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Abstract

Background: Diabetes has become one of the hot topics in life science researches. To support the analytical
procedures, researchers and analysts expend a mass of labor cost to collect experimental data, which is also
error-prone. To reduce the cost and to ensure the data quality, there is a growing trend of extracting clinical events in
form of knowledge from electronic medical records (EMRs). To do so, we first need a high-coverage knowledge base
(KB) of a specific disease to support the above extraction tasks called KB-based Extraction.

Methods: We propose an approach to build a diabetes-centric knowledge base (a.k.a. DKB) via mining the Web. In
particular, we first extract knowledge from semi-structured contents of vertical portals, fuse individual knowledge
from each site, and further map them to a unified KB. The target DKB is then extracted from the overall KB based on a
distance-based Expectation-Maximization (EM) algorithm.

Results: During the experiments, we selected eight popular vertical portals in China as data sources to construct
DKB. There are 7703 instances and 96,041 edges in the final diabetes KB covering diseases, symptoms, western
medicines, traditional Chinese medicines, examinations, departments, and body structures. The accuracy of DKB is
95.91%. Besides the quality assessment of extracted knowledge from vertical portals, we also carried out detailed
experiments for evaluating the knowledge fusion performance as well as the convergence of the distance-based EM
algorithm with positive results.
Conclusions: In this paper, we introduced an approach to constructing DKB. A knowledge extraction and fusion
pipeline was first used to extract semi-structured data from vertical portals and individual KBs were further fused into a
unified knowledge base. After that, we develop a distance based Expectation Maximization algorithm to extract a
subset from the overall knowledge base forming the target DKB. Experiments showed that the data in DKB are rich
and of high-quality.
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Background
Introduction
Diabetes is one of the major threats to human health,
which is expected to affect 552 million people by 2030.
Especially, the rate of prevalence of diabetes is high in
Asian countries. About 92.3 million and 63 million people
in China and India suffer from this metabolic disorder
respectively.
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In this context, diabetes has become a hot topic in
life science researches recently and there is a growing
trend of using EMRs as a source of clinical information to
support the analytical procedures. It has been advocated
that EMR adoption is a key to solving problems related
to quality of care, clinical decision support, and reliable
information flow among individuals and departments par-
ticipating in patient care. Randall et al. [1] compared
achievements of and improvements in quality standards
for diabetes using EMRs with those using paper records at
practices. Suna et al. [2] designed and constructed a dia-
betes knowledge graph from EMRs and proposed a deep
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neural network for its completion. Their findings sup-
ported the meaningful use of EMRs to improve the quality
of care.

To realize the potential of EMRs, we need to extract
knowledge in form of structured information from the
huge amount of unstructured textual content in EMRs.
Such extraction task is challenging and usually requires a
lot of manual efforts. For example, most EMRs record a
narrative describing the history of present illness. Clinical
researches retrieve this information by employing domain
experts to manually curate such narratives. This process
can be both error-prone and labor-intensive. To reduce
the cost and to ensure the data quality, a high-coverage
KB of a specific disease is needed to support the above
KB-based extraction task.

A variety of works aimed at using analysis and min-
ing techniques to provide high quality, well-informed and
cost-effective knowledge. Yang et al. [3] built T2D@ZJU,
which was retrieved from pathway databases, protein-
protein interaction databases and literature. Krishnasamy
[4] built DAPD, which was developed to link diabetes
with genes, pathways and proteins. Rotmensch Maya et al.
[5] explored an automated process to learn high quality
knowledge bases linking diseases and symptoms directly
from EMRs. However, these works failed to capture non-
standard terminologies or abbreviations in their resulting
knowledge bases.

On the other hand, there are quite a few vertical por-
tals provide information related to healthcare on the Web.
They focus on providing a relatively narrow range of med-
ical services and share information about various medical
knowledge. We consider to make use of all these sources
together and fuse them into a unified KB, which can have a
large coverage of different aspects of diabetes knowledge.
Such kind of diabetes-centric resource can also be further
extended and implemented on real-world applications to
benefit the public health more.

In this paper, we propose an approach to constructing
a DKB via mining the Web. We introduce an integrated
approach in order to tackle the challenges during the
KB construction. More specifically, the contributions are
stated as follows:

• The data on the Web are usually full of noise, which
means they may be redundant, complementary, and
sometimes have conflicts in some values. To ensure
the high-quality of the data in our built KB, we
describe a detailed method for knowledge extraction
from vertical portals. Such portals provide manually
editing information in the form of semi-structured
data. They are transformed into structured data via a
wrapper-based extraction strategy and stored in a
relational database following the vertical partitioning
design.

• Data sets used for knowledge construction are
scattered in various prominent sources which calls
for fusing distributed knowledge in a unified
representation way. We adopt an ontological
structure as the knowledge representation of our KB,
which includes a finer-grained schema and actual data
following it. We map all the relational tables to the
predefined KB structure via a D2R mapping strategy.
In order to integrate the scattered extracted data, we
propose a knowledge fusion method. Concretely, we
first cleanse the extracted data, especially resolving
the conflicting class description of the same instance.
After that, we follow a state-of-the-art mapping
approach to detecting equivalent instance matchings.

• We develop a distance-based EM algorithm to
extract a subset (all related to diabetes) from the
unified KB forming the target DKB. It consists of an
initial step, an expectation step and a maximization
step to extract highly relevant knowledge under the
topic “diabetes”. Experiments also prove that the
DKB we built is of good quality and robust to be
further extended with more new knowledge.

The rest of the paper is organized as follows. The prob-
lem definition and knowledge base schema are introduced
in “Problem Definition” section. “Related Work” section
lists the related work. “Methods” section presents the
knowledge base construction module. “Results” section
shows the experiment results. In “Discussions” section,
we provide the analysis of the method and the exper-
iments. Conclusions and future work are discussed in
“Conclusions” section.

Problem Definition
We aim at building a unified KB targeting diabetes. In
this part, we start with a brief introduction of the def-
inition of our proposed KB, then give an overview of
the data sources used for its construction and finally
provide the overall workflow of our approach to build
the KB.

Brief Overview of KB
We use an ontological structure O to represent the target
DKB, which is shown in Fig. 1 The KB is denoted as O =<

Gs, Gd > where Gs is a schema graph and Gd is a data
graph. We distinguish a schema graph Gs capturing the
schema-level knowledge of the DKB from Gd representing
the actual data which follows the schema designed in Gs.
Here, we adapt three popular knowledge representation
languages recommended by W3C (i.e. RDF [6], RDFS [7],
and OWL [8]) as the basis of our KB definition.

Definition 1 The data graph Gd is represented as a
tuple (V , L, E) where
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Fig. 1 A complete schema graph and a subset of the corresponding data graph

• V is a finite set of vertices. V is conceived as the
disjoint union VI

⊎
VV with I-vertices VI

(representing instances), and V-vertices VV (data
values).

• L is a finite set of edge labels, subdivided by
L = LR

⊎
LA

⊎{rdfs:type}, where LR represent
inter-entity edges and LA stand for entity-attribute
assignments.

• E is a finite set of edges of the form e(v1, v2) with
v1, v2 ∈ V and e ∈ L. Moreover, the following
restrictions are distinguished:

– e ∈ LR if and only if v1, v2 ∈ VI ,
– e ∈ LA if and only if v1 ∈ VI and v2 ∈ VV , and
– e = rdf:type denotes the membership of an

instance in a particular class.

Definition 2 The schema graph Gs is represented as a
tuple (V , L, E) where

• V is a finite set of vertices. Here, V is conceived as
the disjoint union VC

⊎
VR

⊎
VA

⊎
VD with

C-vertices VC (representing classes), R-vertices VR
(relations), A-vertices VA (attributes), and D-vertices
VD (data types).

• L comprises of edge labels including
{rdfs:domain, rdfs:range, rdfs:subclassOf,
owl:disjointWith}.

• E is a finite set of edges of the form e(v1, v2) with
v1, v2 ∈ V and e ∈ L. Moreover, the following
restrictions apply:

– e = rdfs:domian if and only if v1 ∈ VA
⋃

VR,
and v2 ∈ VC ,

– e = rdfs:range if and only if v1 ∈ VA, v2 ∈ VD
or v1 ∈ VR, v2 ∈ VC ,

– e = rdfs:subclassOf if and only if v1, v2 ∈ VC ,
and

– e = owl:disjointWith if and only if v1, v2 ∈ VC
and v1 ∩ v2 = ∅.

Figure 1 lists all the important classes as well as prop-
erties used to model the diabetes domain. We define
seven classes namely “Disease”, “Symptom”, “Traditional
Chinese Medicine (TCM)”, “Western Medicine”, “Depart-
ment”, “Body Structure” and “Examination”. These classes
are selected manually from the highly frequent phrases
representing key concepts collected from vertical portals.
In addition, we manually define ten different relations in
a top-down manner. According to a recent report on the
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frequently-asked questions on diabetes in WebMD [9] and
several academic diabetes self-management questionnaire
[10], we find that the selected classes and relations can
meet the need of capturing diabetes knowledge (including
non-standard terminologies or abbreviations). Take the
edge “Sign” as an example, it connects a disease “Type 1
Diabetes” with a symptom “Polydipsia”, which represents
the symptom is a sign of the disease. Another example
can be taken from the Figure is the property “Alias”, which
is treated as an entity-attribute relation. We can infer
from such relation that “ ” is a synonym of “
(diabetes)”.

Besides the named classes and typed properties, we also
define several axioms. Five predefined types of edges, i.e.
rdfs:domian, rdfs:range, rdfs:subclassOf, owl:disjointWith
and rdf:type are included in our KB, in which each type has
a particular interpretation. A rdfs:domain label describes
a constraint that the subject of a given relation or an
attribute p must belong to a given class c, which is rep-
resented as a triple < p, rdfs:domain, c >. Similarly a
rdfs:range label declares the value of a given relation or
an attribute must belong to a given class c or to a data
value d in the specified data range, which is organized as
a triple < p, rdfs:range, c > or < p, rdfs:range, d >. A

rdfs:subclassOf label is used to define the class hierarchy
and a owl:disjointWith label asserts that two classes have
no instances in common. rdf:type serves as the connec-
tions between the schema graph Gs and the data graph Gd,
which link the instances to their corresponding concepts.

For example, “Sign” is defined as a relation, whose
rdfs:domian is the class “Disease” and rdfs:range is the
class “Symptom”. In addition, these two classes are
declared as owl:disjointWith so that the instance “Dia-
betes” of the class “Disease” cannot be an instance of
“Symptom”. Moreover, rdfs:subclassOf is used to indicate
that the class “Medicine” has two subclass “Traditional
Chinese Medicine” and “Western Medicine”. “Atractylodes
Lancea” is declared as an instance of the class “Traditional
Chinese Medicine” through rdfs:type.

Data Sources Used for DKB Construction
Since different vertical portals share very similar struc-
tures, we just take the representative example “39
(39Health)” to explain the details of pages and their struc-
tures used for knowledge extraction. As shown in Fig. 2,
data in vertical portals are usually semi-structured and
content providers usually design several navigation pages
to gather instances within the same class together. Such

Fig. 2 The organization of pages of a vertical portal used for knowledge extraction
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page can also be regarded as a Web table in which each
row contains a structural summary of a particular instance
as well as an external link to a detailed page describing
the instance-related information. We list a navigation page
for diseases in the Fig. 2. It provides a short summary of
“Type 2 Diabetes” as well as an external link “http://jbk.39.
net/iixtnb/” to a detailed page in which more knowledge
corresponding to “Type 2 Diabetes” is displayed. Besides,
in order to distinguish different instances in the same
portal, content providers design a URL pattern “http://
jbk.39.net/identifier” where “{identifier}” stands for the
label of a particular instance, such as using “iixtnb” as the
identifier of “Type 2 Diabetes”. Thus, each instance is dis-
ambiguated and we can get a richer information through
looking inside its detailed page.

We find three possible entries for knowledge extraction
in these detailed pages, namely lists, tables and infoboxes.
List is a parallel structure whose precedent word is usu-
ally representative for its following description. As shown
in the Figure, the complications of diabetes are organized
in a list which has a topic “Common Complications” on
the first line. It indicates that the following instances are
describing the corresponding complications of diabetes.
Table is usually organized similarly as list, which contains
the topic sentence on the first row and its correspond-
ing instances in the following rows. Infobox is an array
of key-value pairs in which each key represents a prop-
erty and the value corresponds to one or several property
values (either data values or instances). Each instance
(“Type 2 Diabetes” from the example) serves as the sub-
ject of a triple connecting with the property along with
one of its distinct values. The potential relation described
by each key-value pair can be inferred from its property
label.

Workflow
We now provide a workflow to depict the process of our
approach, which is shown in Fig. 3. Since vertical portals
have a similar data structure and can only be accessed
through Web pages, we design different wrappers to
extract information from navigation pages, infoboxes, Web
tables and Web lists. The extracted data are then stored
in a relational database according to the vertical parti-
tioning design [11]. All triples are rewritten into several
two-column tables. For each table (representing a spe-
cific property), the first column contains the subjects that
define the property and the second column contains the
values of that property for a given subject . After that,
we apply a D2R (i.e. Database to RDF) step to map these
tables in the database to the data graph Gd in the KB.
For each portal, the extracted data are used to construct
an independent KB so that we get several different KBs
after the data extraction process. However, triples from
different KBs may have complements, redundances or
even conflicts between each other. Therefore, we provide
a fusion strategy to integrate these separated KBs into a
unified one. We propose a voting algorithm including self-
conflicting detection in order to improve the quality of
the extracted data. Then we adopt a standard process of
instance matching [12] in order to identify the resources
described in different datasets that correspond to the
same real-world entity. Finally, we introduce a distance
based EM (i.e. Expectation-Maximization) algorithm to
extract a subset targeting the diabetes from the overall KB,
which is so called DKB.

Related Work
There are three lines of research related to the problem we
solve. Details are discussed as follows respectively.

Fig. 3 Overall workflow of our approach to constructing DKB

http://jbk.39.net/iixtnb/
http://jbk.39.net/iixtnb/
http://jbk.39.net/{identifier}
http://jbk.39.net/{identifier}
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• Existing Knowledge Base Constructed Via
Mining the Web Over the past decade, there
emerged a number of automatically constructed
large-scale knowledge bases via Web mining, which
contain millions or even billions items of knowledge.
Such knowledge bases usually employ information
extraction techniques to extract knowledge from the
Web (e.g. Wikipedia articles or general Web pages).
Notable endeavors in the academic community
include: Open Information Extraction [13], DBpedia
[14], and YAGO [15]. In this phase, a number of
large-scale Chinese knowledge bases have also
emerged, including Zhishi.me [16], SSCO [17] and
the commercial knowledge bases Sogou Zhilifang
[18] and Baidu Zhixin [19] supporting Chinese search
engines.

• Medical Knowledge Base There exist many
different types of medical KBs. For example, UMLS
[20] and SNOMED-CT [21] promote standardization
and inter-operability for biomedical information
systems and services. DrugBank [22] and SIDER [23]
contain drug-related information. These knowledge
bases are built and maintained manually with heavy
human efforts. There are also some studies in the
medical field which begins to construct a knowledge
base by automatic algorithms. Knowlife [24] is a
knowledge graph for the biomedical science which
extracts and fuses data from scientific publications,
encyclopedic health care portals and online
communities. They used a distant supervision
algorithm in the extraction phase and employed
logical reasoning for consistency checking. Different
from the above mentioned work, our extraction
target focuses on diabetes and diabetes-related
entities. Also, the types of data sources and methods
used are quite different.

• Diabetes Knowledge Base T1Dbase [25], T2D-Db
[26], T2DGADB [27] and T2D@ZJU [28] are active
serving KBs for Type I and Type II diabetes. T1Dbase
supports the Type I diabetes community with
genetics and genomics of Type I diabetes
susceptibility (T1D). The T2D-Db database provides
an integrated platform for the better molecular level
understanding of Type II diabetes mellitus and its
pathologies. It manually created 330 candidate genes
from the Pubmed literature and provided their
corresponding information. T2DGADB collected 701
publications in T2D genetic association studies and
T2D@ZJU contains heterogeneous connections
associated with Type II diabetes. These databases
concentrate on dealing with genetic association
studies as well as more integrated resources involving
gene expressions, pathways and protein-protein
interactions. However, all the existing diabetes KBs

are all counting on English resources and the
presence of Chinese DKBs is rather limited, which is
the focus of our work.

Methods
In this section, we first introduce the method to extract
semantic data in the form of triples from vertical portals.
As a result, we get several individual KBs from these sites.
In order to build a unified one, we describe a method to
fuse these individual KBs with sophisticated fusion strate-
gies. Finally, we develop a distance-based EM algorithm to
extract DKB from the integrated KB.

Knowledge Extraction
As the starting point of the extraction process, we man-
ually select eight prevalent vertical portals on health-
care in China, namely “39 (39Health)” [29],
“99 (99Health)” [30], “ (FhHealth)”
[31], “ (Familydoctotr)” [32], “
(GlobalHospital)” [33], “ (PcBaby)” [34],
“ (JianKe)” [35] and “ (120Ask)”
[36]. All these sites have supplied HTML pages describing
symptoms, diseases, departments, body structures and
medicines so that we are provided with sufficient medical
knowledge for constructing the DKB. The main differ-
ence among these sites is that only “ (JianKe)”,
“ (120Ask)” and “ (39Health)” give
detailed pages for describing examinations while we do
not find such resources in the other five vertical portals.
We will discuss the details of the class distribution among
different portals in the experiment section.

Wrapper Induction
All these eight portals do not provide data dumps directly
so that we have to extract relevant data through pars-
ing the HTML pages. Therefore, we introduce wrap-
per induction, a sort of information extraction to
extract knowledge from these semi-structured data on
the Web pages. Dalvi et al. [37] presented a generic
framework to learn wrappers across Web sites. Gentile
et al. [38] presented a methodology called multi-strategy
learning, which combines text mining with wrapper
induction to extract knowledge from lists, tables, and
Web pages.

Pages in these portals are usually automatically gen-
erated: data are stored in a back-end database manage-
ment system (DBMS), and HTML pages are rendered
using scripts from the content of the database. That is to
say, the knowledge extraction process can be formulated
as follows: “Given a set of sample HTML pages with a
same structure belonging to a specific portal, which are
regarded as seeds, we can generate a wrapper so as to find
its corresponding structure. Then the wrapper is applied
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on more HTML pages to extract the source dataset from
which the pages have been generated.” The extracted data
is further mapped to the pre-designed tables in the rela-
tional database. The design of the table is carefully fol-
lowing the principle of vertical partitioning. Concretely
speaking, we create a specific table for each edge e(v1, v2)

defined in the data graph Gd, where the triple < v1, e, v2 >

is rewritten into two columns < v1, v2 > as a value pair.
Since the URI of each resource is unique, we can leverage
it as the identifier for each v ∈ V .

Note that the wrapper induction can only extract the
structure of interest from a given page. The structure is
comprised of a nested schema and corresponding values
of fields defined in the schema. Any field might not be
the same as the corresponding field name in the original
database. Take the “Hypertension” in Fig. 2 as an exam-
ple, it can be easily extracted as a member of the “common
complications” through a wrapper. We need further select
the corresponding table “Complication” in the relational
database for it, which requires another strategy. Here, we

propose a post-processing to tackle this problem. First, we
collect a set of heuristic words Sr = {w1, w2, . . . , wn} for
each relation r defined in the data graph Gd, such as the
word “ (complication)” for the relation “complica-
tion”. Next, we extract the topic sentence of all of the three
entries, (i.e. the first line of the list, the first row of the
table and the property label of the infobox). After that,
we check the overlap between the extracted sentence with
the pre-defined heuristic words set Sr . If the sentence hits
one of the heuristic words wn in the set Sr , the following
extracted triples from that entry will be mapped to the
table representing the relation r. Going back to the exam-
ple in Fig. 4, “Hypertension” is a complication of “Type
2 diabetes” described in a list whose first line is “Com-
mon Complications”. Therefore, the following instances in
the list are further rewritten into a table describing the
property “Complication”. The table includes two columns
where the first column is the identifier of “Type 2 diabetes”
while “Hypertension” corresponds to its value as a second
column.

Fig. 4 Example for Wrapper Induction and D2R Mapping
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D2R Mapping
After the wrapper induction step, we now mainly focus
on transforming the relational data to our KB in form
of triples, which is called database to RDF (a.k.a D2R)
mapping. We use an existing D2R tool (i.e. D2RQ [39])
to deal with this problem. While the tool in general is
to provide a virtual RDF layer on top of the relational
database (RDB) [40], it can also export RDF triples from
RDB. That is to say, the D2RQ Engine [41] does not con-
vert the relational database into real RDF data, but uses a
D2RQ Mapping file to map the database into virtual RDF
formats.

In our database, each table stores exactly one property,
and rows in the table contain subjects and the correspond-
ing objects that use that property. We subdivide these
tables into two groups: class tables and relation tables.
For the former ones, they determine the class of each
instance while the latter ones bridge the relation between
instances.

First, a class table (e.g. the disease table) is structured
from the navigation pages, which stores the property
rdf:type. It has a primary key “ID” and an additional
attribute “Type”. In order to declare the relation between
the relation database schema and our KB, we manually
create a D2R mapping file. Since a group of instances
of “disease” all come from the same table, we can use
one ClassMap and create the rdf:type statements with
an object property bridge. Therefore, the first column is
mapped to the subject and values in the second column
as the corresponding property values. Here, the class is
obtained by prefixing the values of the “Type” column
with an ontology namespace.

For a relation table (e.g. the symptom table), we
design a similar mapping file. More concretely, a
d2rq:PropertyBridge is used to relate a database column
“SymptomID” with a RDF property “symptom”. Thus, rela-
tions between instances of a disease (e.g. “diabetes”) and
instances of a symptom (e.g. “polydipsia”) are created and
mapped to the data graph.

Knowledge Fusion
In “Brief Overview of KB” section, we have defined a
mediated schema that provides a shared vocabulary for
all instances in our KB. Therefore, in order to fuse these
independent KBs into a unified one, we only need to
focus on the data-level integration. To interrelate the ele-
ments of individual KBs, our graph model is extended with
mappings.

• Definition 1 A mapping M is a set of mapping
assertions representing approximate correspondences
between graph elements. Specifically, mapping
assertions in M are of the form m(v1, v2) where
v1, v2 ∈ V are graph vertices from different datasets.

• Definition 2 An integrated data graph GID is a tuple
(GD, MD), where GD is a finite set of data graphs and
MD is a set of approximate correspondences between
data graph I-vertices. Each m ∈ MD is called an
individual mapping.

Web data is usually regarded as being full of noise.
Many errors in the extracted candidate triples call for
a strategy that can automatically decide the correctness
of each triple, that is, whether the triple is consistent
with the real world. Therefore, we first propose a pre-
processing step to cleanse the data graph before obtaining
the mappings between instances. In most cases, content
providers of vertical portals edit a certain term describ-
ing a particular instance using their personal knowledge,
which might lead to heterogeneous descriptions for the
same instance. Take the instance “ (Hydronephro-
sis)” as an example, it is described as a symptom in
“ (PcBaby)” while a disease in “39
(39Health)”. In our case, the class “disease” and “symptom”
in the schema graph Gs are declared being disjointed with
each other. That is to say, a specific instance should not
belong to two disjoint classes at a time.

Statistically, over 90% of the conflicts come from the
inconsistencies between the class “disease” and “symp-
tom”, which are also hard for human beings to determine
a clear boundary between them. Therefore, in this paper,
we propose a probabilistic scoring algorithm to select the
most likely class for each instance.

First of all, the gold standard ICD10 [42] is used to
help separate the disease instances. It is a medical clas-
sification list of diseases provided by the WHO (World
Health Organization). We collect a list in which each code
is mapped to its related Chinese descriptions and aliases
[43]. If the label of a certain instance hits a Chinese term
in the list, its class will be determined as “disease”.

On the other hand, we adopt a voting strategy to help
resolve the remaining inconsistencies. The main idea is,
for a given instance, we tend to trust the class which
has the most supported sources. Concretely, for a set of
instances vI1, vI2, . . . , vIn sharing the same label, we collect
their corresponding classes vc1, vc2, . . . , vcn inferred from
the triples < vIn, rdf : type, vcn >. Then the voting strategy
is formalized as:

v∗
c = argmax

vc

∑n
i=1 1(vc, vci)

n
(1)

Where 1 is the indicator which checks the equivalence
between vc and vci. The class vc with the highest score is
selected as the result of the set of instances.

Since we have cleansed the class of each instance, the
rest of the fusion work relies on instance matching. Thus,
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we follow a standard process established in the state-of-
the-art mapping approaches in order to obtain high qual-
ity mappings m(v1, v2). The process can be decomposed
into (1) engineering of similarity features, (2) selection
of candidates, (3) computation of similarities (4) aggrega-
tion of similarities, and (5) derivation of correspondences
based on the aggregated similarity values. For the sim-
ilarity measures, we rely on existing, well-known mea-
sures that have been proven effective in state-of-the-art
matching systems [44]. We primarily use simple, but effec-
tive measures based on syntactic and structural features.
Here, correspondences between instances of the involved
classes are computed. That is, only instances of the same
class are processed at a time. If two instances do not share
a same class, they are unlikely to be aligned.

Extracting DKB from the Overall KB
The target DKB, denoted by Gk , is regarded as a subset
related with diabetes extracted from the overall KB. How-
ever, the real distribution of Gk in the whole data graph
Gd is hard to be estimated. In order to separate Gk from
Gd, we develop a distance-based EM algorithm. The EM
algorithm [45] usually consists of two steps, the Expec-
tation step and the Maximization step. In our context,
the key idea of the proposed algorithm is first to find the
proper central vertices vc in Gk . Then we can select the
vertices which are close enough to vc and union them into
Gk . The whole algorithm is shown in Algorithm 1. Before
introducing the Expectation-Maximization step, we first
discuss the initialization strategy of our algorithm.

Algorithm 1: distance-based EM algorithm for
extracting the diabetes KB
Data: data graph Gd
Result: DKB Gk
# Initial step:
predefined central vertices v(1)

c ;
number of iteration t = 1 ;
while elements in Gk have changed do

# Expectation step;
v(t)

k = {vm|d(vm, vn) < φd, m �= n, vn ∈ v(t)
c };

G(t)
k = Gd[ v(t)

k
⋃

v(t)
c ];

# Maximization step;
Compute c(vi) for each vi in G(t)

k ;
v(t+1)

c = {vi|c(vi, G(t)
k ) > φc}, i ∈[ 1, |G(t)

k |];
t = t + 1;

end

• Initial step We manually collect a bunch of seed
vertices which are highly relevant with the target topic
“diabetes”, such as the examination “blood sugar”, the

symptom “polydipsia” and etc. These seeds are
chosen as the initial central vertices, denoted by v(1)

c .
• Expectation step In iteration t, based on the selected

central vertices, we expect to find the vertices which
are close enough to the centre. Thus, all the
neighbour vertices of v(t)

c are chosen, denoted by v(t)
k .

Then, we can infer an induced subgraph G(t)
k from Gd

whose vertex set is v(t)
k

⋃
v(t)

c .
• Maximization step Given the induced subgraph

G(t)
k , each vertice vi is assigned a new eigenvector

centrality score c(vi). A threshold φc is employed to
decide a new group of the probable central vertices.
Those vertices in G(t)

k with higher centrality score
than φc are selected, denoted by v(t+1)

c . Then we start
the next iteration.

The iterative process continues until EM converges, and
finally returns the target DKB Gk . Note that both φc and
φd are set 0.01 in this paper.

Results
Data Statistics
We select eight popular vertical portals in China as
data sources to construct DKB. Details are illustrated in
Table 1. The data was crawled in November, 2017. All
the data we collected are Chinese resources. However,
our proposed approach is language independent so that
it can be applied to other popular resources in the same
way. For simplicity, we denote class Disease shortly by
“Dis”, Symptom by “Symp”, Western Medicine by “WM”,
Traditional Chinese Medicine by “TCM”, Examination by
“Exam”, Department by “Dept”, and Body Structure by
“Body”.

All the selected vertical portals provided pages describ-
ing diseases, symptoms, departments and body stuc-
tures. However, two of them did not provide data about
medicine while the knowledge on medical examinations

Table 1 Data distribution

Dis Symp WM TCM Exam Dept Body Instances Edges

39Health
√ √ √ √ √ √ √

30,720 154,579

99Health
√ √ √ √ √

3429 24,511

FhHealth
√ √ √ √ √ √

18,776 122,899

Familydoctotr
√ √ √ √ √ √

20,539 11,2106

GlobalHospital
√ √ √ √

3624 12,976

PcBaby
√ √ √ √ √ √

5810 13,181

JianKe
√ √ √ √ √ √ √

16,866 55,132

120Ask
√ √ √ √ √ √ √

45,576 175,528

Overall KB
√ √ √ √ √ √ √

76,262 595,515

DKB
√ √ √ √ √ √ √

7703 96,041
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can only be found in six sources. “Quality of the Extracted
Knowledge from Vertical Portals” section will discuss the
quality of these extracted triples as well as the whole DKB
in detail.

We also carry out a detailed statistics of the scale
of the KB constructed from each portal. On the right
side of the table, we list the number of total instances
and edges. Compared with each single data source, we
also list the statistics about our overall KB as well
as the DKB. From Table 1, we have the following
findings:

• The portal contributes most to our overall KB is
“120ask”. It contains 45,576 instances and 175,528
edges, only about a half of the instances in the overall
KB and a quarter of the edges as well. This proves the
advantages of collecting data from different sources.

• The number of instances added from all sources is
145,340, which is far larger than the number of
distinct instances 76,262 in our overall KB. This
shows the extent of duplications between different
data sources.

Knowledge Fusion Performance
In this section, we evaluate the effectiveness of the knowl-
edge fusion step described in “Knowledge Fusion” section.
Particularly, we verify the performance of both class
cleansing and instance matching. Seven judges partici-
pated in our evaluation and evaluated a total number
of 1675 instances with conflicting classes in the overall
KB. Each of them was presented with randomly selected
instances to assess the accuracy. Figure 5 gives the com-
parison results.

We apply different fusion strategies to resolve the con-
flicts. One baseline only considers using the ICD10 stan-
dard code to make a distinction between diseases and
other classes. It manages to deal with a small portion
of the conflicting instances. However, in most cases,
the labels of instances can not be exactly matched to
the standard names in the ICD10 list. These labels are
usually presented in abbreviations which are more com-
monly used in the online sites. On the other hand,
when we adopt the voting strategy, the coverage increases
significantly. This indicates that trusting the class with
a majority of vertical portals can actually help resolve
the conflicts. In addition, the voting strategy can also
deal with conflicts except for the disease-symptom
conflicts.

The above two baselines can be considered as comple-
mentary method so that our proposed algorithm com-
bines the strengths of both of them, which has gained
a further performance increase. Bad cases mainly focus
on those low frequency instances. Since we only collect
knowledge from eight vertical portals, we do not have
sufficient evidences to correct each low frequency and
conflict instance. However, we can append more trustwor-
thy vertical portals or some third-party knowledge bases
to further improve the data quality, which can be tried in
our future work.

Then we evaluate the performance of instance match-
ing. Another 1812 matched pairs from the overall KB were
evaluated by the seven judges. Each of them was required
to judge whether the given two instances can be aligned.
We compare the matching results with an extension which
further considers class cleansing as the pre-processing
step. Figure 6 shows results of the experiment.

Fig. 5 Class cleansing performance
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Fig. 6 Instance matching performance

The method achieves a very low accuracy when directly
applying a state-of-the-art instance matching algorithm
on the extracted data from vertical portals. It is obvi-
ous that two instances under different classes can not be
matched even though they have the same label. Thus,
after we cleanse and correct the conflicting instances, the
accuracy increases significantly. This indicates that the
class cleansing step can actually help filter the noise data
extracted from the Web resources.

Convergence of the distance-based EM algorithm
In “Extracting DKB from the Overall KB” section, we
describe a distance-based EM algorithm with an initial
step for extracting a subset from the overall KB. The ini-
tial strategy is usually rewarding for the final results in the
EM based algorithm. We experimented with a few num-
ber of seeds to start the EM iterations and Fig. 7 reports
the performance. It turns out that the number of seeds
does not make much difference if we choose 2, 3, 6 or 10.

Fig. 7 Convergence of the distance-based EM algorithm
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The reason is quite clear that after the first and second
iterations, most of the core instances in DKB have been
already included in the induced subgraph. Moreover, the
central vertices are also allowed to be changed. Thus, if a
few diabetes-related instances happen to be not included
in the initial sets, EM will slowly correct the situation,
i.e., moving them to the central of the induced subgraph
due to their strong connections with all the other included
instances. We also find that running more than four itera-
tions of the proposed EM algorithm dose not significantly
increase the scale of DKB. Thus, we use four iterations
of EM after the initialization to save computation. We
receive totally 7703 instances with 96,041 edges in our
final DKB.

Quality of the Extracted Knowledge from Vertical Portals
In order to evaluate the quality of the extracted knowl-
edge, we use the accuracy of triples for correctness
evaluation. Each sampled triple was evaluated by seven
judges, and the evaluators judged the correctness of triples
according to their own knowledge. We sampled 417 triples
from 595,515 triples in the overall KB and the accuracy is
98.1%. We also sampled 423 triples from 9232 triples in
the DKB and the accuracy is 95.91%.

Bad cases mainly rely on a small portion of the self-
conflicted descriptions in some of the portals. For exam-
ple, the instance “ (Hydronephrosis)” is classi-
fied as a symptom in the main index of “
(PcBaby)”. However, it is also described as a related dis-
ease of itself on its own page, which may lead to another
triple declaring “ (Hydronephrosis)” as a disease.
That is to say, each portal may describe some conflict-
ing classes by themselves. Since each instance is assigned
an unique identifier in its URI, it should only belong to
one class. Thus, some correct data may be replaced with
wrong ones according to the self-conflicted knowledge
descriptions.

Discussions
Our approach was proposed for constructing a DKB via
mining the Web, which included a knowledge extrac-
tion method, a knowledge fusion method and subset
extraction method. Compared with previous work, the
new approach is focus on Chinese diabetes knowledge
and builds a unified KB in order to make use of all
healthcare information. The result of data statistics shows
the advantages of collecting data from different sources,
and the extent of duplications between different data
sources.

To demonstrate the effectiveness of knowledge fusion,
we verify the performance of both class cleansing and
instance matching, and the result of improved approach
shows a significantly increases. In order to evaluate the
quality of the extracted knowledge, we use the accuracy of

triples for correctness evaluation, the accuracy of overall
KB is 98.1%, and 95.91% to the DKB. To understand the
weakness of our approach for further improvement, we
have analyzed the result and found that bad cases mainly
rely on a small portion of the self-conflicted descriptions
in some of the portals.

Conclusions
In this paper, we introduced an approach to construct-
ing DKB. A knowledge extraction and fusion pipeline
was first used to extract semi-structured data from verti-
cal portals and further fuse individual KBs into a unified
knowledge base. After that, we developed a distance based
Expectation-Maximization algorithm to extract a subset
from the overall knowledge base forming the target DKB.
Experiments showed that the data in DKB are rich and
of high-quality. In the future, we consider to integrate
more data sources or third-party data sets to enrich our
knowledge base. The predefined relations can also be
rewritten into finer-grained ones in order to capture more
details.

Abbreviations
Body: Body structure; Dept: Department; Dis: Disease; DKB: Diabetes-centric
knowledge base; Exam: Examination; EM: Expection-maximization; EMRs:
Electronic medical records; KB: Knowledge base; Symp: Symptom; TCM:
Traditional chinese medicine; WM: Western medicine

Acknowledgements
Not applicable.

Funding
The publishing costs for this manuscript were provided by Shanghai
Committee of Science and Technology, China (Grant No. 17401970100).

About this supplement
This article has been published as part of BMC Medical Informatics and Decision
Making Volume 19 Supplement 2, 2019: Proceedings from the 4th China Health
Information Processing Conference (CHIP 2018). The full contents of the
supplement are available online at URL. https://bmcmedinformdecismak.
biomedcentral.com/articles/supplements/volume-19-supplement-2.

Authors’ contributions
FG leaded the method design and experiment implementation. HFW
provided theoretical guidance, result review. YLC took in charge of data
processing and labeling, and manuscript revision. HL took participated in
manuscript revision. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-19-supplement-2
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-19-supplement-2


Gong et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 2):49 Page 197 of 197

Author details
1Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Pu’an Road, Shanghai, China. 2Shanghai Leyan
Technologies Co. Ltd, No. 1028 Panyu Road, Shanghai, China.

Published: 9 April 2019

References
1. Cebul RD, Love TE, Jain AK, Hebert CJ. Electronic health records and

quality of diabetes care. N Engl J Med. 2011;365(9):825–33. https://doi.
org/10.1056/nejmsa1102519.

2. Yin S, Chen D, Le J. Deep neural network based on translation model for
diabetes knowledge graph. In: 2017 Fifth International Conference on
Advanced Cloud and Big Data (CBD). IEEE; 2017. p. 318–323. https://doi.
org/10.1109/cbd.2017.62.

3. Yang Z, Yang J, Liu W, Wu L, Xing L, Wang Y, Fan X, Cheng Y. T2d@ZJU:
a knowledgebase integrating heterogeneous connections associated
with type 2 diabetes mellitus. Database. 2013;2013. https://doi.org/10.
1093/database/bat052.

4. Gopinath K, Jayakumararaj R, Karthikeyan M. DAPD: A knowledgebase for
diabetes associated proteins. IEEE/ACM Trans Comput Biol Bioinforma.
2015;12(3):604–10. https://doi.org/10.1109/tcbb.2014.2359442.

5. Rotmensch M, Halpern Y, Tlimat A, Horng S, Sontag D. Learning a
health knowledge graph from electronic medical records. Sci Reports.
2017;7(1):. https://doi.org/10.1038/s41598-017-05778-z.

6. Resource Description Framework (RDF). https://www.w3.org/2001/sw/
wiki/RDF. Accessed 1 Feb 2019.

7. RDF Schema 1.1. http://www.w3.org/TR/rdf-schema/. Accessed 1 Feb
2019.

8. Web Ontology Language (OWL). https://www.w3.org/OWL/. Accessed 1
Feb 2019.

9. Frequently Asked Questions About Diabetes. http://www.webmd.com/
diabetes/diabetes-faq. Accessed 1 Feb 2019.

10. Schmitt A, Gahr A, Hermanns N, Kulzer B, Huber J, Haak T. The diabetes
self-management questionnaire (DSMQ): development and evaluation of
an instrument to assess diabetes self-care activities associated with
glycaemic control. Health Qual Life Outcome. 2013;11(1):138. https://doi.
org/10.1186/1477-7525-11-138.

11. Abadi DJ, Marcus A, Madden S, Hollenbach KJ. Scalable semantic web
data management using vertical partitioning. In: Koch C, Gehrke J,
Garofalakis MN, Srivastava D, Aberer K, Deshpande A, Florescu D, Chan
CY, Ganti V, Kanne C, Klas W, Neuhold EJ, editors. Proceedings of the
33rd International Conference on Very Large Data Bases, University of
Vienna, Austria, September 23-27, 2007. ACM; 2007. p. 411–422. http://
www.vldb.org/conf/2007/papers/research/p411-abadi.pdf.

12. Daskalaki E, Flouris G, Fundulaki I, Saveta T. Instance matching
benchmarks in the era of linked data. J Web Semant. 2016;39:1–14.
https://doi.org/10.1016/j.websem.2016.06.002.

13. Mausam M. Open information extraction systems and downstream
applications. In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI’16. AAAI Press; 2016. p.
4074–4077. http://dl.acm.org/citation.cfm?id=3061053.3061220.
Accessed 1 Feb 2019.

14. Jens L, Robert I, Max J, Anja J, Dimitris K, Mendes PN, Sebastian H,
Mohamed M, van Kleef P, Auer S, et al. Dbpedia–a large-scale,
multilingual knowledge base extracted from wikipedia. Semant Web.
2015;6(2):167–95. https://doi.org/10.3233/SW-140134.

15. Rebele T, Suchanek F, Hoffart J, Biega J, Kuzey E, Weikum G. YAGO: A
multilingual knowledge base from wikipedia, wordnet, and geonames. In:
Lecture Notes in Computer Science. Cham: Springer International
Publishing; 2016. p. 177–185.

16. Niu X, Sun X, Wang H, Rong S, Qi G, Yu Y. Zhishi.me - weaving chinese
linking open data. In: The Semantic Web – ISWC 2011. Berlin: Springer
Berlin Heidelberg; 2011. p. 205–220.

17. Hu F, Shao Z, Ruan T. Self-supervised chinese ontology learning from
online encyclopedias. Sci World J. 2014;2014:1–13. https://doi.org/10.
1155/2014/848631.

18. Sogou. https://www.sogou.com/. Accessed 1 Feb 2019.
19. Baidu. http://www.baidu.com. Accessed 1 Feb 2019.
20. Bodenreider O. The unified medical language system (UMLS): integrating

biomedical terminology. Nucleic Acids Res. 2004;32(90001):267–70.
https://doi.org/10.1093/nar/gkh061.

21. Stearns M, Price C, Spackman K, Wang A. Snomed clinical terms:
overview of the development process and project status. Proc/AMIA
Annu Symp AMIA Symp. 2001;8(1):662–666.

22. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A,
Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT,
Han B, Zhou Y, Wishart DS. DrugBank 4.0: shedding new light on drug
metabolism. Nucleic Acids Res. 2013;42(D1):1091–7. https://doi.org/10.
1093/nar/gkt1068.

23. Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER database of drugs and
side effects. Nucleic Acids Res. 2015;44(D1):1075–9. https://doi.org/10.
1093/nar/gkv1075.

24. Ernst P, Siu A, Weikum G. KnowLife: a versatile approach for constructing
a large knowledge graph for biomedical sciences. BMC Bioinformatics.
2015;16(1):. https://doi.org/10.1186/s12859-015-0549-5.

25. Smink LJ. T1dbase, a community web-based resource for type 1 diabetes
research. Nucleic Acids Res. 2004;33(Database issue):544–9. https://doi.
org/10.1093/nar/gki095.

26. Agrawal S, Dimitrova N, Nathan P, Udayakumar K, Lakshmi SS, Sriram S,
Manjusha N, Sengupta U. T2d-db: An integrated platform to study the
molecular basis of type 2 diabetes. BMC Genomics. 2008;9(1):320. https://
doi.org/10.1186/1471-2164-9-320.

27. Lim JE, Hong K-W, Jin H-S, Kim YS, Park HK, Oh B. Type 2 diabetes
genetic association database manually curated for the study design and
odds ratio. BMC Med Inform Decis Making. 2010;10(1). https://doi.org/10.
1186/1472-6947-10-76.

28. Yang Z, Yang J, Liu W, Wu L, Xing L, Wang Y, Fan X, Cheng Y. T2d@ZJU:
a knowledgebase integrating heterogeneous connections associated
with type 2 diabetes mellitus. Database. 2013;2013. https://doi.org/10.
1093/database/bat052.

29. 39Health. http://www.39.net/. Accessed 1 Feb 2019.
30. 99Health. http://www.99.com.cn/. Accessed 1 Feb 2019.
31. FhHealth. http://www.fh21.com.cn/. Accessed 1 Feb 2019.
32. Familydoctotr. http://www.familydoctor.com.cn/. Accessed 1 Feb 2019.
33. GlobalHospital. http://www.qqyy.com/. Accessed 1 Feb 2019.
34. PcBaby. http://www.pcbaby.com.cn/. Accessed 1 Feb 2019.
35. JianKe. http://www.jianke.com/. Accessed 1 Feb 2019.
36. 120Ask. http://www.120ask.com/. Accessed 1 Feb 2019.
37. Dalvi N, Kumar R, Soliman M. Automatic wrappers for large scale web

extraction. Proc VLDB Endowment. 2011;4(4):219–30. https://doi.org/10.
14778/1938545.1938547.

38. Ciravegna F, Gentile AL, Zhang Z. LODIE: linked open data for web-scale
information extraction. In: SWAIE. cham: Springer International
Publishing; 2012. p. 11–22.

39. D2RQ Accessing Relational Databases as Virtual RDF Graphs. http://d2rq.org/.
40. JeÅek P, MouÄek R. Semantic framework for mapping object-oriented

model to semantic web languages. Front Neuroinformatics. 2015;9:.
https://doi.org/10.3389/fninf.2015.00003.

41. Eisenberg V, Kanza Y. D2rq/update: Updating relational data via virtual rdf.
In: Proceedings of the 21st International Conference Companion on World
Wide Web. ACM Press; 2012. https://doi.org/10.1145/2187980.2188095.

42. The 10th Revision of the International Statistical Classification of Diseases
and Related Health Problems. http://www.who.int/classifications/apps/
icd/icd10online/. Accessed 1 Feb 2019.

43. Chinese Descriptions and Aliases of ICD-10 in Wikipedia. https://zh.
wikipedia.org/wiki/ICD-10. Accessed 1 Feb 2019.

44. Euzenat J, Shvaiko P. Ontology Matching: Springer Berlin Heidelberg;
2013. https://doi.org/10.1007/978-3-642-38721-0.

45. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete
data via the em algorithm. J R Stat Soc Ser B Methodol. 1977;39(1):1–38.

https://doi.org/10.1056/nejmsa1102519
https://doi.org/10.1056/nejmsa1102519
https://doi.org/10.1109/cbd.2017.62
https://doi.org/10.1109/cbd.2017.62
https://doi.org/10.1093/database/bat052
https://doi.org/10.1093/database/bat052
https://doi.org/10.1109/tcbb.2014.2359442
https://doi.org/10.1038/s41598-017-05778-z
https://www.w3.org/2001/sw/wiki/RDF
https://www.w3.org/2001/sw/wiki/RDF
http://www.w3.org/TR/rdf-schema/
https://www.w3.org/OWL/
http://www.webmd.com/diabetes/diabetes-faq
http://www.webmd.com/diabetes/diabetes-faq
https://doi.org/10.1186/1477-7525-11-138
https://doi.org/10.1186/1477-7525-11-138
http://www.vldb.org/conf/2007/papers/research/p411-abadi.pdf
http://www.vldb.org/conf/2007/papers/research/p411-abadi.pdf
https://doi.org/10.1016/j.websem.2016.06.002
http://dl.acm.org/citation.cfm?id=3061053.3061220
https://doi.org/10.3233/SW-140134
https://doi.org/10.1155/2014/848631
https://doi.org/10.1155/2014/848631
https://www.sogou.com/
http://www.baidu.com
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkt1068
https://doi.org/10.1093/nar/gkt1068
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1186/s12859-015-0549-5
https://doi.org/10.1093/nar/gki095
https://doi.org/10.1093/nar/gki095
https://doi.org/10.1186/1471-2164-9-320
https://doi.org/10.1186/1471-2164-9-320
https://doi.org/10.1186/1472-6947-10-76
https://doi.org/10.1186/1472-6947-10-76
https://doi.org/10.1093/database/bat052
https://doi.org/10.1093/database/bat052
http://www.39.net/
http://www.99.com.cn/
http://www.fh21.com.cn/
http://www.familydoctor.com.cn/
http://www.qqyy.com/
http://www.pcbaby.com.cn/
http://www.jianke.com/
http://www.120ask.com/
https://doi.org/10.14778/1938545.1938547
https://doi.org/10.14778/1938545.1938547
http://d2rq.org/
https://doi.org/10.3389/fninf.2015.00003
https://doi.org/10.1145/2187980.2188095
http://www.who.int/classifications/apps/icd/icd10online/
http://www.who.int/classifications/apps/icd/icd10online/
https://zh.wikipedia.org/wiki/ICD-10
https://zh.wikipedia.org/wiki/ICD-10
https://doi.org/10.1007/978-3-642-38721-0

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Introduction
	Problem Definition
	Brief Overview of KB
	Data Sources Used for DKB Construction
	Workflow

	Related Work

	Methods
	Knowledge Extraction
	Wrapper Induction
	D2R Mapping

	Knowledge Fusion
	Extracting DKB from the Overall KB

	Results
	Data Statistics
	Knowledge Fusion Performance
	Convergence of the distance-based EM algorithm
	Quality of the Extracted Knowledge from Vertical Portals

	Discussions
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Availability of data and materials
	Competing interests
	Publisher's Note
	Author details
	References

