is that the
proposed model predicts optimally using only the informa-
tion from the previous year, while a much longer history is
available. While this has a positive influence on the speed of
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the computation, other advantages or disadvantages are pos-
sible and should be investigated in future. First, due to the
small history the model can adapt more quickly to
changes in hospital infrastructure (e.g., closing or opening
of new wards).

On the other side, some limitations arise from the short
history of the proposed model. Local one-time events such
as disasters, diseases outbreaks or events with slower peri-
odicity (Olympic Games, soccer championships) might not
be predictable and could have a higher influence on the fol-
lowing year. Similarly, Jones [37] reported on/off switching
(rapid increase and decrease) of hospital bed occupancy
with a cycle length of 2 years, which can also not be mod-
eled with a history of less than one cycle length. The usage
of multiple years can have a smoothening effect and reduce
the possible error in these cases. However, neither on/off
switching nor other events with such an effect could be ob-
served in this work.

There are several possibilities to further improve the model.
The most obvious way is to work on the optimization proced-
ure. There are parameters left in the model, which can still be
tuned. For example, we assumed that the delays on the in-
ternal and external data are equal, but this assumption can be
easily removed to get one more degree of freedom.

Another possible factor to take into account is wea-
ther, specifically excessive heat or cold, or other external
factors such as flu outbreaks. Because of the length of
our goal forecast (60 days), which is much longer than
reliably available detailed weather forecasts, we decided
to not incorporate it in the model. However, with the
help of Bayesian modelling [38], this kind of uncertainty
can be taken into account.

In case of longer times of prediction, other factors might
play role. For instance, Jones [39] suggested number of hos-
pital deaths as a possible bed occupation predictor.

Lastly, prediction intervals could also be a useful
addition, as they could allow the user to have informa-
tion on the uncertainty of the model.

Conclusions

We presented a mathematical model based on recurrent artifi-
cial neural networks, designed to forecast the bed occupancy
in hospitals. Recurrent NARX networks were successfully
used for time series data modelling in other areas, but to our
best knowledge the presented work is the first application of
NARX to hospital bed planning. With 6.24 MAPE on 60 days
forecast, our model is competitive to the current state of art,
while not using any sort of personal patient’s data. Instead, it
is based on admissions and releases data only. The model was
optimized for the summer seasons and the data from a
medium-size German hospital for optimized scheduling pur-
poses. The model is flexible and can be easily adapted to dif-
ferent requirements. In particular, it can be integrated into an
automatic decision model, e.g. similar to the one developed by

(2019) 19:39
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Griibler et al. [40]. Currently, a software with a user-friendly
interface and better performance characteristics is being devel-
oped as a web-based application for open access.
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